





Introduction

 Aim of the course

— Give a general overview of classical and modern
control theory




Introduction

e Tools
— Matlab / Simulink

e Book




Introduction

T 270 BC : the clepsydra and other
~ hydraulically regulated devices for




Introduction

1136-1206 : Ibn al-Razzaz al-
Jazari

“The Book of Knowledge of Ingenious
Mechanical Devices”

- crank mechanism, connecting rod,
programmable automaton, humanoid robot,
reciprocating piston engine, suction pipe,



Introduction

1600-1900 : pre-industrial revolution

Thermostatic Water level
regulators regulation
(Cornelius (flush toilet,

Drebbel 1572 -
1633)

steam machine)
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1800-1935 : mathematics, basis for control theory

Differential equations - first analysis and proofs of stability condition for

feedback systems (Lagrange, Hamilton, Poncelet, Airy-1840, Hermite-1854,
Maxwell-1868, Routh-1877, Vyshnegradsky-1877, Hurwitz-1895, Lyapunov-1892)

Frequency domain approach (Minorsky-1922, Black-1927, Nyquist-1932,
Hazen-1934)

1940-1960 : classical period

Frequency domain theory : (Hall-1940, Nichols-194, Bode-1938)

Stochastic approach (Kolmogorov-1941, Wiener and Bigelow-1942)
Information theory (Shannon-1948) and cybernetics (Wiener-1949)
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1960-1980 : modern period, aeronautics and spatial industry

Non linear and time varying problems (Hamel-1949, Tsypkin-1955, Popov-
1961, Yakubovich-1962, Sandberg-1964, Narendra-1964, Desoer-1965,Zames-
1966)




Introduction

What is automatic control ?
—> Basic idea is to enhance open loop control with feedback control

—> This seemingly idea is tremendously powerfull
- Feedback is a key idea in control

Process

Process
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Example : the feedback amplifier

Harold Black, 1927

T R2
>
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Use of block diagrams

—> Capture the essence of behaviour
—> standard drawing
—> abstraction

—> information hiding
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Basic properties of feedback (1)

V2=AV1-kV2)
V2Ifi+A k)= ALVl

V1 .v s o4




Introduction

Basic properties of feedback (2) : static properties

e—> ke | >k Y, r : reference
e : error
d d : disturbance
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Basic properties of feedback (2) : dynamics properties

Closed loop control can :




Introduction

The On-Off or bang-bang controller : u = {u.., » Unint

u u .

I
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The proportional derivative controller

) = k, r8ft) + ks FEU







A first control design

« Use of block diagrams
 Compare feedback and feedforward control
* Insight feedback properties :




Cruise control

A cruise control problem : F
* Process input : gas pedal u
* Process output : velocity v




Cruise control

; Throttle : F
Controller———| Engine Body >
Vr




Cruise control

Process linear equations :




Cruise control

Process linear equations :

d\é—gt)+ 0.02v =u-10[8




Cruise control

Now we can tune k and k; in order to achieve a given dynamics

%‘i(t)+(o.oz+ |<)Q‘J'S(Tt)+|<i @(t):logd?%




Cruise control

Compare open loop and closed loop

]
E)
S|
5
=
E.-
g.- ‘




Cruise control

Compare different damping o (0w, = 0.1)




Cruise control

Compare different natural frequencies wy, (0= 1)




Cruise control

Control tools and methods help to :

» Derive equations from the system

* Manipulate the equations

* Understand the equations (standard model)




Standard models

Standard models are foundations of the “control language”
Important to :

- Learn to deal with standard models

— Transform problems to standard model




Standard models

Example (fundamental) : the first order equation
dy(t)
d

- +ary(t) =0




Standard models

A higher degree model is not so different :

N 0, W Lo y(0)=0

dtn—l




Standard models

Real o, roots gives first order responses :

a = a <0




Standard models

General case (input u) :

d"y(t) +a, ﬁén_ly_(t) ..+a, ¥y(t)=b, ﬁw.ﬁ by, w(t)

dtn_l dtn_l




Standard models

Transfer function

- without knowing anything about Laplace transform it can be
useful to store a, and b, coefficients in a convenient way,







Laplace transform (1) : convolution

y

System ——

* We assume the system to be LINEAR and TIME INVARIANT

— The output (y) of the the system is related to the input (u) by
the convolution :

y() = [ u(@) h(t—) e

« Example : u(t) is an impulsion (0O everywhere exceptint = 0)

y(t) = h(t)
— h(t) is called the impulse response, h(t) describes completely
the system

e Causality : h(t)=01ift<0
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Laplace transform (1) : definition

0,

h(t)

y(t)

Time space

UGs),

H(s)

Y(S)

Laplace space




Laplace transform (2) : properties

Impulse fonction
t=0 : x(t) = infinite X(s) = 1
X(t)=0 (8)




Laplace transform (3) : properties

Delay :
y(®) =x(t-t,) Y (©) =X (9 [&"




Laplace transform (4) : tables

Table des transformées de Laplace
f(t)

F(s)

Pl

1 ou u(t) ]

S
¢ 1

52

. . n!
t (n entier positif)

c-at

te-at




Laplace transform (4) : tables

F(s) f(t)
) ikl
P27 sa) , nentier W
1 sin{at)
P2X 22 m
| ebtsin(at)
P29 I —
(s-b)“+a a
l l eﬁT _ e—ﬁt)
P30 -
s2_a2 a ( 2
s el +
P31 2.2 3
1 . ell . gt
P32 G-a)(sb) ° si azb hoa
bt at
P33 Wf’(sb) si a%b beb—::e
1 sin(at) - atcos(at)
P34 32 S S—
(s"+a”) 2a
P35 S t sin(at)
2a

2
(s?'+32)

sin(af) + atcos{at)

2a




Laplace transform and differential equations

a,x(t)+ax(t)+ax(t) = boult) + but)
Theorem of (-jl_ifferentiation




Laplace transform and differential equations

a,X (s) +a, [(sIX(s)-x(0, ) + &, (sl(sX(s)=x(0.))-x(0.))
= byU(s) + b (su(s) - u(0.))

I
a, +a 3+3,8°)X(s)- (1, +a, B X(0.) -2, X(0,)

(bo +b, E) ﬂJ(S) -b, (O+)

Y

{1l
X(s) = : +b0 +b,[s U9+ (a, +a,[s)(x(0,)+a, [x(0+2)— b, (u(0, )
ot 5+, (8 a +a,B+a,3
L L» Initial conditions
Transfer function
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Laplace transform and differential equations

X(s) = b, +b, [s u(e)+ (a,+a,[s)ix(0,)+a, [X(O+2)—b1 u(0,)
a,+a,(5+2,[3

a +a B+a, @




Finding output response with Laplace transform

u(t t
Q» System &




Finding final value with Laplace transform

u(t) y()
— System ———




Poles and zeros

Transfer function is a ratio of polynomials :
_N@© _  b,+bs+b,s*+...




e Poles are the roots of Transfer function
denominator




Poles and zeros : decomposition

U Y

RN H(s) >

Transfer function can be expansed into a sum of elementary terms :

YO _ =

&

2
b, +b,;s+b,s” +...
2 3

C




Dynamic response of first order systems

SR




Dynamic response of first order systems

SR




Properties of first order systems

— »H@E) = —>

SR




Dynamic response of second order systems

U 1 Y
—— HE) = 5
s° + 200 Ly, [$+ w,

\4




Dynamic response of second order systems

U 1 Y
—— HE) = 5
s° + 200 Ly, [$+ w,

\4




Properties of second order systems

—~ JHE=

1

s? + 2 [0 [bo, B+ W,

\4

Step response : y(t) =1- L pome Bl;in(mo Vi-o? [+ arcos(o))
w,V1-0°

vershoot




Properties of second order systems

L, H©) = 1 L

s? + 2 [0 [bo, B+ W,




Stability

a|qeIsun

9|gels

X




« fast poles » vs « slow poles »




Effect of zeros

See animation

» Fast zero : neglected




Ex. analysis of a feedback system

Process model :

av(t) , 0.020V = u—-1000




Ex. analysis of a feedback system

Transfer function of the controller (PID) :

dt)




Ex. analysis of a feedback system

We can now combine transfer functions :

= u
a{%}—» PID (X F >







Introduction

Standard problems are often first orders or second orders
« Standard problem - standard solution




Control of a first order system

Most physical problems can be modeled as first order systems

Step 1 : transform your problem in a first order problem :

b
P(S) — E

Step 2 : choose a Pl controller
k.

C(s)=k +—-

S

Step 3 : combine equations and tune k and in k;in order to achieve the
desired closed loop behavior (mass-spring damper analogy)

b kij
—— Mk+-
CL(s)= P() (s) _ s+a S) _k@ 1+ bls
SR L k) 2,
s+a S Wy Wy
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Dynamic response of second order systems

U 1 Y
—— HE) = 5
s° + 200 Ly, [$+ w,

\4




Dynamic response of second order systems

U 1 Y
—— HE) = 5
s° + 200 Ly, [$+ w,

\4




Properties of second order systems

——~ s H@=

1

s? + 2 [0 [bo, B+ W,

\4

1 pown Blsin(coo Vi-o? 0+ arcos(o))

Step response :  Yy(t)=1-
w,V1-0°

vershoot




Properties of second order systems

L, H©) = 1 L

s? + 2 [0 [bo, B+ W,




Control of a second order system

Step 1, step 2 : idem (PI controller)

Step 3 : Transfer function is now third order ®




Simulation tools

Matlab or Scilab

—> Transfer function is a Matlab object




Conclusion
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Frequency response :

One way to view dynamics

Heritage of electrical engineering (Bode)

Fits well block diagrams

Deals with systems having large order

— electronic feedback amplifier have order 50-100 !

Input output dynamics, black box models, external
description

Adapted to experimental determination of dynamics
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The 1dea of black box

» System ——

The system is a black box : forget about the internal details




What is a LTI system

A Linear Time Invariant System is :

e Linear

- If (u,,y,) and (u,,y,) are input-output pairs then (a.u,+ b.u, , a.y,+ b.y,)
IS an input-output pair : Theorem of superposition




What is the Fourier Transform

Fourier’s idea : an LTI system is completely determined by its
response to sinusoidal signals

e Transmission of sinusoid is given by G(jw)

» The transfer function G(s) is uniquely given by its values on
the imaginary axes

 Frequency response can be experimentally determined

The complex number G(jw) tells how a sinusoid propagates
through the system in steady states :

u(t) = sin(w[ﬂ)
= y(t) =|G(j o) Bin(co + arg(G(j [60)))
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Steady state response

Fourier transform deals with Steady State Response :

u(t) = codey ) +i Bin(w, 1) = ™"




Steady state response

uuuuuu

AVAVAVAVAY
AT AR
pURRRTAVRTAYE




Nyquist stability theorem

Nyquist stability theorem tells if a system WILL BE stable (or
not) with a simple feedback

u(® 0
—ICE)-[—PE): —| L(5)=C().P(s)




Nyquist stability theorem

Step 1 : draw Nyquist curve

Imag




Nyquist theorem

When the transfer loop function L does not have poles in the
right half plane the closed loop system is stable if the
complete Nyquist curve does not encircle the critical (-1,0)
point.

When the transfer loop function L has N poles in the right half
plane the closed loop system is stable if the complete Nyquist
curve encircle the critical (-1,0) point N times.
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Nyquist stability theorem

Nyquist stability theorem compares L(i.w) with (-1,0)

+Imag

STABLE UNSTABLE




Nyquist theorem

* Focus on the characteristic equation

 Difficult to see how the characteristic equation L is influenced
by the controller C




Stability margin

Stability margin definitions :

¢,, Phase margin




The Bode plot

Nyquist theorem is spectacular but not very efficient...
- Impossible to distinguish C(s) and P(s)
Bode plots two curves : one for gain, one for phase :

Elia

Rl S

il

il

10"




The Bode plot

Bode’s plot main properties :
- Asymptotic curves (gain multiple of 20dB/dec) are ok
- Simple interpretation of C(s) and P(s) in cascade :

Gaingg(C(s).P(s)




The Bode stabllity criteria

ain

Gain Margin > 0 : closed loop




Close loop frequency response

Typical property of H, (s) are :

Hyo(j [0 >>1 for w<< w,

H,(j [00) <<1 for 0>> o,

Hbf(j |:d"))_ (J[w) =1for w<<w,
1+Hbo(J |]0)
Hy (J m"))_ Hioile) _ o(J E(lO) for w>>w,

1+ Hbo(] |]’o)



Close loop frequency response

AdB




Close loop frequency response

Phase margin effect

AdB




Static gain

: H (jlw
Hbf(] mo)z bo(J Q‘)

1+ H o 00)




Controller specifications

y(s) |

G(s)

e(s) . £ - u(s)




Controller specifications

e Static gain closeto 1

— Low frequency : high gain
e Perturbation rejection

— High frequency : low gain

NG(jw)l




Controller design

» Proportionnal feedback  C(s)=K
— Effect : lifts gain with no




Controller design

. Lead compensation  C(s)=K

— Effect : lifts phase by
iIncreasing gain at high




Modern loop shaping

« Use of rltool (Matlab Control Toolboxe)







Introduction

More complete standard problem :




Introduction

Controller’s specifications .

A. Reduce effects of load disturbance

B. Does not inject too much measurement noise into the system
C. Makes the closed loop insensitive to variations in the process




Introduction

Controller’s specifications .

A. Reduce effects of load disturbance

B. Does not inject too much measurement noise into the system
C. Makes the closed loop insensitive to variations in the process
D. Makes output follow reference signal

Classical approach : deal with A,B and C with controller C(s) and deal with
D with feedforward F(s) :

Design procedure

« Design the feedback C(s) too achieve
— Small sensitivity to load disturbance d
— Low injection of measurement noise n
— High robustness to process variations

« Then design F(s) to achieve desired response to reference signal r
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Relations between signals

Three interesting signals (X, y, u)
Three possible inputs (r, d, n)
- Nine possible transfer functions !

P PLC PLC[F




Relations between signals

- Nine frequency responses...

Bode Diagram
From: d From: n From: r




Relations between signals

- Nine step responses...

Step Response
From: d From: n From:r

2




Relations between signals

A correct design means that each transfer has to be evaluated...
- Need to be a little bit organized !
- N I riteri




Sensibility functions

_ P 4 ,PC .  PCEF_
1+PLC 1+P[C 1+P[C
g P _m 1 o ,PCEF_.

+
1+P[C 1+PL[C 1+P[C
AL @ + c h + ol I

1+PIC 1+PIC 1+PIC




Sensibility functions

L=PC tells everything about stability : common denominator of each
transfer functions

Bode Diagram




Sensibility functions

S=1/(1+L) tells about noise reduction




Sensibility functions

It would be nice to have |S(iw)| < 1for all frequencies !

Cauchy Integral Theorem :




Sensibility functions

Nyquist stability criteria :
Ooo,|CAP| < [1+L|

=2




Sensibility functions

Nyquist stability criteria :

-  Minimum value of d tells how close
of instability is the system

- d_. IS a measure of robustness : the

min







Introduction

Feedforward is a useful complement to feedback. Basic properties are:
+ Reduce effects of disturbance that can be measured
+ Improve response to reference signal




Attenuation of measured disturbance




Combined Feedback and Feedforward




System inverse

The ideal feedforward needs to compute the inverse of P,. That’s might
be tricky... Examples:




Approximate system inverse

The ideal feedforward needs to compute the inverse of P,. That’s might
be tricky... Examples:




Approximate system inverse

Since it is difficult to obtain an exact inverse we have to approximate. One
possibility is to find the transfer function which minimizes :

J=[(u(t)- v( ) ot

Where:




Improved response to reference signal

The reference signal can be injected after the controller:

MU
u
r M Y ——>C—‘(§)——“P2 y




Combining feedback and feedforward

Feedback Feedforward

—> Closed loop - Open loop

- Acts only when there are —> Acts before deviation shows
deviations up







Introduction

- Simple design becomes difficult for high order systems
-  What is the State concept ?
- State are the variables that fully summarize the actual state of the




State feedback

Let us suppose the system is described by the following equation (x is a
vector, A, B and C are matrixes) :




State feedback

Let us suppose the system is described by the following equation (x is a
vector, A, B and C are matrixes) :

Main mathematical tool




Pole placement

Original (open loop) system behavior depends on its poles, solution of the
characteristic equation:

PoL ()= det €1+ A

Closed loop system behavior depends on its poles, solution of the
characteristic equation:

P (9) = def £1+( A- BIK)
Needs to tune N parameters (N : dimension of x and K)

Appropriate choice of K allow to place the poles anywhere ! (Needs
simple mathematical skills (not detailed here ©)

Two problems : observability, controllability
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Pole placement




First problem : observability

In the control feedback equation x is supposed to be known. If one can
access (measure) X, there is no problem. Sometimes, x cannot be
measured but can be observed.

(dx _
System described by: I gt~ ALk +BUL
y=CIX

Only u and y accessible, A and B known. Solution is to estimate
internal state x with a “state observer” of gain K, :

(d
>;<?[bs =AXgpstBI+K obs[qy -y obg

| Yobs = C X gps

Appropriate choice of K, minimizes y . — Y : X,,s tends to x

J\

Poles of the observer are the poles of: P(S) = dE( $] I—( A- K)bSDC))
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First problem : observability

In the control feedback equation x is supposed to be known. If one can
access (measure) X, there is no problem. Sometimes, x cannot be
measured but can be observed.

(dx _
System described by: I gt~ ALk +BUL
y=CIX

Only u and y accessible, A and B known. Solution is to estimate
internal state x with a “state observer” of gain K, :

(d
>;<?[bs =AXgpstBI+K obs[qy -y obg

| Yobs = C X gps

Appropriate choice of K, minimizes y . — Y : X,,s tends to x

J\

Poles of the observer are the poles of: P(S) = dE( $] I—( A- K)bSDC))
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First problem : observabillity

Poles of the observer are the poles those of:

P(9) = def §1+( A KpsOQ)

Poles of the




First problem : observabillity

Problem : is the system observable ?

In most cases : yes




Combining an observer and a state feedback

True (with x) state feedback can be replaced by an observed (x,,.) state
feedback:

u=-KXgpst+L L x Poles of the




Second problem : controllability

Sometimes a state I1s not controllable : means that whatever the
command u is, some parts of the state are not controllable

- Can be derived from a mathematical analyses of (A,B):
rank(A,AB,AAB,AAAB...) =N

Problem if :

- A state is not controllable and unstable

- A state is not controllable and slow

No problem if :

- A state is not controllable and fast (decays rapidly)
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