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Introduction

• Aim of the course
– Give a general overview of classical and modern 

control theory
– Give a general overview of modern control tools

• Prerequisites
– Mathematics : complex numbers, linear algebra
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Introduction

• Tools
– Matlab / Simulink

• Book
– « Feedback Control of Dynamics Systems », Franklin, 

Powell, Amami-Naeini, Addison-Wessley Pub Co
– Many many books, websites and free references...
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Introduction

270 BC : the clepsydra and other 
hydraulically regulated devices for 
time measurement (Ktesibios)
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Introduction

1136-1206 : Ibn al-Razzaz al-
Jazari

“The Book of Knowledge of Ingenious 
Mechanical Devices” 
� crank mechanism, connecting rod, 
programmable automaton, humanoid robot, 
reciprocating piston engine, suction pipe, 
suction pump, double-acting pump, valve, 
combination lock, cam, camshaft, segmental 
gear, the first mechanical clocks driven by 
water and weights, and especially the 
crankshaft, which is considered the most 
important mechanical invention in history 
after the wheel
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Introduction

1600-1900 : pre-industrial revolution

Thermostatic 
regulators
(Cornelius 
Drebbel 1572 -
1633)

Windmill 
speed 
regulation. 
1588 : mill 
hoper ; 1745 : 
fantail by Lee ; 
1780 : speed 
regulation by 
Mead

Water level 
regulation 
(flush toilet, 
steam machine)

Steam engine 
pressure 
regulation (D. 
Papin 1707)

Centrifugal 
mechanical 
governor (
James Watt, 
1788)
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Introduction

1800-1935 : mathematics, basis for control theory

Differential equations � first analysis and proofs of stability condition for 
feedback systems (Lagrange, Hamilton, Poncelet, Airy-1840, Hermite-1854, 
Maxwell-1868, Routh-1877, Vyshnegradsky-1877, Hurwitz-1895, Lyapunov-1892)

Frequency domain approach (Minorsky-1922, Black-1927, Nyquist-1932, 
Hazen-1934)

1940-1960 : classical period

Frequency domain theory : (Hall-1940, Nichols-194, Bode-1938)

Stochastic approach (Kolmogorov-1941, Wiener and Bigelow-1942)

Information theory (Shannon-1948) and cybernetics (Wiener-1949)
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Introduction

1960-1980 : modern period, aeronautics and spatial industry

Non linear and time varying problems (Hamel-1949, Tsypkin-1955, Popov-
1961, Yakubovich-1962, Sandberg-1964, Narendra-1964, Desoer-1965,Zames-
1966)

Optimal control and Estimation theory (Bellman-1957, Pontryagin-1958,Kalman-
1960)

Control by computer, discrete systems theory : (Shannon-1950, Jury-1960, 
Ragazzini and Zadeh-1952, Ragazzini and Franklin-1958,(Kuo-1963, Aström-1970)

1980-... : simulation, computers, etc...
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Introduction

What is automatic control ?

� Basic idea is to enhance open loop control with feedback control
� This seemingly idea is tremendously powerfull
� Feedback is a key idea in control

Open 
loop 

Controler 
Process Input Output Input reference 

Perturbation 

Closed 
loop 

Controler 
Process Input Output Input reference 

Measurement 

Perturbation 
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Introduction

Example : the feedback amplifier

Harold Black, 1927

 

A 

R2 

R1 

V1 V2 
+ 
- Amplifier A has a high gain (say 40dB)
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2R
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2R

1
A
1

1

1

1R

2R

1V

2V −≈



 ++
⋅−=

Resulting gain is determined by passive components !
� amplification is linear
� reduced delay
� noise reduction
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Introduction

Use of block diagrams

� Capture the essence of behaviour
� standard drawing
� abstraction
� information hiding
� points similarities between systems

Same tools for :
� generation and transmission of energy
� transmission of informaiton
� transportation (cars, aerospace, etc...)
� industrial processes, manufacturing
� mechatronics, instrumentation
� Biology, medicine, finance, economy...
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Introduction

Basic properties of feedback (1)

A 
V1 

k 

V2 - 

+ 

( )
( )

k
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kA
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1

1
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1V
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≈

⋅
+

⋅=

⋅=⋅+⋅
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� Resulting gain is determined by feedback !
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Introduction

Basic properties of feedback (2) : static properties

 

kp 
r 

- 
kc 

e u 

d 

y 

 

kp kc e u 

d 

y 
r : reference
e : error
d : disturbance
y : output
kc : control gain
Kp : process gain

Open loop control : dkekky pcp ⋅+⋅⋅=

Closed loop control :
p c p

p c p c

k k k
y r d

1 k k 1 k k

⋅
= ⋅ + ⋅

+ ⋅ + ⋅

� If kc is big enough y tend to r and d is rejected
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Introduction

Basic properties of feedback (2) : dynamics properties

Closed loop control can :
� enhance system dynamics
� stabilize an unstable system
� make unstable a stable system ! �
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Introduction

The On-Off or bang-bang controller : u = {umax , umin}

e

u

e

u

e

u

The proportional controller : u=kc.(r – y)
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Introduction

The proportional derivative controller

( ) ( ) ( )
dt

tde
ktektu dp ⋅+⋅=

Gives an idea of future : phase advance

The proportional derivative controller

( ) ( ) ( )
dt

tde
ktektu dp ⋅+⋅=

The proportional integral controller

( ) ( ) ( )∫ τ⋅τ⋅+⋅= t

0ip dektektu

e(t) tends to zero !
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II. A first controller design
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A first control design

• Use of block diagrams
• Compare feedback and feedforward control
• Insight feedback properties :

– Reduce effect of disturbances
– Make system insensitive to variations
– Stabilize unstable system
– Create well defined relationship between output and reference
– Risk of unstability

• PID controler : ( ) ( ) ( ) ( )∫ τ⋅τ⋅+⋅+⋅= t

0idp dek
dt

tde
ktektu
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Cruise control

 
mg 

F 

θθθθ 

A cruise control problem :
• Process input : gas pedal u
• Process output : velocity v
• Reference : desired velocity vr

• Disturbance : slope θ

Construct a block diagram
• Understand how the system works
• Identify the major components and the relevant signals
• Key questions are :

– Where is the essential dynamics ?

– What are the appropriate abstractions ?

• Describe the dynamics of the blocks
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Cruise control

We made the assumptions :
• Essential dynamics relates velocity to force
• The force respond instantly to a change in the throttle
• Relations are linear

 

Body 
vr 

- 
Engine 

F 

ext. force 

Controller 
v 

Throttle 

We can now draw the process equations
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Cruise control

Process linear equations :

( ) θ⋅⋅−=⋅+⋅ gmFvk
dt

tdv
m

Reasonable parameters according to experience :

( ) θ⋅−=⋅+ 10uv02.0
dt

tdv

Where : 
• v in m.s-1 

• u : normalized throttle 0 < u < 1

• θ slope in rad
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Cruise control

Process linear equations :

PI controller :

( ) θ⋅−=⋅+ 10uv02.0
dt

tdv

( ) ( )( ) ( )( )∫ τ⋅τ−⋅+−⋅= t

0 rir dvvktvvktu

Combining equations leads to :

( ) ( ) ( ) ( ) ( )
dt

td
tek

dt

tde
k

dt

ted
i

θ⋅=⋅+⋅++ 1002.0
2

2

Integral action

Steady state and θ = 0 � e = 0 ! 
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Cruise control

Now we can tune k and ki in order to achieve a given dynamics

( ) ( ) ( ) ( ) ( )
dt

td
10tek

dt

tde
k02.0

dt

ted
i

2 θ⋅=⋅+⋅++

( ) ( ) ( ) 0tx
dt

tdx
2

dt

txd 2
00

2

=⋅ω+⋅ω⋅σ⋅+

How to choose ω0 and σ ?
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Cruise control

Compare open loop and closed loop

Open loop

Closed loop
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Cruise control

Compare different damping σ (ω0 = 0.1)

σ = 0.5
σ = 1
σ = 2
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Cruise control

Compare different natural frequencies ω0 (σ= 1)

ω0 = 0.05
ω0 = 0.1
ω0 = 0.2
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Cruise control

Control tools and methods help to :
• Derive equations from the system
• Manipulate the equations
• Understand the equations (standard model)

– Qualitative understanding concepts

– Insight

– Standard form
– Computations

• Find controller parameters
• Validate the results by simulation

END 1
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Standard models

Standard models are foundations of the “control language”
Important to :
� Learn to deal with standard models
� Transform problems to standard model

The standard model deals with Linear Time Invariant process (LTI), 
modelized with Ordinary Differential Equations (ODE) :

( ) ( ) ( ) ( ) ( )tub...
dt

tud
btya...

dt

tyd
a

dt

tyd
n1n

1n

1n1n

1n

1n

n

⋅+⋅=⋅+⋅+ −

−

−

−
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Standard models

Example (fundamental) : the first order equation

( ) ( )

( ) ( ) tae0yty

0tya
dt

tdy

⋅−⋅=⇒

=⋅+

( ) ( ) ( )

( ) ( ) ( ) ( ) τ⋅τ⋅⋅+⋅=⇒

⋅=⋅+

∫ τ−⋅−⋅− duebe0yty

tubtya
dt

tdy

t

0
tata

Input signal
Initial conditions
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Standard models

A higher degree model is not so different :

( ) ( ) ( ) 0tya...
dt

tyd
a

dt

tyd
n1n

1n

1n

n

=⋅+⋅+ −

−

Characteristic polynomial is :

( ) n
1n

1
n a...sassA +⋅+= −

If polynomial has n distinct roots αk then the time solution is :

( ) ∑
=

⋅α⋅=
n

1k

t
k

keCty
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Standard models

Real αk roots gives first order responses :

Complex αk=σ±i.ω roots gives second order responses :
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Standard models

General case (input u) :

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )∫∑ τ⋅τ−+⋅=⇒

⋅+⋅=⋅+⋅+

=

⋅α

−

−

−

−

t

0

n

1k

t
k

n1n

1n

1n1n

1n

1n

n

dtgetCty

tub...
dt

tud
btya...

dt

tyd
a

dt

tyd

k

Where : 
• Ck(t) are polynomials of t

• ( ) ( )∑
=

⋅α⋅=
n

1k

t
k
' ketCtg

A system is stable if all poles have negative real parts
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Standard models

Transfer function

� without knowing anything about Laplace transform it can be 
useful to store ak and bk coefficients in a convenient way, 
the transfer function :

( ) ( )
( ) n

1n
1

n
1n

1
n

b...sb

a...sas

sA

sB
sF

+⋅
+⋅+== −

−
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III. The Laplace transform
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• We assume the system to be LINEAR and TIME INVARIANT

The output (y) of the the system is related to the input (u) by 
the convolution :

System
u y

Laplace transform (1) : convolution

dττ)h(t)u(τy(t) ⋅−⋅= ∫+∞

∞−

• Example : u(t) is an impulsion (0 everywhere except in t = 0)

h(t)y(t) =
h(t) is called the impulse response, h(t) describes completely
the system

• Causality : h(t) = 0 if t < 0
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Time space

h(t)
u(t) y(t)

Laplace space

x(t)

H(s)
U(s) Y(s)

Laplace transform (1) : definition

∫+∞ ⋅− ⋅⋅=
0

ts dte)t(x)s(X

t : real (time) s : complex (frequency)

∫ ∞⋅−

∞⋅−

⋅ ⋅⋅⋅
⋅π⋅

=
jc

jc

ts dse)s(X
j2

1
)t(x )s(X

dττ)h(t)u(τy(t) ⋅−⋅= ∫+∞

∞−
Y(s) = H(s) . U(s)

☺ Mathematical formulas are never used !
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Step fonction :
t<0 : x(t) = 0
t>0 : x(t) = 1

X(s) = 1/s

Impulse fonction
t=0 : x(t)= infinite
x(t)=0

X(s) = 1

Derivation :

)t(x
dt

d
y(t) = )0(x)s(X.s)s(Y +−=

Sinusoïdal fonction :

)tsin(y(t) ⋅ω= 22s

1
)s(Y

ω+
=

Laplace transform (2) : properties
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Delay :

)tt(xy(t) d−= stde)s(X)s(Y ⋅−⋅=

Initial value theorem :
( )( )sYslim)0y(

s
⋅=

∞→+

Final value theorem (if limit exists) :

( )( )sYslim)y(
0s

⋅=∞+
→

Laplace transform (3) : properties



9/23/2009 III. Laplace transforms 40

From t to s

Laplace transform (4) : tables
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From s to t

Laplace transform (4) : tables
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( ) ( ) ( ) ( ) ( )tubtubtxatxatxa 1021o ���� +=++
+

Theorem of differentiation

( ) ( ) ( )( ) ( ) ( )( ) ( )( )
( ) ( ) ( )( )+

+++

−⋅+=
−−⋅⋅+−⋅⋅+

0usUsbsUb

0x0xsXssa0xsXsasXa

10

21o �

Laplace transform and differential equations
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( ) ( ) ( )( ) ( ) ( )( ) ( )( )
( ) ( ) ( )( )+

+++

−⋅+=
−−⋅⋅+−⋅⋅+

0usUsbsUb

0x0xsXssa0xsXsasXa

10

21o �

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )+

++

⋅−⋅⋅+=
⋅−⋅⋅+−⋅⋅+⋅+

0ubsUsbb

0xa0xsaasXsasaa

110

221
2

21o �

( ) ( ) ( ) ( ) ( ) ( )
2

21o

1221
2

21o

10

sasaa

0ub0xa0xsaa
sU

sasaa

sbb
sX

⋅+⋅+
⋅−⋅+⋅⋅++

⋅+⋅+
⋅+= +++ �

Initial conditions

Transfer function

Laplace transform and differential equations
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( ) ( ) ( ) ( )sIsUsHsX +⋅=

( ) ( ) ( ) ( ) ( ) ( )
2

21o

1221
2

21o

10

sasaa

0ub0xa0xsaa
sU

sasaa

sbb
sX

⋅+⋅+
⋅−⋅+⋅⋅++

⋅+⋅+
⋅+= +++ �

( ) ( ) ( ) ( )tituthtx +∗=

☺ Initial conditions are generally assumed to be null !

Laplace transform and differential equations
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System
u(t) y(t)

What is the output y(t) from a given input u(t) ?

u(t)

Table of transform

U(s)
Y(s) = H(s) . U(s)

Y(s)

y(t)

Table of transform

Finding output response with Laplace transform
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System
u(t) y(t)

What is the final output y(inf) from a given input u(t) ?

u(t)

Table of transform

U(s)
Y(s) = H(s) . U(s)

Y(s)

Theorem of final value

( )( )sYslim)y(
0s

⋅=∞+
→

Finding final value with Laplace transform
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Poles and zeros

H(s)
YU

Transfer function is a ratio of polynomials :

...sasasaa

...sbsbb

)s(D

)s(N
)s(H

)s(U

)s(Y
3

3
2

210

2
210

++++
+++

===

Poles and zeros :
( ) ( )

( ) ( ) ( ) ⋅⋅⋅−⋅−⋅−
⋅⋅⋅−⋅−

⋅==
321

21

0

0

pspsps

zszs

a

b
)s(H

)s(U

)s(Y
zero : z1, z2, …

poles : p1, p2, p3…

p2

p1 z1

Re

Im

p3

z2

• Poles and zeros are either into the 
left plane ore into the right plane

• Complex poles and zeros have a 
conjugate
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• Poles are the roots of Transfer function
denominator
– Real values or conjugate complex pairs

• Poles are also the eigenvalues of matrix A
• Poles = modes
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Poles and zeros : decomposition

H(s)
YU

Transfer function can be expansed into a sum of elementary terms :

...sasasaa

...sbsbb
)s(H

)s(U

)s(Y
3

3
2

210

2
210

++++
+++

==

...
pspsps

)s(H
)s(U

)s(Y

3

3

2

2

1

1 +
−
α

+
−
α+

−
α==

p1 and p2 are conjugate :
θ⋅−θ⋅ ⋅ω−=⋅ω−= j

0
j

01 e2p,ep

...
psscos2s

)s(H
)s(U

)s(Y

3

3
2

00
2

2,1 +
−
α

+
ω+⋅θ⋅ω⋅+

α
==

First orders

Second orders

☺ Complex system response is the sum of first order and second order
systems responses
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Dynamic response of first order systems

YU

1ps

1
)s(H

+
=

( ) ( )sU
ps

1
sY

1+
=

Example 1 : impulse response
u(t) is an impulsion (0 everywhere, except in 0 : ∞)

u(t)

Table of transform

U(s)=1

Table of transform

( ) ( ) ( )sUsHsY ⋅=
( )

1ps

1
sY

+
=

tp1e)t(y ⋅−=
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Dynamic response of first order systems

YU

1ps

1
)s(H

+
=

( ) ( )sU
ps

1
sY

1+
=

Example 2 : step response
u(t) is a step

u(t)

Table of transform Table of transform

( ) ( ) ( )sUsHsY ⋅=
( )

s

1

ps

1
sY

1

⋅
+

=

( )tp

1

1e1
p

1
)t(y ⋅−−=

( )
s

1
sU =



9/23/2009 III. Laplace transforms 52

Properties of first order systems

YU

1ps

1
)s(H

+
=

Step response

t1 = 1/p1 is the time constant of 
the system :

after t = t1, 63% of the final 
value is obtained

( ) ( )sU
ps

1
sY

1+
=



9/23/2009 III. Laplace transforms 53

2
00

2 s2s

1
)s(H

ω+⋅ω⋅σ⋅+
=

Dynamic response of second order systems

YU

Example 1 : impulse response
u(t) is an impulsion (0 everywhere, except in 0 : ∞)

u(t)

Table of transform

U(s)=1

Table of transform

( ) ( ) ( )sUsHsY ⋅=

( )t1sine
1

1
)t(y 2

0
t

2
0

à ⋅σ−ω⋅⋅
σ−ω

= ⋅ω⋅σ−

2
00

2 s2s

1
)s(Y

ω+⋅ω⋅σ⋅+
=
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2
00

2 s2s

1
)s(H

ω+⋅ω⋅σ⋅+
=

Dynamic response of second order systems

YU

Example 2 : step response
u(t) is an step

u(t)

Table of transform

U(s)=1/s

Table of transform

( ) ( ) ( )sUsHsY ⋅=

( )( )σ+⋅σ−ω⋅⋅
σ−ω

−= ⋅ω⋅σ− cosart1sine
1

1
1)t(y 2

0
t

2
0

à

s

1

s2s

1
)s(Y

2
00

2
⋅

ω+⋅ω⋅σ⋅+
=
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Properties of second order systems

Step response :

σ is the damping factor
ω0 is the natural frequency

2
00

2 s2s

1
)s(H

ω+⋅ω⋅σ⋅+
= YU

( )( )σ+⋅σ−ω⋅⋅
σ−ω

−= ⋅ω⋅σ− cosart1sine
1

1
1)t(y 2

0
t

2
0

à

2
0 1 σ−ω is the pseudo-frequency

5% of the final value is obtained after :

0
%5

3
t

ω⋅σ
≈

overshoot

Overshoot increases as σ decreases
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Properties of second order systems

Step response (continued) :

2
00

2 s2s

1
)s(H

ω+⋅ω⋅σ⋅+
= YU

poles : θ±⋅ω−= ep 02,1 cos(θ)=σ

θ

ω
0

Re

Im
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Stability

Re

Im

U
n

st
ab

le

S
ta

b
le

unstable pole, deverges like
exp(t)

stable pole, decays like
exp(-4.t)

Any pole with positive real part is unstable

Any input (even small) will lead to instability

See animation
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« fast poles » vs « slow poles »

Re

Im

sl
ow

fa
st

slow pole, decays like
exp(-t)
constant time : t1 = 1s

fast pole, decays like
exp(-4.t)
constant time : t1 = 4s

Fast poles can be neglected

See animation



9/23/2009 III. Laplace transforms 59

Effect of zeros

See animation

Re

Im

Zeros modify the transient response

• Fast zero : neglected

• Slow zero : transient
response affected

• Positive zero : non minimal 
phase system, step response
start out in the wrong
direction
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Ex. analysis of a feedback system

Process model :

( ) θ⋅−=⋅+ 10uv02.0
dt

tdv

Transfer functions :

( ) ( ) ( )
( ) ( ) ( )


θ⋅−=⋅+⋅

=⋅+⋅
s10sV02.0sVs

sUsV02.0sVs

( )
( ) ( )

( )
( )




+
−=

θ

+
==

⇒
s02.0

10

s

sV

s02.0

1
sF

sU

sV
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Ex. analysis of a feedback system

Transfer function of the controller (PID) :

( ) ( ) ( ) ( )
( )
( ) s

1
kskk

tE

tU

dtek
dt

tde
ktektu

id

t

0id

⋅+⋅+=⇒

τ⋅⋅+⋅+⋅= ∫
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Ex. analysis of a feedback system

We can now combine transfer functions :

 

vr 

- 
F 

θ 

PID 
v 

u 

e 
-10 

( ) ( ) ( ) ( ) ( ) ( ) ( )sE
sPIDsF1

10
sV

sPIDsF1

1
sV r ⋅

⋅+
−+⋅

⋅+
=
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IV. Design of simple feedback
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P(s)
u y

Introduction

Standard problems are often first orders or second orders
• Standard problem � standard solution

C(s)

d

r

-

( )
as

b
sP

+
= ( )

21
2

21

asas

bsb
sP

+⋅+
+=
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Control of a first order system

Most physical problems can be modeled as first order systems

( )
as

b
sP

+
=

Step 1 : transform your problem in a first order problem :

( )
s

k
ksC i+=

Step 2 : choose a PI controller

Step 3 : combine equations and tune k and in ki in order to achieve the 
desired closed loop behavior (mass-spring damper analogy)

( ) ( ) ( )
( ) ( )

2
0

2

0

i

i

s
s

2
1

s'b1
K

s

k
k

as
b

1

s

k
k

as
b

sCsP1

sCsP
sCL

ω
+⋅

ω
σ⋅+

⋅+⋅=



 +⋅
+

+




 +⋅
+=

⋅+
⋅=
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2
00

2 s2s

1
)s(H

ω+⋅ω⋅σ⋅+
=

Dynamic response of second order systems

YU

Example 1 : impulse response
u(t) is an impulsion (0 everywhere, except in 0 : ∞)

u(t)

Table of transform

U(s)=1

Table of transform

( ) ( ) ( )sUsHsY ⋅=

( )t1sine
1

1
)t(y 2

0
t

2
0

à ⋅σ−ω⋅⋅
σ−ω

= ⋅ω⋅σ−

2
00

2 s2s

1
)s(Y

ω+⋅ω⋅σ⋅+
=
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2
00

2 s2s

1
)s(H

ω+⋅ω⋅σ⋅+
=

Dynamic response of second order systems

YU

Example 2 : step response
u(t) is an step

u(t)

U(s)=1/s

Table of transform

( ) ( ) ( )sUsHsY ⋅=

( )( )σ+⋅σ−ω⋅⋅
σ−ω

−= ⋅ω⋅σ− cosart1sine
1

1
1)t(y 2

0
t

2
0

à

s

1

s2s

1
)s(Y

2
00

2
⋅

ω+⋅ω⋅σ⋅+
=

Table of transform
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Properties of second order systems

Step response :

σ is the damping factor
ω0 is the natural frequency

2
00

2 s2s

1
)s(H

ω+⋅ω⋅σ⋅+
= YU

( )( )σ+⋅σ−ω⋅⋅
σ−ω

−= ⋅ω⋅σ− cosart1sine
1

1
1)t(y 2

0
t

2
0

à

2
0 1 σ−ω is the pseudo-frequency

5% of the final value is obtained after :

0
%5

3
t

ω⋅σ
≈

overshoot

Overshoot increases as σ decreases
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Properties of second order systems

Step response (continued) :

2
00

2 s2s

1
)s(H

ω+⋅ω⋅σ⋅+
= YU

poles : θ±⋅ω−= ep 02,1 cos(θ)=σ

θ

ω
0

Re

Im
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Control of a second order system

Step 1 , step 2 : idem (PI controller)

Step 3 : Transfer function is now third order �

( ) ( ) ( )
( ) ( ) ( ) 





ω
+⋅

ω
σ⋅+⋅+

⋅+⋅=
⋅+

⋅=

2
0

2

0

s
s

2
1sa1

s'b1
K

sCsP1

sCsP
sCL

2 dof (k and ki) : the full dynamics (order 3) cannot be totally chosen �
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Simulation tools

Matlab or Scilab

� Transfer function is a Matlab object
� Adapted to transfer function algebra (addition, multiplication…)
� Simulation, time domain analysis
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Conclusion

Laplace Transform
+

Simulation tools
� Design of simple feedbacks
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V. Frequency response
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Introduction

Frequency response :
• One way to view dynamics
• Heritage of electrical engineering (Bode)
• Fits well block diagrams
• Deals with systems having large order

– electronic feedback amplifier have order 50-100 !
• input output dynamics, black box models, external 

description
• Adapted to experimental determination of dynamics
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The idea of black box

The system is a black box : forget about the internal details 
and focus only on the input-output behavior

�Frequency response makes a “giant table” of possible 
inputs-outputs pairs

�Test entries are enough to fully describe LTI systems ☺
- Step response
- Impulse response
- sinusoids

System
u y
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What is a LTI system

A Linear Time Invariant System is :
• Linear

� If (u1,y1) and (u2,y2) are input-output pairs then (a.u1+ b.u2 , a.y1+ b.y2) 
is an input-output pair : Theorem of superposition

• Time Invariant
� (u1(t),y1(t)) is an input-output pair then (u1(t-T),y1(t-T)) is an input-

output pair 

The “giant table” is drastically simplified :

( ) ( )
( ) ( ) ( )sUsHsY

dττuτthy(t)

⋅=⇒

⋅⋅−= ∫+∞
∞−
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What is the Fourier Transform

Fourier’s idea : an LTI system is completely determined by its 
response to sinusoidal signals

• Transmission of sinusoid is given by G(jω)
• The transfer function G(s) is uniquely given by its values on 

the imaginary axes
• Frequency response can be experimentally determined

The complex number G(jω) tells how a sinusoid propagates 
through the system in steady states :

( )
( ) ( )( )( )ω⋅+⋅ω⋅ω⋅=⇒

⋅ω=
jGargtsinjGy(t)

tsinu(t)
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Steady state response

( ) ( )
( )

( ) ( ) ( )

( ) ( ) ∑
∑

⋅α⋅ω⋅

⋅ω⋅

⋅+⋅ω⋅=⇒

α−
+

ω⋅−
ω⋅

=
ω⋅−

⋅=⇒

ω⋅−
=⇒

=⋅ω⋅+⋅ω=

t
k

ti
0

k

k

0

0

0

0

ti
00

k0

0

eReiGty

s

R

is

iG

is

1
sGsY

is

1
sU

etsinitcosu(t)

Fourier transform deals with Steady State Response :

(System has 
distinct poles αk)

Decays if all αk
are negatives
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Steady state response
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Nyquist stability theorem

Nyquist stability theorem tells if a system WILL BE stable (or 
not) with a simple feedback

L(s)=C(s).P(s)

-1

P(s).C(s).

-

(1) Standard system 
with negative 
unitary feedback

(2) Nyquist standard 
form

u(t) y(t)

(2) : if L(i.ω0) = -1 then oscillation will be maintained

y(t)
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Nyquist stability theorem

Step 1 : draw Nyquist curve

ω=0

Real

Imag

L(i.ω)
ω=-∞

ω=+∞

Step 2 : where is (-1,0) ?
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Nyquist theorem

When the transfer loop function L does not have poles in the 
right half plane the closed loop system is stable if the 
complete Nyquist curve does not encircle the critical (-1,0) 
point.

When the transfer loop function L has N poles in the right half 
plane the closed loop system is stable if the complete Nyquist 
curve encircle the critical (-1,0) point N times.
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Nyquist stability theorem

Nyquist stability theorem compares L(i.ω) with (-1,0)

ω=0

Real

Imag

L(i.ω)

(-1,0)

(-1,0) (-1,0)

STABLE UNSTABLE
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Nyquist theorem

• Focus on the characteristic equation
• Difficult to see how the characteristic equation L is influenced

by the controller C
�Question is : how to change C ?

• Strong practical applications
• Possibility to introduce stability margin : how close to 

instability are we ?
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Stability margin

Stability margin definitions :

(-1,0) ϕM

1/gM

d

ϕM Phase margin

gM Gain margin

d Shortest distance 
to critical point

45°- 60°

2 - 6

0.5 - 0.8
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The Bode plot

Nyquist theorem is spectacular but not very efficient…
� Impossible to distinguish C(s) and P(s)
Bode plots two curves : one for gain, one for phase :

Logarithmic 
frequency axis

dB scale 
for gain

Linear 
scale for 
phase
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The Bode plot

Bode’s plot main properties :
�Asymptotic curves (gain multiple of 20dB/dec) are ok
�Simple interpretation of C(s) and P(s) in cascade :  

GaindB(C(s).P(s) 
= GaindB(C(s)) + GaindB(P(s))

Phase(C(s).P(s) 
= Phase(C(s)) + Phase(P(s))
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The Bode stability criteria

Gain Margin > 0 : closed loop 
system will be stable

Phase Margin > 0 : closed loop 
system will be stable

One criteria is sufficient in most cases because gain 
and margin are closely related
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Typical property of Hbo(s) are :

( ) cbo for1jH ω<<ω>>ω⋅

( ) cbo for1jH ω>>ω<<ω⋅

( ) ( )
( ) c

bo

bo
bf for1

jH1

jH
jH ω<<ω≈

ω⋅+
ω⋅=ω⋅

( ) ( )
( ) ( ) cbo

bo

bo
bf forjH

jH1

jH
jH ω>>ωω⋅≈

ω⋅+
ω⋅=ω⋅

Close loop frequency response
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Log10ω

AdB

Open loop Bode plot

Close loop Bode plot

ωc

Close loop frequency response
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Log10ω

AdB

Open loop Bode plot

Close loop Bode plot (phase margin 90°)

ωc

Phase margin effect

Close loop Bode plot (phase margin 30°)

Close loop frequency response
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For small value of ω (low frequency) :

( ) ( )
( )ω⋅+

ω⋅=ω⋅
jH1

jH
jH

bo

bo
bf

If Hbo(ω) >> 1 then Hbf(ω) ≅ 1

If Hbo(ω) → ∞ then Hbf(ω) → 1

If Hbo(ω) << 1 then Hbf(ω) ≅ Hbo(ω)

Static gain
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Controller specifications

C(s)
u(s) y(s)e(s)

G(s)
ε

-

Open loop transfer function : OLTF = C.G
Close loop transfer function : CLTF = C.G / (1 + C.G)
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Controller specifications

• Static gain close to 1
→ Low frequency : high gain

• Perturbation rejection
→ High frequency : low gain

• Stability
→ phase margin > 0

• Bandwith
→ Cross over frequency ωc

• Overshoot ≈ 25%
→ phase margin ≈ 45°
→ Gentle slope in transition region

|C(jω).G(jω)|

ωc



9/23/2009 V. Frequency response 95

Controller design

• Proportionnal feedback
– Effect : lifts gain with no 

change in phase
– Bode : shift gain by factor 

of K

( ) KsC =
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Controller design

• Lead compensation
– Effect : lifts phase by 

increasing gain at high
frequency

– Very usefull controller : 
increase phase margin

– Bode : add phase between
zero and pole

( )
sA

s
KsC

⋅⋅+
⋅+=
τ

τ
1

1
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Modern loop shaping

• Use of rltool (Matlab Control Toolboxe)
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VI. Design of simple feedback 
(Ctd)
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P(s)
u y

Introduction

More complete standard problem :

C(s)

d

-

n

e x

� Controller : feedback C(s) and feedforward F(s)
� Load disturbance d : drives the system from its desired state x
� Measurement disturbance n : corrupts information about x
� Main requirement is that process variable x should follow reference r 

F(s)
r
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Introduction

Controller’s specifications :
A. Reduce effects of load disturbance
B. Does not inject too much measurement noise into the system
C. Makes the closed loop insensitive to variations in the process
D. Makes output follow reference signal

Classical approach : deal with A,B and C with controller C(s) and deal with 
D with feedforward F(s)
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Introduction

Controller’s specifications :
A. Reduce effects of load disturbance
B. Does not inject too much measurement noise into the system
C. Makes the closed loop insensitive to variations in the process
D. Makes output follow reference signal

Classical approach : deal with A,B and C with controller C(s) and deal with 
D with feedforward F(s) :

Design procedure
• Design the feedback C(s) too achieve

– Small sensitivity to load disturbance d

– Low injection of measurement noise n

– High robustness to process variations 

• Then design F(s) to achieve desired response to reference signal r
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Relations between signals

Three interesting signals (x, y, u)
Three possible inputs (r, d, n)
� Nine possible transfer functions !

r
CP1

FC
n

CP1

C
d

CP1

CP
u

r
CP1

FCP
n

CP1

1
d

CP1

P
y

r
CP1

FCP
n

CP1

CP
d

CP1

P
x

⋅
⋅+

⋅+⋅
⋅+

+⋅
⋅+

⋅=

⋅
⋅+
⋅⋅+⋅

⋅+
+⋅

⋅+
=

⋅
⋅+
⋅⋅+⋅

⋅+
⋅+⋅

⋅+
=

� Six distinct transfer functions…
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Relations between signals

� Nine frequency responses…

-40

-20

0

From: d
To

: x

-40
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0
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: y
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10
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Bode Diagram
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 (d
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Relations between signals

� Nine step responses…

-2

0

2
From: d

T
o:

 x

-1

0

1

2

T
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 y
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-2

0
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Time (sec)

A
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Relations between signals

A correct design means that each transfer has to be evaluated…
� Need to be a little bit organized !
� Need less criteria
� Concept of sensibility functions
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Sensibility functions

r
CP1

FC
n

CP1

C
d

CP1

CP
u

r
CP1

FCP
n

CP1

1
d

CP1

P
y

r
CP1

FCP
n

CP1

CP
d

CP1

P
x

⋅
⋅+

⋅+⋅
⋅+

+⋅
⋅+

⋅=

⋅
⋅+
⋅⋅+⋅

⋅+
+⋅

⋅+
=

⋅
⋅+
⋅⋅+⋅

⋅+
⋅+⋅

⋅+
=

CP1

CP

L1

L
T

CP1

1

L1

1
S

CPL

⋅+
⋅=

+
=

⋅+
=

+
=

⋅=

Sensibility function

Complementary sensibility function

Loop sensitivity function

L tells everything about stability : common denominator of each 
transfer functions
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Sensibility functions

L=PC tells everything about stability : common denominator of each 
transfer functions
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Sensibility functions

S=1/(1+L) tells about noise reduction

P
u y

C

d

-

n

e xr=0

Without feedback :

dPnyol ⋅+=

With feedback control :

olcl ySd
CP1

P
n

CP1

1
y ⋅=⋅

⋅+
+

⋅+
=

� Disturbances with |S(iω)| < 1are reduced by feedback
� Disturbances with |S(iω)| > 1are amplified by feedback
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Sensibility functions

It would be nice to have |S(iω)| < 1 for all frequencies ! 

Cauchy Integral Theorem :
� for stable open loop system :

� For unstable or time delayed systems :

( ) 0iSlog
0

=ω⋅∫∞
( ) 0iSlog

0
>ω⋅∫∞

Conclusion : water bed effect…

log|S(iω)|

ω
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Sensibility functions

Nyquist stability criteria : 

(-1,0)

PC∆

L1d +=

T

1

P

P

L1PC,

<
∆

⇔
+<∆ω∀

� 1/T tells how much P is allowed to vary 
until system becomes unstable
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Sensibility functions

Nyquist stability criteria : 
� Minimum value of d tells how close 

of instability is the system
� dmin is a measure of robustness : the 

bigger is M=1/d the more robust is 
the system

(-1,0)

PC∆

L1d +=

log|S(iω)|

ω

M
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VII. Feedforward design
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Introduction

Feedforward is a useful complement to feedback. Basic properties are:
+ Reduce effects of disturbance that can be measured
+ Improve response to reference signal
+ No risk for instability
- Design of feedforward is simple but requires good model and/or 

measurements
+ Beneficial when combined with feedback
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Attenuation of measured disturbance

P2

u
P1

d

y

F

Disturbance is eliminated if F is chosen such as:
F = P1

-1

� Need to measure d
� P1 needs to be inversible

( )2 1
Y

P 1 P F
D

= ⋅ − ⋅
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Combined Feedback and Feedforward

P2

u
P1

d

y

F

Disturbance d is attenuated both by F and C :

C
r

( )2 1P 1 P FY

D 1 P C

⋅ − ⋅
=

+ ⋅
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System inverse

The ideal feedforward needs to compute the inverse of P1. That’s might 
be tricky… Examples:

( ) 1
P s

1 s
=

+
( ) ( )1F s P s 1 s−= = +� Differentiation �

( )
se

P s
1 s

−
=

+
( ) ( ) ( )1 sF s P s 1 s e−= = + ⋅� Prediction �

( ) 1 s
P s

1 s

−=
+

( ) ( )1 1 s
F s P s

1 s
− += =

−� Unstable �
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Approximate system inverse

The ideal feedforward needs to compute the inverse of P1. That’s might 
be tricky… Examples:

( ) 1
P s

1 s
=

+
( ) ( )1F s P s 1 s−= = +� Differentiation �

( )
se

P s
1 s

−
=

+
( ) ( ) ( )1 sF s P s 1 s e−= = + ⋅� Prediction �

( ) 1 s
P s

1 s

−=
+

( ) ( )1 1 s
F s P s

1 s
− += =

−� Unstable �



9/23/2009 VII. Feedforward design 118

Approximate system inverse

Since it is difficult to obtain an exact inverse we have to approximate. One 
possibility is to find the transfer function which minimizes :

( ) ( )( )0
J u t v t dt∞= − ⋅∫

V P X U= ⋅ ⋅

Where:

And where U is a particular input (ex: a step signal). This gives for 
instance:

( ) 1
P s

1 s
=

+
( )1 1 s

P s
1 T s

− +≈
+ ⋅�

( ) sP s e−= ( )1P s 1− ≈�

( ) 1 s
P s

1 s

−=
+

( ) ( )1F s P s 1−= =�
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Improved response to reference signal

The reference signal can be injected after the controller: 

P2

ym yMy Cr

Mu

ym is the desired trajectory. 
Choose Mu = My / P

u

Design concerns:
� Mu approximated
� My adapted such that My/P feasible
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Combining feedback and feedforward

Feedback
� Closed loop
� Acts only when there are 
deviations
� Market driven
� Robust to model errors
� Risk for instability

Feedforward
� Open loop
� Acts before deviation shows 
up
� Planning
� Not robust to model errors
� No risk for instability

� Feedforward must be used as a complement to feedback. 
Requires good modeling.
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VIII. State feedback
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Introduction

- Simple design becomes difficult for high order systems
- What is the State concept ?

- State are the variables that fully summarize the actual state of the 
system

- Future can be fully predicted from the current state
- State is the ideal basis for control
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State feedback

Let us suppose the system is described by the following equation (x is a 
vector, A, B and C are matrixes) :

dx
A x B u

dt
y C x

 = ⋅ + ⋅ = ⋅
The general linear controller is :

u K x L u= − ⋅ + ⋅
The closed loop system then becomes :

( ) ( )dx
A x B K x L u A B K x B L u

dt
y C x

 = ⋅ + ⋅ − ⋅ + ⋅ = − ⋅ ⋅ + ⋅ ⋅ = ⋅
The closed loop system has the characteristic equation: 

( ) ( )( )P s det s I A B K= ⋅ − − ⋅
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State feedback

Let us suppose the system is described by the following equation (x is a 
vector, A, B and C are matrixes) :

dx
A x B u

dt
y C x

 = ⋅ + ⋅ = ⋅
The general linear controller is :

u K x L u= − ⋅ + ⋅
The closed loop system then becomes :

( ) ( )dx
A x B K x L u A B K x B L u

dt
y C x

 = ⋅ + ⋅ − ⋅ + ⋅ = − ⋅ ⋅ + ⋅ ⋅ = ⋅
The closed loop system has the characteristic equation: 

( ) ( )( )P s det s I A B K= ⋅ − − ⋅

Main mathematical tool 
is linear algebra and 
matrixes !
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Pole placement

Original (open loop) system behavior depends on its poles, solution of the 
characteristic equation:

( ) ( )OLP s det s I A= ⋅ −

Closed loop system behavior depends on its poles, solution of the 
characteristic equation:

( ) ( )( )CLP s det s I A B K= ⋅ − − ⋅

Appropriate choice of K allow to place the poles anywhere ! (Needs 
simple mathematical skills (not detailed here ☺)

Needs to tune N parameters (N : dimension of x and K)

Two problems : observability, controllability
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Pole placement

Poles of the 
OL system

Poles of the 
CL system
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First problem : observability

In the control feedback equation x is supposed to be known. If one can 
access (measure) x, there is no problem. Sometimes, x cannot be 
measured but can be observed.

dx
A x B u

dt
y C x

 = ⋅ + ⋅ = ⋅
System described by:

Only u and y accessible, A and B known. Solution is to estimate 
internal state x with a “state observer” of gain Ko :

( )obs
obs obs obs

obs obs

dx
A x B u K y y

dt
y C x

 = ⋅ + ⋅ + ⋅ − = ⋅
Appropriate choice of Kobs minimizes yobs – y : xobs tends to x

Poles of the observer are the poles of: ( ) ( )( )obsP s det s I A K C= ⋅ − − ⋅
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First problem : observability

In the control feedback equation x is supposed to be known. If one can 
access (measure) x, there is no problem. Sometimes, x cannot be 
measured but can be observed.

dx
A x B u

dt
y C x

 = ⋅ + ⋅ = ⋅
System described by:

Only u and y accessible, A and B known. Solution is to estimate 
internal state x with a “state observer” of gain Ko :

( )obs
obs obs obs

obs obs

dx
A x B u K y y

dt
y C x

 = ⋅ + ⋅ + ⋅ − = ⋅
Appropriate choice of Kobs minimizes yobs – y : xobs tends to x

Poles of the observer are the poles of: ( ) ( )( )obsP s det s I A K C= ⋅ − − ⋅
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First problem : observability

Poles of the observer are the poles those of:

( ) ( )( )obsP s det s I A K C= ⋅ − − ⋅
Poles of the 
system

Poles of the 
observer
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First problem : observability

Problem : is the system observable ?

In most cases : yes

Sometimes, the state is not observable :
� The observer does not converge to the true state, whatever Kobs is.
� Can be derived from a mathematical analyses of (A,C):

rank(A,AC,AAC,AAAC…) = N
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Combining an observer and a state feedback

True (with x) state feedback can be replaced by an observed (xobs) state 
feedback:

obsu K x L u= − ⋅ + ⋅ Poles of the 
OL system

Poles of the 
observer

Poles of the 
CL system
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Second problem : controllability

Sometimes a state is not controllable : means that whatever the 
command u is, some parts of the state are not controllable
� Can be derived from a mathematical analyses of (A,B):

rank(A,AB,AAB,AAAB…) = N

Problem if :
- A state is not controllable and unstable
- A state is not controllable and slow
No problem if :
- A state is not controllable and fast (decays rapidly)


