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1.Goals
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Structural Health Monitoring (SHM) method for in-situ damage detection and 

localization in Carbon Fibre Reinforced Plates (CFRP). 

Impact detection in composites thin structures: in aeronautic �

Problem of Birdstrike, ice etc...

The detection is achieved using the ElectroMechanical Impedance (EMI) technique 

employing piezoelectric transducers as high-frequency modal sensors. 

Goals

Numerical simulations based on the Finite Element (FE) method are carried out so as 

to simulate more than 100 damage scenarios. 

Simple damage model is used in order to limit computation time (high discretization, 

high frequency bandwith) and from exploring all domain with few points (100) we 

construct an approximation (surrogate model using ANN) of damage localization 

versus selected  (pertinent) indicators from EMI analysis.

Damage metrics are then used to quantify and detect changes between the 

electromechanical impedance spectrum of a pristine and damaged structure
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2.Short Focus on…
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Short Focus on… Multilevel approach

The main goal of his paper is to develop a multiscale localisation method that can be applied to a 
global structure (e.g. aircraft door), a subpart (composite plate) or a structural detail (stiffener).

The amount of data that needs to be generated to ensure a good generalization depends on the 
structure under study. For instance, if a global structure is considered, a large database of E/M 
impedance signatures relative to different localized single damage is ultimately required. 

Simulations will be utilized so as to construct a significant database relative to the subpart problem  
in order that PNN well generalized (supervised approach)

 

 
 

(a) Aircraft door (b) Composite plate (c) Stiffener 
Figure 1: Modeling principle of the EMI technique from global to details 
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Short Focus on… Modeling principle of the EMI

In order to generate a significant dataset relative to different damage localization
, a coupled-field finite-element (FE) model of the EMI technique is developed in Abaqus [8]

The FE model permits to compute electrical reaction charges over each sensor electrode,
which are then imported into Matlab [9] to derive the corresponding E/M impedance signature.

The resulting impedance spectrum is then processed to derive damage indicators.
Finally, these damage metrics are used as inputs to train, validate and test the ANN.
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Short focus on … EMI measurement

PZT 2 

Experimental setup
• 3 PZT mounted on composite  plateT700 M21 (PI : PIC 151) : 10x10x0.5mm

• bi composants Epoxy/Argent (EPO-TEK® E4110) : thickness 0.3 mm

• Measurement system: Impedancemeter PsimetriQ N4L modèle 1700 

+ Active Head (integrated shunt )
EMI principle:
→ Broadband excitation

- voltage measurement PZT

 

Plaque 

Composite 

 1 0 

PZT 1 

PZT 2 

PZT 3 

shunt

shunt
PZT

R

V
I

)(
)(

ω
ω =

)(
(

ω
ω

PZT

PZT
PZT

I

V
Z =)

- voltage measurement shunt 

- PZT intensity :

- Impedance estimation:

Rshunt

PZT

Vshunt

VPZT

PSM 1700 PSM 1700

30/06/11



3.Piezo updating
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Piezoceramics properties exhibit statistical fluctuations within a given batch and a variance of 
the order of 5-20% in properties 

Therefore it becomes really important to accurately identify the behavior of the piezoelectric 
sensors as we solely depend upon these transducers to predict the mechanical impedance of 
the structure

Identification of piezo material properties solving inverse problem

� From experimental data

� Fit Analytical model (Bhalla & Soh, 2004 & 2008)

Piezo updating (1)

� Fit Analytical model (Bhalla & Soh, 2004 & 2008)
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Impedance of a free PZT is :

Piezo updating (2)

Low Frequencies

� 1

Bhalla & Soh (2004, 2008)

Exp measurements

2 linear functions of f

���� Identification of: δε et
T

33
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Example : PZT n°1

Piezo updating (2: results)

Résults for 3 PZT :
Impedance Re(Z) of PZT n°1

� bias due to non implemented dielectric losses in 
abaqus
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Parameters to be identified:

Piezo updating (3)

Cetd η,31

Nonlinear quadratic function to be minimized

Analytic 

model

Exp 

measurements
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PZT n°1

Piezo updating (3: results)

� Excellent numerical experimental correlation

���� It exists important difference between PZT manufacturer’s material data and identified data
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4.0. The idea behind supervised ANN: generalization
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Damaged zone identification

• Supevised ANN (previous studies) : discrete prediction (x,y) � induce sometimes large 
errors

Pristine/damaged

Plate 

EM Impedance

Abaqus or exp

Database of 

indicators.

ANN/PNNDetection

Localization
-learning

-Test

Generalization is the process of recognize unknown cases from database of 
indicators (inputs) versus damage localisation (outputs)

• ICCS studies: Damaged zone prediction (classification problem well adapted to 
industrial constraints and multilevel approach)

Classification Problem � PNN
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PNN A simple example: 1 database of 4 examples (learning vectors)

weights

Z1 Z2

Z3 Z4

Plate divided in 

4 zones

A1 A2 A3 A4
Radial Basis Layer Competitive Layer
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4.1. Parametric approach (The big Picture)
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Example : PZT n°1

4.1. Parametric approach (The big Picture)

 

PZT 

actuators/sensors 

Damage of  

 

Composite plate 

PZT n°1 PZT n°2 

PZT n°3 

A finite-element model consisting of three 

piezoceramic patches (designation 

PIC151) of dimensions 10x10x0.5mm3

bonded onto a composite plate 

(200x290mm2) .

The composite layup is composed of 12 

plies of carbon/epoxy prepreg T700/M21 

for a total thickness of 3mm. 

Comparison of real part frequency response of impedance (experimental vs numerical model) 
for a pristine composite plate measured from PZT n°1.
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Parametric approach (2)

 

Real

(Z)  

(Oh

ms) 

Real

(Z)  

(Oh

ms) 

UD 

D80% 

D90% UD D90% 

D80% 

Damage surface of 255mm
2
 Damage surface of 600mm

2
 

(a) (b) 

           

Figure 6. Comparison of impedance spectra predicted by the FE model at the PZT n°1 terminals between 

undamaged (UD) and damaged (D80% or D90%) composite plates. (a) and (b) Plots corresponding to a damage 

surface of 225mm
2
 and 600mm

2
 respectively. 

Frequency (Khz) Frequency (Khz) 
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• 3 damage zone surfaces: 100, 225, 600mm² � 3 independant database

• 2 severities: decrease of 80% ou 90% de E2/E3/G12/G13/G23

• Border zones deleted from database

• Generation of database (learn 80%) 

• Test of 100 networks (Results: mean of 5 best) 

PNN Strategy : Mapping  

• Cross (random) validation 20%

30/06/11
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PNN Preliminary tests

� Inputs are defined from comparison of impredance spectrums (2 successive states 
:damaged/pristine)

• Corrélation Coef. (Re(Z))

• Area substraction (Re(Z) & Im(Z))

• Quadratic mean (Re(Z) & Im(Z))

• Root mean square deviation (Re(Z) & Im(Z))

Inputs choice is predominant in the classification results
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Bibliography for each PZT 
���� 21 indicators

Using only these indicators 47% of the networks are able to well 
classifiying 90% of the new damages

When we add 22 new indicators (frequency shifts)

85% of the networks are able to well classifiy 90% of the new damages
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• As it can be expected, the higher the surface of damage, the higher the RMSD index is. The 
same conclusion can be drawn as regard the damage severity.

PNN Preliminary tests
Example of pertinent indicator RMSD

����The other selected indicators more complex behavior that will help PNN to distinguish 
between damages having similar RMSD value  but different localization.
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4.2. Database creation from numerical analysis 

(Damage scenarii on Abaqus)
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High damage area: 600mm²

Learning base 118 damages, no frequency shifts as input vectors 

� Test base 20 unlearned (new) cases

PNN

Random  discrete 

location  of damages

Histogram (X and Y )
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High damage area: 600mm²

PNN

69% of the networks can predict  90% of the unknonw (new) damage location

Dommages 600mm², sévérité d’endommagement 80%

90% f the networks can predict 80% of the unknown (new) damage location

10 new damages example

� Very High variation of 21 indicators: can we reduce the input vector size ???

1/4 plate 
clustering

90% f the networks can predict 80% of the unknown (new) damage location
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Dommages 600mm², sévérité d’endommagement 80%

High damage area: 600mm²

PNN

� PCA : reduced input vector containing RMSD Area diffrence of Re(Z) –
dimension 6 – has the same performance than the all vector : For High damage 
area some indicators are correlated
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� Learning base 245 damages 

� Test base 20 unknown (new) cases

Random  discrete 

location  of damages

Medium damage area: 225mm²

PNN

Histogram (X and Y )
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85% of the networks are able to predict 80% of the 20 new unknown damages

Dommages 225mm², sévérité d’endommagement 80%

Medium damage area: 225mm²

PNN

85% of the networks are able to predict 80% of the 20 new unknown damages

61% of the networks are able to predict 90% of the 20 new unknown damages

Some examples

� Due to computational time limits we did only hundred of scenarri, not sufficient to 
generalized even adding frequency shifts indicators

1/4 plate

20 examples

1/8 plate

20/20
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Low damage area

Damages 100mm²

� Learning base165 damages , Test base 20 unknown (new) cases

PNN

Random discrete

location  of damages

30/06/11

� lower performance of the networks  only of 35% of the networks are able to localize

�Indicators shifts are too small, database too small, local effects ?

PCA  answers

that all 

indicators are 

needed …



4.3. Experimental results (unknown cases) 
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• Plate n°3:

Damage Localization

3 EMI curves

8,46%

7,34%

3,93%

PZT1 PZT2 PZT3

PZT 1 PZT 2

PZT 3

150

145

Défaut : S=277.63mm²

4.3. Experimental EMI 

RMSD

Damage Localization

US and : Cscan resolution 0.3mm 

Amplitude Profondeur

Données d’impact E=20J

Max

Déplacement 

(mm)
Effort (N)

Temps 

d'impact (ms)

-5,63 6067,33 5,28

PZT1 PZT2 PZT3

20,00%

22,00%

21,00%

PZT1 PZT2 PZT3

30/06/11
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4.4. Final Results of classification 

Experimental constraints: central zone for 
impact drop test machine

So we only have 5 experimtal points 
(unknown cases) to be recognized by the 
PNN

Plate n° Damage 
center (x,y)

US Surface Real zone Predicted 
zone

1 (150,145) ≈280mm² 2 2

2 (116,52) ≈381mm² 5 4

3 (110,87) ≈399mm² 5 5

4 (145,95) ≈380mm² 5 5

5 (177 ,105) ≈ 366mm² 2 4

30/06/11

D2 and D5 Problem of Border zones deleted from
database…



5. Concluding remarks

EMI is able to detect and localize damage in composites plates, Our coupled FEM 
approach is interesting for exp/num EMI correlation 

Piezo updating is an important phase in the monitoring process

3 surface of damages : 100, 225, 600mm² � 3 different database, and 3 performances of PNN

Supervised ANN� x,y location prediction with reliability close to half damage size

PNN � Damaged zones localization(1/4 ou 1/8 of plate)

Ability to predict correct zone for all kind of damages
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Good generalization for medium and large damage area

Futur works � Increase of damage scenarii for better generalization (small damage area)

Clustering of optimal zone (a priori information)

From ISO SURFACE NETWORKS to ISO ENERGY of IMPACT …

we need to know the predicted damage area versus location for each type of impact.

?

Pertinent 

indicators
Damage localization 

(x,y) couples or zones

Damage 
severities, 
numbers …


