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Résumé

Ce cours a pour objectif une introduction à la mécanique céleste. Il vise à donner
quelques éléments d’introduction permettant d’appréhender les outils et les concepts mo-
dernes utilisés en Mécanique Céleste.

Il reprend pour l’essentiel le cours de 2009 , rédigé par Benoît Meyssignac du CNES, qui
avait pour objectif de donner aux élèves les moyens de montrer la chaoticité du mouvement
d’Hypérion sur la base de l’article de Wisdom, Peale et Mignard de 1984 (ICARUS). Nous
y avons fait quelques ajouts visant à replacer cette théorie dans son contexte.

Nous voudrions enfin ajouter ici que ce cours s’inspire largement de l’enseignement de
J.Laskar de l’IMCCE à l’Observatoire de Paris. Il est largement à la source de l’intérêt que
nous portons à ce sujet. Qu’il en soit ici remercié.

Mars 2010

1



TABLE DES MATIÈRES

Table des matières

1 Introduction à la mécanique céleste 4
1.1 Objet de la mécanique céleste . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Quelques rappels historiques. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Le Système Solaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Quelques ordres de grandeur utiles . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.1 Répartition des masses dans le Système Solaire . . . . . . . . . . . . . 9
1.4.2 Distances Typiques dans le Système Solaire . . . . . . . . . . . . . . . 9

2 Rappels de mécanique 10
2.1 Principe de déterminisme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Equation de Newton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Mouvement dans un champ de gravité central . . . . . . . . . . . . . . . . . . 11

2.3.1 Trajectoire dans un champ de gravité central . . . . . . . . . . . . . . 12
2.3.2 Systèmes dérivants d’un potentiel . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Généralisation au cas d’un corps central à symétrie sphérique . . . . . 15

2.4 Equations de Lagrange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Fonction de Lagrange - Coordonnées généralisées . . . . . . . . . . . . . . . . 17
2.6 Equations de Hamilton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7 Fonction de Hamilton et énergie . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.8 Quelques exemples simples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.8.1 Le pendule simple . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.8.2 Le problème de Kepler en formalisme de Lagrange . . . . . . . . . . . 21

3 Problème à deux corps 23
3.1 Approche Képlérienne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 L’orbite dans l’espace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Rappels succincts sur les coniques . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 L’orbite dans l’espace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Le problème à trois corps restreint 27
4.1 Introduction - hypothèses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Intégrale de Jacobi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Position des points de Lagrange L4 et L5 - Approche géométrique . . . . . . . 32
4.4 Position des points de Lagrange - Cas général . . . . . . . . . . . . . . . . . . 34
4.5 Critère de Tisserand. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.6 Mouvement autour des points de Lagrange L4 et L5 . . . . . . . . . . . . . . . 39

5 Couplages et résonances 42
5.1 Résonances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Paradigme pendulaire en mécanique céleste . . . . . . . . . . . . . . . . . . . 45
5.3 Le couplage Spin orbite : un problème de Kepler perturbé . . . . . . . . . . . . 47
5.4 Mise en équation du problème . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Introduction à la Mécanique Céleste V0.9 2 ISAE - SUPAERO



TABLE DES MATIÈRES

5.5 Calcul du moment quadrupolaire . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.6 Calcul de l’Hamiltonien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.7 Simplification du problème : cas découplé . . . . . . . . . . . . . . . . . . . . 51
5.8 Un problème de Kepler perturbé . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.9 Etude de la rotation du satellite dans le couplage spin-orbite (modèle simplifié) 53
5.10 Intégration du mouvement de rotation . . . . . . . . . . . . . . . . . . . . . . 54

6 Perspectives 60

7 Annexe A : Changements de coordonnées - 61
7.1 Coordonnées canoniques et transformations canoniques . . . . . . . . . . . . . 61
7.2 Fonctions génératrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.3 Résolution par la méthode d’Hamilton-Jacobi . . . . . . . . . . . . . . . . . . 67

8 Annexe B : Le pendule harmonique et le problème de Kepler - Approche hamilto-
nienne 69
8.1 Cas du pendule harmonique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.1.1 Ecriture de l’hamiltonien . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.1.2 Recherche d’une fonction génératrice . . . . . . . . . . . . . . . . . . 69
8.1.3 Integration du système . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8.2 Cas du problème de Kepler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.2.1 Ecriture de l’hamiltonien . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.2.2 Recherche d’une fonction génératrice . . . . . . . . . . . . . . . . . . 73
8.2.3 Intégration du système . . . . . . . . . . . . . . . . . . . . . . . . . . 74
8.2.4 Ecriture en variables de Delaunay . . . . . . . . . . . . . . . . . . . . 77

9 Annexe C : Developpements en série 79
9.1 Eviter les séries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
9.2 Equation de Kepler et développements en série . . . . . . . . . . . . . . . . . 80
9.3 Développements en anomalie moyenne M . . . . . . . . . . . . . . . . . . . . 81

Références 84

Introduction à la Mécanique Céleste V0.9 3 ISAE - SUPAERO



1 INTRODUCTION À LA MÉCANIQUE CÉLESTE

1 Introduction à la mécanique céleste

1.1 Objet de la mécanique céleste

Il est évidemment très ambitieux de s’attaquer à un sujet qui est probablement aussi vieux
que l’Humanité, et d’en donner un aperçu en quelques heures. L’objectif de ce cours n’est donc
que de donner une première approche des problématiques et des outils de la mécanique céleste,
au travers de l’étude des modèles communément utilisés de nos jours.

1.2 Quelques rappels historiques.

Pendant très longtemps, les astronomes ont cherché à retrouver dans les mouvements des
corps du Système Solaire les périodicités qui leur permettaient de faire des prédictions (pour les
dates des éclipses par exemple). Jusqu’à très récemment (fin du XXè siècle !) le mouvement des
planètes dans le Système Solaire était considéré comme le modèle même de régularité. On res-
tait dans le modèle du "Cosmos" des Grecs, qui, par opposition au "Chaos" , suppose régularité
et prédictibilité.

Par ailleurs, jusqu’à la physique de Newton, les modèles célestes (y compris les modèles
héliocentriques) étaient uniquement descriptifs et cinématiques. La rupture principale de la phy-
sique vient du fait que l’on peut désormais prédire les trajectoires des planètes, et que, par voie de
conséquence, on comprend que les trajectoires idéales sont pertubées par l’ensemble des autres
corps du Système Solaire. Toutefois, après les calculs montrant la stabililité à long terme des
mouvements séculaires des planètes externes telles que Jupiter par le Verrier (cf [6]), on était re-
venu à la conception d’un Système Solaire stable à long terme, malgré les évolutions séculaires
des orbites planétaires.

Il n’en est rien. Les résultats de ces dernières années montrent au contraire que le mouve-
ment des planètes lui-même est imprédictible (non pas du fait de l’accumulation des erreurs
numériques, mais intrinsèquement) et qu’il est impossible de prévoir son évolution au delà de
100 millions d’années environ, ce qui est très court, comparé aux 4,6 milliards d’années d’exis-
tence du Système Solaire.
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1 INTRODUCTION À LA MÉCANIQUE CÉLESTE

Quelques repères historiques :
Le modèle Pythagoricien (-500 av. JC) : Les 7 objets (Soleil, cinq planètes et Lune) sont
attachés à sept sphères concentriques transparentes.

FIGURE 1 – Le modèle Pythagoricien

Le philosophe Grec Aristote pensait que les cieux étaient composés de 55 sphères cristal-
lines concentriques. A chacune de ces sphères étaient attachés des objets célestes tournant à des
vitesses différentes. La Terre était au centre (modèle géocentrique).

Le système Ptolémaïque ( 150 apr. J.C.) : La théorie qui prévalut en Europe pendant de longs
siècles été proposée par Ptolémée dans son Almagest vers 150 après JC. La terre est stationnaire
au centre de l’Univers Les étoiles sont piquées sur une large sphère externe qui tourne rapide-
ment C’est un modèle religieux.
Les incertitudes sur le modèle (en particulier ce modèle géocentrique ne peut pas expliquer le

FIGURE 2 – Le modèle Ptolémaïque, astronomique et religieux : il a duré 1500 ans
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1 INTRODUCTION À LA MÉCANIQUE CÉLESTE

mouvement apparent rétrograde de Mars) n’empêchaient pas ailleurs de connaître précisément
les cycles astronomiques.

FIGURE 3 – Vu de la Terre, le mouvement apparent de Mars est rétrograde

Le calendrier Métonique : Le cycle dit de Méton ou cycle métonique est un commun
multiple approximatif des périodes orbitales de la Terre et de la Lune.

Au bout de dix-neuf ans, les mêmes dates de l’année correspondent avec les mêmes phases
de la Lune. Cela est dû au fait que dix-neuf années tropiques et 235 mois synodiques ne diffèrent
que de deux heures. L’astronome grec Méton avait déjà remarqué cette coïncidence aux envi-
rons de -432, comme le fit l’astronome chaldéen Kidinnu vers -380 av JC. Le cycle de Méton est
employé dans les calendriers luni-solaires. En effet, dans un calendrier luni-solaire typique, la
plupart des années sont des années lunaires de douze mois, mais sept des dix-neuf années pos-
sèdent un mois supplémentaire, connu sous le nom de mois intercalaire ou embolismique. Aux
années de 12 mois "normales ", s’ajoutent les années embolismiques de 13 mois. Ce calendrier,
connu dans l’Antiquité, a été repris par les Juifs lors de l’Exil de Babylone, et sert toujours de
base à la détermination de la Pâque Chrétienne. Il a été simplifié par les Musulmans, qui ont sup-
primé les années embolismiques (ceci a pour effet de désynchroniser le calendrier par rapport à
l’année solaire)

FIGURE 4 – La répartition des années embolismiques dans le cycle métonique de 19
ans

La révolution copernicienne En 1543, Copernic formula un autre modèle d’Univers, dans
lequel la Terre tourne autour du Soleil, le modèle Héliocentrique. Les orbites des planètes sont
toujours circulaires, mais dans ce modèle il n’y a plus de problème de mouvement rétrograde.
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1 INTRODUCTION À LA MÉCANIQUE CÉLESTE

Théorie des Epicycles de Ptolémée Théorie héliocentrique de Copernic 

FIGURE 5 – La théorie des épicycles de Ptolémée et le Modèle Copernicien

1.3 Le Système Solaire

Le Système Solaire est composé du Soleil, de quatre planètes telluriques internes (Mercure,
Vénus, la Terre, Mars), d’une ceinture d’astéroïdes composée de petits corps rocheux (parmi
lesquels des corps de masse respectable, tels Cérès), de quatre planètes géantes gazeuses (Jupi-
ter, Saturne, Uranus et Neptune) et d’une seconde ceinture d’objets glacés, appelée ceinture de
Kuiper.

Au-delà de cette ceinture, aux confins du Système Solaire, on trouve un disque d’objets
épars,nommé suivant la théorie avancée par Jan Oort, le nuage d’Oort. C’est de ce nuage que
proviennent la plupart des comètes, qui destabilisés par des perturbations gravitationnelles d’ori-
gines diverses, ”tombent” vers le Système Solaire interne.

Le Système Solaire comprend également :

– Des planètes naines : Elles sont à ce jour au nombre de cinq . Parmi les Planètes naines
se trouve Pluton qui a été déchue de son statut de Planète du fait de sa proximité avec les
autres objets transneptuniens. Les planètes naines portent les noms de divinités diverses.
On en dénombre cinq au 17 septembre 2008. Ce sont : Pluton, le plus ancien objet connu
de la ceinture de Kuiper, Cérès, le plus grand objet de la ceinture d’astéroïdes, la plus
grosse des planètes naines, qui se trouve dans le disque des objets épars, Sedna, Make-
make et Haumea, objets de la ceinture de Kuiper. Les planètes orbitant au-delà de Neptune
(ce qui est le cas de quatre d’entre-elles) sont également classifiées comme plutoïdes.

– Un nombre très élevé de petits corps de masses, compositions, formes et orbites très
diverses. Il s’agit aussi bien des astéroïdes, des comètes, poussières, que du gaz interpla-
nétaire, etc ...
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1 INTRODUCTION À LA MÉCANIQUE CÉLESTE

FIGURE 6 – Les différentes échelles du Système Solaire crédits Wikipedia

Toutes les planètes, excepté la Terre, portent les noms de dieux et déesses de la mythologie
Romaine. Par extension, le terme "système solaire" (sans majuscules) est employé pour désigner
d’autres systèmes planétaires ; on préfère parler de "système stellaire".
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1 INTRODUCTION À LA MÉCANIQUE CÉLESTE

1.4 Quelques ordres de grandeur utiles

1.4.1 Répartition des masses dans le Système Solaire

Le tableau suivant présente la répartition des masses dans le Système Solaire.

Corps Masse Commentaires

Soleil 99,85% La quasi totalité de la masse
Planètes 0,135% Jupiter pour l’essentiel
Le reste 0,015% Gaz, poussières, comètes ...

On en déduit aisément qu’au premier ordre, la dynamique des objets du Système Solaire est
régie par le Soleil.

1.4.2 Distances Typiques dans le Système Solaire

Quelques ordres de grandeur utiles pour comprendre les distances en jeu en mécanique cé-
leste. Figurent également les distances-lumière, utiles pour comprendre les contraintes de com-
munication avec les sondes spatiales.

Durée Distance Exemple

3 secondes 900000km A/R Terre Lune
3 minutes 54E6 km Distance Mercure Soleil
8,3 minutes 149,6E6 km Distance Terre Soleil (1 UA).
1 heures 1E9 km 1.5 x Jupiter Soleil
12,5 heures 90 UA Voyager 1
1 an 63000 UA 1 Année Lumière.
4 ans 252000 UA km Proxima du Centaur.
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2 RAPPELS DE MÉCANIQUE

2 Rappels de mécanique

Déploie ton jeune courage, enfant ; c’est ainsi qu’on s’élève jusqu’aux astres. [Virgile] (Ex-
trait de L’éneide)

La mécanique classique repose sur un ensemble de postulats qui sont approximativement
vrais, en ceci qu’ils décrivent la réalité, c’est à dire l’expérience sensible, avec une précision
suffisante pour être utile. En effet, si de nouvelles théories, comme la relativité d’Einstein ont
pu remettre en cause la mécanique classique en apportant une précision accrue ou l’explication
précise de phénoménes non modélisés, son cadre conceptuel relativement simple à mettre en
oeuvre en fait un outil de choix, non seulement de l’ingénieur, mais aussi du scientifique, dans
nombre de problèmes de mécanique céleste ou orbitale.

2.1 Principe de déterminisme

Parmi ces principes, se trouve le principe de déterminisme de Newton, qui postule que l’état
initial d’un système (i.e. l’ensemble des positions et des vitesses de ses points à une date quel-
conque) définit de façon unique le futur de son mouvement.

Toutefois, ce principe, formulé par Laplace d’aprés l’analyse critique de Newton, s’entend
dans un monde parfait, où l’on connaîtrait parfaitement les conditions initiales du système,
conditions initiales pouvant être réelles (au sens mathématique du terme).

En particulier, si l’on considére un système dynamique dont la résolution fait apparaître des
solutions fonction d’exponentielles positives, il reste clair qu’au delà d’un certain temps, deux
solutions aux conditions initiales infiniment proches finiront tout de même par diverger (voir la
conclusion de ce cours)

2.2 Equation de Newton

Dans ces conditions, en partant du principe de Newton, on peut exprimer que l’ensemble du
mouvement d’un système est déterminé par sa position x (t0) ∈ RN , et par sa vitesse initiale
v (t0) ∈ RN . Cela veut donc dire que l’accélération du système est définie par sa position et sa
vitesse initiales.
On peut donc supposer l’existence d’une fonction F telle que

F :

�
RN × RN × RN → R

r̈ = F (r, ṙ, r̈)
(1)

Réciproquement, d’après le théorème d’existence et d’unicité de la théorie des équations
différentielles ordinaires, la fonction F et les conditions initiales x(t0), v(t0) définissent de ma-
nière univoque le mouvement à travers l’équation. L’équation (1) est nécessaire et suffisante pour
décrire l’ensemble du mouvement. Il s’agit de l’équation de Newton (dans sa reformulation faite
par Laplace)
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2 RAPPELS DE MÉCANIQUE

Si on connaît la position initiale x0 et la vitesse initiale v0, alors l’équation du principe
fondamental de la dynamique (PFD) dit que, la force étant F (x, v, t) , il suffit de résoudre
l’équation différentielle :

r̈ = F (r, ṙ, t) avec
�

r(t0) = x0
ṙ(t0) = v0

(2)

Réciproquement, d’aprés le théorème d’existence et d’unicité de la théorie des équations dif-
férentielles ordinaires la fonction F et les conditions initiales x(t0), ẋ(t0) définissent de manière
univoque le mouvement 1 à travers l’Equation (2). Ainsi nous venons de voir que l’équation (2)
est nécessaire et suffisante pour décrire l’ensemble du mouvement. C’est ce qui explique son
importance : cette équation a été posée à la base de la mécanique par Newton, dans sa version
relue par Laplace. On l’appelle "l’équation de Newton". On en déduit le théorème suivant :

théorème : Soit (r(t0) ∈ RN
) le vecteur position, (ṙ(t0) ∈ RN

) le vecteur vitesse d’un système
à une date quelconque t0 alors le mouvement du système à une date t > t0 est décrit de manière
univoque par l’Equation de Newton :

r̈ = F (r, ṙ, t). (3)

Dans la pratique, la fonction F dans l’équation (3) est déterminée empiriquement 2 pour chaque

système mécanique concret. D’un point de vue mathématique, la forme de F définit en soit le
système.

2.3 Mouvement dans un champ de gravité central

On appelle chute libre d’un corps sur la Terre , le mouvement libre d’un corps de masse m
(négligeable devant la masse de la Terre) dans le champ de gravité terrestre. En vertu d’une loi
empirique établie par Newton, l’accélération d’un objet en chute libre sur la Terre est inverse-
ment proportionnelle au carré de la distance au centre de la Terre.

Ainsi, si l’on appelle E3 l’espace euclidien des configurations (i.e. espace des positions)
d’un corps ponctuel et r la fonction r(t) : R −→ E3 qui décrit son mouvement, le système
mécanique de la chute libre est donné par l’équation suivante :

r̈ = −µ
r

�r�3 . (4)

1. sous réserve de conditions de différentiabilité sur F et de questions d’intervalle de temps sur lequel est définie
l’Equation (2). Pour les questions d’intervalle de temps nous supposerons pour simplifier que le mouvement est
défini sur l’axe temporel tout entier, ce qui est souvent le cas en mécanique. Pour les questions de différentiabilité
nous laisserons au lecteur le soin de les retrouver dans les hypothèses du théorème de Cauchy. Voir [2] par exemple.

2. Comme par exemple par l’égalisation de la masse gravitante m�g et de la masse inertielle m�a
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2 RAPPELS DE MÉCANIQUE

FIGURE 7 – Chute libre sur un corps central.

2.3.1 Trajectoire dans un champ de gravité central

Dans ce paragraphe, on rappelle que la trajectoire d’un point massique dans un champ de masse
central est une conique. On se donne comme hypothèse que l’on se place dans un repère R
Galiléen et on ne considère que la force de gravitation sur le système S. L’expression du moment
cinétique H en O de m est la suivante

−→
H = m.

−→
OS ∧ ∂.

−→
OS
∂t

�������
R

= m�r ∧�̇r
���
R

(5)

D’où sa dérivée

∂.
−→
H

∂t

�����
R

= ṁ�r ∧�̇r +m�r ∧�̈r =
−−→
OM ∧ �F = �0 (6)

Car le mouvement est à force centrale. Le moment cinétique est donc constant

�H = m.�r ∧�̇r =
−−→
Cste (7)

et le mouvement est donc plan. Le choix des coordonnées polaires s’impose et donc

�v(M)|R =

�
ṙ
rθ̇

�
(8)

ainsi que

�a(M)|R =

�
r̈ − rθ̇2

rθ̈ + 2ṙ.θ̇

�
(9)

L’équation de Newton nous donne alors

m

�
r̈ − rθ̇2

rθ̈ + 2ṙ.θ̇

�

R

= −G.
m.M

r2

�
1

0

�

R

(10)

Introduction à la Mécanique Céleste V0.9 12 ISAE - SUPAERO



2 RAPPELS DE MÉCANIQUE

Et alors
⇒ rθ̈ + 2ṙ.θ̇ = 0 ⇒ r2.θ̇ = cste

(11)
Pendant un temps dt l’aire parcourue par le mobile sera 1

2r.(rdθ) et, entre deux dates t1 et t2 on
retrouve ainsi la fameuse ”Loi des Aires”

At1→t2 =

t2�

t1

1

2
r.(rθ̇)dt = K(t2 − t1) (12)

Enfin, si l’on pose le changement de variable habituel u =
1
r on peut écrire :

ṙ =
dr

dt
=

d

dt
(
1

u
) =

−1

u2
.
du

dt
=

−C

dθ
.dt.

du

dt
= −C.

du

dθ
(13)

et

r̈ =
dṙ

dt
=

dṙ

dθ

dθ

dt
=

d

dθ
(−C.

du

dθ
)
dθ

dt
= −C

d2u

dθ2
.
dθ

dt
= −C

d2u

dθ2
.Cu2 = −C2u2

d2u

dθ2
(14)

L’équation de Newton plus la ”Loi des Aires” donnent alors
�

r̈ − rθ̇2

rθ̈ + 2ṙ.θ̇

�
= −G.Mr2

�
1

0

�

r2.θ̇ = C

������
(E1)

(E2)
(15)

ce qui amène

r̈ − rθ̇2 = −GMu2 d’où − C2u2
d2u

dθ2
− C2u3 = −GMu2 et donc

d2u

dθ2
+ u =

GM

C2
=

µ

C2

(16)
où l’on reconnaît une équation différentielle du deuxième ordre sous sa forme canonique.

u =
µ

C2
(1 + e cos(θ − θ0)) (17)

avec p =
C2

µ
La solution s’écrit :

r =
p

(1 + e cos(θ − θ0))
(18)

avec θ0 et e constantes d’intégrations. On reconnaît là l’équation d’une conique.

– Si e = 0 , il s’agit d’un cercle
– Si e < 1 , il s’agit d’une ellipse
– Si e = 1 , il s’agit d’une parabole
– Si e > 1 , il s’agit d’une hyperbole
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FIGURE 8 – Les coniques

2.3.2 Systèmes dérivants d’un potentiel

Notons au passage que si on introduit la fonction énergie potentielle U : R3 −→ R telle
que U(r) = −mµ

r , alors l’équation (5) peut être mise sous la forme habituelle des systèmes
potentiels :

mr̈ = −∂U

∂r
. (19)

En généralisant :
Soit E3n

= E3 × . . . × E3 l’espace de configuration d’un système de n points dans un
espace euclidien E3. Soit U : E3n −→ R une fonction différentiable et m1,. . . ,mn des nombres
positifs.
Le mouvement de n points de masses respectives m1,. . . ,mn dans un champ d’énergie potentiel
U est régi par le système d’équations différentielles :

mir̈i = −∂U

∂ri
, i = 1, . . . , n. (20)

C’est ce qu’on appelle un système potentiel.

Dans les exemples précédents, les équations du mouvement sont précisément de cette forme.
Ont également cette forme la plupart des autres systèmes mécaniques étudiés en mécanique
céleste.
Par exemple on appelle problème à 2 corps de la mécanique céleste le problème (20) dans lequel :

U = −K
m1m2

�r1 − r2�
(21)

(où K est une constante ”arbitraire”). Ou encore on appelle problème à 3 corps de la mécanique
céleste le problème (20) dans lequel

U = −K
m1m2

�r1 − r2�
−K

m2m3

�r2 − r3�
−K

m3m1

�r3 − r1�
(22)
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Nota Bene : On peut aussi ramener à la forme (20) un grand nombre de problèmes de toute autre
nature que mécanique : les forces électriques ainsi que les champ de vitesse des fluides (sous
certaines conditions) découlent d’un potentiel.

2.3.3 Généralisation au cas d’un corps central à symétrie sphérique

Par ailleurs, on rappelle que si le corps central n’est pas un point matériel, mais un corps
à symétrie sphérique (éventuellement comprenant plusieurs "couches" comme par exemple une
planéte), le mouvement est équivalent au mouvement de la masse totale du corps à symétrie sphé-
rique concentrée en son centre de gravité (Conséquence simple des propriétés du barycentre).

 

FIGURE 9 – Chute libre sur un corps à symétrie sphérique.

On le montre aisément en considérant le potentiel du champ de gravité créé par un point P
du corps central, de masse dm en un point M .

VP (M) = −G
dm

PM
(23)

où G est la constante gravitationnelle et dm un élément de masse infinitésimale.

Le corps central est de symétrie sphérique, aussi on peut sommer le potentiel sur des ”coquilles”
de densité ρ (r) centrées sur O.

V (M) = −
���

S

Gdm

PM
= −G

�

r

��

P (r)

4πr2ρdr

PM
(24)

et retrouver ainsi une expression équivalente au potentiel créé par une masse identique située au
centre de la répartition de masse.
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2.4 Equations de Lagrange

Dans cette section on montre que les n équations Newtoniennes d’un système potentiel de
n points matériels qui sont des équations vectorielles sur les positions et les vitesses peuvent
s’écrire sous forme de 3n équations Lagrangiennes, qui sont des équations scalaires écrites di-
rectement sur les coordonnées généralisées des n points matériels. Deux exemples simples sont
donnés.

Reprenons les équations de la dynamique de Newton d’un système potentiel de n points
matériels telles que nous les avons posées au problème (20) :

mir̈i +
∂U

∂ri
= 0 (25)

Dans ce système l’énergie potentielle est U = U(r) et l’énergie cinétique est T =
�

mi
ṙi2

2 .
De plus les 6n variables (r1, . . . , rn, ṙ1, . . . , ṙn) sont indépendantes. Introduisons l’application
L : E3n × E3n −→ R telle que L(r, ṙ) = T (ṙ)− U(r). Comme on a :

∂L

∂ṙi
=

∂T

∂ṙi
= miṙi,

∂L

∂ri
= −∂U

∂ri
(26)

On peut écrire l’équation (25) sous la forme :

(25) ⇐⇒ d

dt
(
∂L

∂ṙi
)− ∂L

∂ri
= 0 (27)

On peut montrer (cf. le principe de moindre d’action de Hamilton dans [1] par exemple) que
l’équivalence (27) est vraie quelque soit le système de coordonnées sur l’espace de configura-
tion E3n du système de points matériels. On a alors le théorème suivant :

Théorème : Soient q = (q1, . . . , q3n) des coordonnées quelconques sur l’espace de configura-
tion (i.e. espace des positions) d’un système potentiel de n points matériels. Alors les variations
de q en fonction du temps obéissent à l’équation d’Euler-Lagrange

d

dt
(
∂L

∂q̇
)− ∂L

∂q
= 0, L = T − U. (28)

Remarque : Ces équations s’étendent telles quelles, aux cas où T et U dépendent explicitement
du temps. Cela peut arriver par exemple lorsque des parties du système ont un mouvement im-
posé (dans ce cas l’énergie cinétique T dépend explicitement du temps) ou encore pour certains
systèmes dissipatifs (dans ce cas U peut dépendre du temps). Ainsi L est plus généralement une
fonction de 6n+ 1 variables : L = L(q1, . . . , q3n, q̇1, . . . , ˙q3n, t).
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2.5 Fonction de Lagrange - Coordonnées généralisées

On appelle L(q, q̇, t) = T − U la fonction de Lagrange

– qi les coordonnées généralisées

– q̇i les vitesses généralisées

– ∂L
∂q̇i

les impulsions généralisées

– ∂L
∂qi

les forces généralisées.

Notez ici le changement par rapport aux équations de Newton : il n’est plus question désor-
mais de manipuler des vecteurs positions et de vecteurs vitesses, ni de déterminer les bonnes
projections qui permettront de sortir les équations du mouvement dans un jeu de coordonnées
judicieux.

Ici les équations sont directement données sur les coordonnées généralisées q qui définissent
les positions du système (i.e. l’état du système). Il ne reste donc plus qu’à choisir les coordon-
nées généralisées les plus adaptées à la description de l’état du système et on a immédiatement
sur ces coordonnées les équations du mouvement. Toute la difficulté est reportée sur le change-
ment de variables

Attention cependant à ce qu’on entend par coordonnées généralisées. Pour déterminer la
position d’un système de n points matériels dans l’espace, il faut se donner n rayons vecteurs
c’est à dire 3n coordonnées cartésiennes. Le nombre de grandeurs scalaires indépendantes qu’il
faut se donner pour déterminer de façon univoque la position (i.e. l’état) d’un système est ap-
pelé nombre de degrés de liberté du système. Dans le cas présent ce nombre est égal à 3n. Ces
grandeurs ne sont pas forcément les coordonnées cartésiennes des points bien sûr, et selon les
conditions du problème, le choix d’un autre système de coordonnées peut être plus commode
(il peut y avoir des angles, des distances, des produits de distance avec des vitesses etc...). Mais
dans tous les cas, il faut absolument que les 3n grandeurs choisies (q1, . . . , q3n) caractérisent
de manière univoque la position du système. Ces coordonnées (q1, . . . , q3n) sont appelées coor-
données généralisées et leurs dérivées (q̇1, . . . , ˙q3n), les vitesses généralisées.

2.6 Equations de Hamilton

La formulation des lois de la mécanique à l’aide de la fonction de Lagrange (et des équations
de Lagrange que l’on en déduit) suppose que l’on se donne pour décrire l’état mécanique d’un
système, les coordonnées généralisées et les vitesses généralisées de celui ci. Cette méthode
n’est pas la seule possible. La description de l’état d’un système à l’aide de ses coordonnées et
de ses impulsions généralisées présente aussi de nombreux avantages, notamment pour l’étude
de divers problèmes généraux de mécanique. Ce chapitre développe les équations du mouvement
(équations de Hamilton) correspondant à cette méthode.

La fonction L de Lagrange, comme on a vu précédemment, est une fonction de 2m variables
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indépendantes qi et q̇i. Sa différentielle totale s’écrit de la manière suivante :

dL =

�

i

∂L

∂qi
dqi +

�

i

∂L

∂q̇i
dq̇i (29)

En appelant pi = ∂L
∂q̇i

les impulsions généralisées, les équations de Lagrange donnent ∂L
∂qi

=

ṗi. Donc on peut écrire la différentielle totale de L sous la forme :

dL =

�
ṗidqi +

�
pidq̇i, (30)

En développant le deuxiéme terme du membre de droite on obtient :

dL =

�
ṗidqi + d(

�
piq̇i)−

�
q̇idpi. (31)

Ceci donne finalement :

d(
�

piq̇i − L) = −
�

ṗidqi +
�

q̇idpi. (32)

On appelle la quantité sous le signe différentiel la fonction de Hamilton du système :

H(p, q, t) =
�

piq̇i − L (33)

Et de l’égalité :
dH = −

�
ṗidqi +

�
q̇idpi, (34)

dans laquelle les variables indépendantes sont les coordonnées et les impulsions, on tire les
équations suivantes :

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (35)

Ce sont les équations de Hamilton. Elles constituent un système de 2m équations du pre-
mier ordre à 2m inconnues p(t) et q(t) qui sont équivalentes aux m équations du second ordre
obtenues par la méthode de Lagrange. En effet on vient de voir que si les qi(t) vérifient les
les équations de Lagrange alors les couples (pi(t), qi(t)) vérifient les équations d’Hamilton. La
réciproque se démontre de la même manière.
On a donc obtenu le théorème suivant :

Théorème : Soit le système d’équation de Lagrange ṗ =
∂L
∂q , où p =

∂L
∂q̇ défini par la

fonction de Lagrange

L : Rm × Rm × Rm → R telle que L(q, q̇, t) = T − U

Ce système d’équation est équivalent à un système de 2m équations du premier ordre ou équa-
tions de Hamilton :

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
(36)
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où l’application

H : R2m× −→ R telle que H(p, q, t) = pq̇ − L(q, q̇, t)

est la fonction de Hamilton 3.

A cause de leur simplicité et de leur symétrie, ces équations sont souvent appelées équations
canoniques.

2.7 Fonction de Hamilton et énergie

Dans le cadre de la mécanique, comme on l’a vu plus haut, la fonction de Lagrange s’écrit
sous la forme L = T − U où l’énergie cinétique T est une forme quadratique en q̇ :

T =
1

2

�

i,j

aij q̇iq̇j , aij = aij(q, t); U = U(q) (37)

On peut sous ces hypothèses, démontrer le théorème suivant (à l’aide du théorème d’Euler
sur les fonctions homogènes voir [3] ou [1] pour plus de détails). Cela permet de donner un sens
physique à la fonction d’Hamilton :

Théorème : Sous les hypothèses faites au dessus, la fonction de Hamilton H est l’énergie totale :

H = T + U (38)

Ce théorème de l’équivalence de l’énergie totale avec la fonction de Hamilton entraîne d’im-
portants corollaires. Par exemple, la loi de conservation de l’énergie va alors s’exprimer sous une
forme simple :

Corollaire : L’égalité dH
dt =

∂H
∂t est vérifiée. En particulier pour les systèmes dont la fonction de

Hamilton ne dépend pas explicitement du temps (∂H∂t = 0), la loi de conservation de la fonction
de Hamilton, i.e. de l’énergie, est réalisée :

H(q(t), p(t), t) = H(q(t), p(t)) = constante

3. Dans les faits on peut montrer que ce résultat est vrai quelque soit L une fonction convexe en q̇ et que dans ce
cas H est la transformée de Legendre de la fonction de Lagrange considérée comme une fonction de q̇. En mécanique
c’est toujours le cas puisque la partie de L = T − U qui dépend de q̇ n’est autre que l’énergie cinétique T qui est
une forme quadratique définie positive de q̇. Notez cependant par là que ce résultat est général à tous les problèmes
variationnels et ne se restreint pas à la mécanique ! Cf [1] pour plus de détails.
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Pour montrer ce corollaire, il suffit d’écrire la dérivée de la fonction de Hamilton par rapport
au temps dans laquelle on fait intervenir les équations de Hamilton :

d

dt
H(q(t), p(t), t) =

∂H

∂q
q̇ +

∂H

∂p
ṗ+

∂H

∂t
(39)

C’est à dire :
dH

dt
=

∂H

∂q
(
∂H

∂p
) +

∂H

∂p
(−∂H

∂q
) +

∂H

∂t
=

∂H

∂t
(40)

2.8 Quelques exemples simples

2.8.1 Le pendule simple

Considérons un pendule simple de longueur l, de masse m en mouvement dans un plan.

O

     m

!

 
!z

l

FIGURE 10 – Pendule simple.

Son mouvement peut être paramétré par un seul angle θ que fait la tige du pendule avec la verti-
cale locale. Cet angle peut varier entre 0 et 2π. Pour le pendule simple l’espace de configuration
est de dimension 1 : il peut être complètement paramétré par une seule variable.

Appelons g le module de la force empirique de Newton qui s’applique au pendule. En pro-
jetant l’équation de Newton

mr̈ = −∂U

∂r
. (41)

sur la droite perpendiculaire à la tige du pendule on en déduit l’équation du pendule :

θ̈ = −ω2
sin(θ), ω =

�
g

l
(42)

La variable la plus naturelle pour ce système est bien sûr θ, l’angle que fait la tige du pendule
avec la verticale locale. Comme θ est un angle, il est périodique de période 2π. Donc l’espace
de configuration du pendule simple est le cercle : S = /2πZ.
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Passons au calcul de l’équation du mouvement par la méthode de Lagrange. L’énergie ciné-
tique du pendule est T =

1
2ml2θ̇2. Son énergie potentielle est

U = mgz = mgl(1− cos θ) (43)

Donc le Lagrangien est L =
1
2ml2θ̇2 −mgl(1− cos θ). Et l’ équation du mouvement sur θ

est donnée par l’équation de Lagrange comme suit :

d

dt
(
∂L

∂θ̇
)− ∂L

∂θ
= 0 (44)

C’est à dire l’équation habituelle déjà obtenue ci-dessus

θ̈ + ω2
sin(θ), ω =

�
g

l
(45)

2.8.2 Le problème de Kepler en formalisme de Lagrange

Le problème de Kepler est le problème du mouvement d’un point matériel libre dans un plan,
attiré par un champ central selon la loi de Newton. On peut remarquer, en passant, que ce mou-
vement n’est autre qu’une chute libre (nous avons déjà traité ce cas de la manière ”classique” à
la section (2.3.1)) puisque le mouvement de la chute libre est plan (du fait de la conservation du
moment cinétique). Ici comme le mouvement du point matériel est libre de contraintes et qu’il
se fait dans le plan, son espace de configuration est le plan : il est de dimension 2. Comme déjà
considéré, les coordonnées naturelles pour étudier ce problème sont les coordonnées polaires car
elles s’adaptent très bien à la fois à la planéité du mouvement ainsi qu’à la symétrie du champ
central. On utilisera donc les coordonnées q1 = r et q2 = φ.

FIGURE 11 – Chute libre sur la Terre en coordonnées polaires.

Le vecteur vitesse −̇→r s’écrit dans ces coordonnées :

−̇→r = ṙer + φ̇reφ. (46)
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Passons au calcul de l’équation du mouvement par la méthode de Lagrange.
L’énergie cinétique de la particule s’écrit : T =

1
2m

−̇→r
2
=

1
2m(ṙ2+r2φ̇2

) et l’énergie potentielle
U(r) = −mµ

r . Le Lagrangien s’écrit donc de la manière suivante :

L =
1

2
m(ṙ2 + r2φ̇2

) +
mµ

r
. (47)

Le mouvement dans les coordonnées (q1, q2) est alors donné par les équations de Lagrange
sous la forme du système suivant :






mr̈ −mrφ̇2
+

mµ
r2 = 0

mr2φ̈+ 2mrṙφ̇ = 0

(48)
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3 Problème à deux corps

Le problème à deux corps s’intéresse à l’interaction de deux corps massiques se mouvant
sous l’influence d’une attraction mutuelle. Il s’agit du problème techniquement le plus simple
que l’on puisse envisager en mécanique céleste, avec des équations dynamiques qui sont in-
tégrables en fonction du temps. La répartition de masse dans le Système Solaire fait que l’on
peut utiliser l’approximation à deux corps dans un nombre très important de cas, le plus souvent
quand un corps de faible masse orbite autour d’un corps ayant une masse plus importante (Soleil
et Planète, Jupiter et ses satellites ...)

Bien évidemment, c’est dans l’approximation à deux corps que l’on démontre le mouvement
elliptique des planètes, en une application simple des lois de la dynamique de Newton.

3.1 Approche Képlérienne

M1 et M2 sont les deux corps de masses m1 et m2, de centre d’inertie G. Pour un système
isolé, le centre d’inertie G a un mouvement rectiligne uniforme. Le principe de relativité de
Galilée permet de choisir G comme origine d’un repére inertiel RG. En général on préfère pour
simplifier choisir comme origine du système de référence un des deux corps.

O

!

!1M1,m1

M 2 ,m2

!2
!G

G

FIGURE 12 – problème à deux corps

On note
�r =

−−−−→
M1M2 �r1 =

−−−→
M1G �r2 =

−−−→
GM2 (49)

Si l’on applique le principe fondamental de la dynamique :

m1
d2

−−−→
OM1
dt2 = �f12

m2
d2

−−−→
OM2
dt2 = �f21





d2

dt2

�
m1

−−→
OM1 +m2

−−−→
OM2

�
= (m1 +m1)

d2
−−→
OG

dt2
= �f12 + �f21 = �0

(50)
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RG est galiléen donc

m2
d2
−−−→
GM2

dt2
= �f21 (51)

d’où

m1m2

m1 +m2

d2
−−−−→
M1M2

dt2
=

m1m2

m1 +m2

d2−→r
dt2

= �f21 (52)

Tout se passe comme si un référentiel d’origine M1, de directions fixes par rapport au référentiel
d’origine O était galiléen pour le mobile M2.

On appelle µ = m1m2
m1+m2

la masse réduite. Si m2 � m1 alors le référentiel barycentrique se
confond avec M1.

Tout se passe comme si le mouvement de chaque particule matérielle était en mouvement
dans un champ de force centrale, où le corps central est situé au barycentre des deux masses. On
s’est donc ainsi ramené au cas traité au (2.3), pour chacune des particules considérées.

3.2 L’orbite dans l’espace

A un instant t, la trajectoire est complètement déterminée par trois coordonnées de position
et trois coordonnées de vitesse. Le vecteur d’état comprend donc 6 paramètres. Dans le cas
du mouvement Képlérien, il est plus adapté de décrire la trajectoire du mobile en fonction des
caractéristiques géométriques de la conique décrite.

La trajectoire d’un satellite est décrite dans un repère galiléen (non tournant) centré au centre
de gravité du corps autour duquel il orbite :

– La Terre pour les satellites terrestre
– Le Soleil pour les sondes interplanétaires durant leur croisière
– Mars pour les sondes martiennes, etc ...
On utilisera donc :
– Un repère géocentrique équatorial pour décrire le mouvement des satellites terrestre
– Un repère héliocentrique écliptique pour celui des sondes interplanétaires

3.3 Rappels succincts sur les coniques

Ce paragraphe rappelle les principales propriétés caractéristiques des coniques, utiles pour
comprendre ce qui suit.

– a le demi grand axe, 2a = A
– A est l’apogée , point le plus éloigné du foyer O.A
– P est le périgée , point le plus rapproché du foyer O
– b demi petit axe, b = IB, I est le centre.
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FIGURE 13 – Eléments caractéristiques d’une ellipse

– c demi distance focale , c = OI, où O est le foyer actif
– e est l’excentricité avec e = c/a
Quelques autres relations utiles ....

a2 = b2 + c2 e = c
a

p = a
�
1− e2

�
b = a

√
1− e2

rp = a (1− e) = p
1+e ra = a (1 + e) = p

1−e

(53)

3.4 L’orbite dans l’espace

A un instant t, la trajectoire est complètement déterminée par trois coordonnées de position
et trois coordonnées de vitesse. Le vecteur d’état comprend donc 6 paramètres. Dans le cas
du mouvement Képlérien, il est plus adapté de décrire la trajectoire du mobile en fonction des
caractéristiques géométriques de la conique décrite.

Par convention, le mouvement est donc exprimé de la manière suivante :

– a : demi grand axe de l’orbite
– e : excentricité de l’orbite
– i : inclinaison de l’orbite
– Ω : argument du noeud ascendant
– ω : argument du périgée
– t0 : instant de passage au périgée (ou τ )
– γ : point vernal (direction du soleil le 21 mars à 0h)

Les conventions de signe étant les suivantes :

– Les angles sont positifs dans le sens direct.
– L’orbite est décrite dans le sens direct.
– Le noeud est le noeud ascendant.
– Si 0˚ < i < 180˚ et si i > 90˚, l’orbite est rétrograde.

Introduction à la Mécanique Céleste V0.9 25 ISAE - SUPAERO



3 PROBLÈME À DEUX CORPS

! 

"  
ϒ 

i 

A 

N 

S,T 

Plan orbital 

Equateur (orbite terrestre) 
Ecliptique (orbite solaire) 

FIGURE 14 – Paramètres orbitaux

On l’a vu, les angles sont repérés à partir d’une direction particulière dans l’espace , le point
vernal �γ qui indique la direction du soleil le 21 mars à 0h. Toutefois, la détermination du repère
de référence ne va pas de soi. En effet, le mouvement de la Terre est complexe : il associe la
révolution de la Terre autour du Soleil, à sa rotation propre (non constante) autour de son axe, le
tout étant complexifié par des mouvements de précession et de nutation dus à l’interaction de la
Terre non parfaitement sphérique avec l’ensemble des planètes du Système Solaire ...

Nous devons toutefois nous donner un repère inertiel dans cet environnement mouvant. Par
convention, on va donc figer un «instantané» de la position de la Terre dans son orbite autour du
soleil qui va servir de référence pour calculer tous les mouvements des objets considérés (pla-
nètes, satellites, etc . . .). Cet «instantané» est appelé «époque» ou «repère». Par convention, on
utilise aujourd’hui le repère J2000, dont la référence est donnée par le plan moyen de l’éclip-
tique et la direction de l’équinoxe de printemps à midi TU (Temps Universel)le 1er janvier 2000.
J veut dire que l’on prend conventionnellement une année Julienne (365,25 j) comme référence.
Le point Vernal sera donc spécifié à cette époque particulière.
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4 Le problème à trois corps restreint

Contrairement au problème à deux corps, et malgré son apparence simple, le problème à
trois corps n’admet pas de solution analytique. Tous les efforts pour le réduire, par tout ce que la
Science a compté de grandes figures (on peut citer Euler, Lagrange, Laplace, Jacobi, le Verrier,
Hamilton qui se sont attaqués au problème ...) sont restés vains, et seules un certain nombre de
configurations exotiques admettent des solutions intégrables :

– Le problème de Copenhague (deux masses égales)
– Le Problème de Pythagore (3 corps dans un rapport de masse 3 :4 :5)
Toutefois, l’arrivée des calculateurs et des méthodes d’intégration numérique a bien fait

bouger les lignes. On peut maintenant, sur d’assez longues périodes, intégrer numériquement
les équations différentielles du mouvement .

Toutefois il reste un cas particulier, où l’on peut effectuer des simplifications analytiques :
c’est le cas où la masse de l’un des corps est négligeable devant les deux autres. On parle de
problème à trois corps restreint.

4.1 Introduction - hypothèses

Au premier abord le problème à trois corps circulaire, restreint, où les trajectoires des corps
considérés sont circulaires, et où la masse d’un des trois corps est négligeable devant les autres,
semble très restrictif. En pratique, la hiérarchie des masses dans le Système Solaire (cf 1.4.2)
fait que cette approximation donne de bons résultats, pertinents pour une classe très importante
de problèmes.

Premier jeu d’hypothèses : les corps sont considérés comme des masses ponctuelles m �
m1 et m � m2 .

Dans ces conditions, P n’a pas d’effet sur P1 et P2. On peut donc supposer que (P1, P2)

est un système isolé à deux corps, identique à celui utilisé dans le paragraphe 3.1. On se ramène
donc au cas précédent, et l’on va traiter le problème dans un référentiel (O,X, Y, Z) lié au centre
de masse de P1 et P2 ; ce référentiel est galiléen.

Le moment cinétique du système est constant. D’où

�H = m1�r1 ∧
d�r1
dt

+m2�r2 ∧
d�r2
dt

=
−−→
Cste avec m1�r1 +m2�r2 = �0 (54)

Les moments cinétiques de P1 et P2 sont constants et parallèles.

�H1 = m1�r1 ∧
d�r1
dt

=
m2

m1 +m2

�H �H2 = m2�r2 ∧
d�r2
dt

=
m1

m1 +m2

�H (55)

P1 et P2 évoluent dans le même plan (O,X, Y )

Deuxième jeu d’hypothèses : les orbites des points P1 et P2 sont supposées être circulaires.
Cette condition, qui peut sembler restrictive, s’applique de fait à de nombreuses situations en
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Mécanique Céleste, comme par exemple le couple Terre-Lune, Terre Soleil, Soleil Jupiter : les
excentricités des orbites des planètes sont faibles. On considère donc un point M de masse m,
m(M) étant négligeable devant m1 et m2.

FIGURE 15 – Dans le repère tournant

Dans un repère galiléen (O,X, Y, Z), on peut écrire :

d2�r

dt2
= −G

m1

r31
�r1 +−G

m2

r32
�r2 (56)

Pour s’affranchir des mouvements des corps principaux P1 et P2 on écrira le mouvement de
M dans un repère tournant lié à P1 et P2. On définit �Ω = Ω.�ez la rotation instantanée de RΩ

par rapport à RG. Compte tenu des hypothèses précédentes, on peut écrire �Ω = Ω.�ez avec �Ω de
direction inertielle et de norme constante.

Notation : on écrira
δ ()

δt
=

δ ()

δt

����
RΩ

(57)

la dérivée par rapport au temps dans le repère tournant ainsi défini.

Si l’on considère la dérivée dans RG

d (�r)

dt

����
RG

=
δ (�r)

δt

����
RΩ

+ �Ω ∧ �r (58)

d2 (�r)

dt2

����
RG

=
δ2 (�r)

δt2

����
RΩ

+ 2�Ω ∧ δ (�r)

δt

����
RΩ

+ �Ω ∧
�
�Ω ∧ �r

�
(59)

et donc

δ2 (�r)

δt2

����
RΩ

= −G
m1

r31
�r1 +−G

m2

r32
�r2 − 2�Ω ∧ δ (�r)

δt

����
RΩ

− �Ω ∧
�
�Ω ∧ �r

�
(60)
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De cette expression on déduit

δ2 (�r)

δt2

����
RΩ

= −�∇U − 2�Ω ∧ δ (�r)

δt

����
RΩ

(61)

avec �
�∇U =

−−→
gradU

U = −G
�
m1
r1

+
m2
r2

�
− 1

2Ω
2
�
x2 + y2

� (62)

Si on projette cette dernière équation dans RΩ sur la vitesse δ(�r)
δt

���
RΩ

on peut écrire

δ (�r)

δt

����
RΩ

.
δ2 (�r)

δt2

�����
RΩ

= −�∇U.
δ (�r)

δt

����
RΩ

(63)

et donc

�∇U.
δ (�r)

δt

����
RΩ

=




∂U
∂x
∂U
∂y
∂U
∂z



 .




dx
dt
dy
dt
dz
dt





RΩ

=
dU

dt
(64)

alors
�

δ (�r)

δt

����
RΩ

�2

+ 2U = −C ie V 2
+ 2U = −C (65)

Quelques remarques sur cette fonction U

– Tout d’abord la constante C est une fonction des conditions initiales du mouvement
– U fonction de x, y, z dans le repère tournant
– U n’est PAS un potentiel
– La constante C est fonction des conditions initiales

4.2 Intégrale de Jacobi

L’expression V 2
+ 2U = −C s’appelle Intégrale de Jacobi, ou Constante de Jacobi.

On l’appelle parfois l’intégrale de l’énergie relative Attention ! Ce n’est pas une intégrale du
mouvement car ni l’énergie,ni le moment angulaire ne sont conservés. On ne peut pas l’utiliser
pour intégrer le mouvement, mais elle fournit tout de même des informations importantes.
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Exemple 1 : Surfaces de vitesse nulle L’intérêt de la constante de Jacobi peut s’apprécier
simplement en considérant les surfaces où la vitesse de la particule est zéro.

C + 2U = 0 (66)

Si l’on se restreint au plan du mouvement, l’intersection des courbes à iso-constante de Jacobi
donne un ensemble de courbes « de vitesse nulle » Si le problème n’est pas intégrable, Ces
courbes permettent de définir les zones accessibles par la particule (ou bien les régions exclues)
Les surfaces à vitesse nulle ou Surfaces de Hill limitent les trajectoires admissibles de P

−2U � C (67)

En particulier on peut déterminer les zones accessibles en fonction des conditions initiales de la
particule.

Si l’on introduit des variables adimensionnelles pour simplifier la résolution :

�̃r =
�r

��r�
�̃r1 =

�r1
��r�

�̃r2 =
�r2
��r� µ =

m2

m1 +m2
et t̃ = t

�
G(m1 +m2)

��r�3
= Ωt (68)

Les surfaces à vitesse nulle vérifient :

x̃2 + ỹ2 + 2
µ

r̃2
+ 2

(1− µ)

r̃1
= C avec






r̃1 =
�
(µ+ x̃)2 + ỹ2 + z̃2

�1/2

r̃2 =
�
(x̃− (1− µ))2 + ỹ2 + z̃2

�1/2
(69)

Les applications du problème à trois corps restreint sont nombreuses. A titre d’illustration,
nous décrirons les trajectoires admissibles dans le système Terre Lune en fonction de la vitesse
initiale de l’objet considéré, ainsi que les points de Lagrange.
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Exemple 1 : Trajectoires du système Terre-Lune On peut ainsi décrire les trajectoires du
système Terre-Lune accessibles par un véhicule spatial, en fonction de son énergie initiale.

FIGURE 16 – Courbes à ISO Jacobien

Exemple 2 : Les points de Lagrange Le tracé des surfaces à vitesse nulle fait apparaître 5
zones où le gradient du potentiel U est nul. Ces cinq points sont solutions de l’équation

−→∇U =
−→
0 (70)

FIGURE 17 – Position des points de Lagrange du système Terre Soleil - Il en existe de
similaires pour les systèmes Terre Lune, Jupiter Soleil, etc ...
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On montre que ces points sont des points d’équilibre dans le repère tournant. On montrera dans
les sections suivantes que, si les points L1, L2 et L3 sont des points d’équilibre instables, les
points L4 et L5 sont stables.

4.3 Position des points de Lagrange L4 et L5 - Approche géométrique

Ce paragraphe vise à donner une première approche de la localisation des points de Lagrange
4 et 5, dans le cas simple du problème circulaire restreint.

Soient 2 corps M1 et M2 de masses m1 et m2, O le centre de gravité de ces deux masses. P
est un point de masse m négligeable par rapport à m1 et m2. On se place dans le repère tournant
autour de O défini précedemment. On note également �a = �M1P ,�c = �M2P et �a = �OP .

Soit �F1 la force exercée par M1 sur P et �F2 la force exercée par M2 sur P . Notons
�F = �F1 +

�F2.

!"# !$#!"

%&'"# (&'$#

)#

*#

 
!
F1  

!
F2 

!
F

FIGURE 18 – Bilan des forces aux points de Lagrange L4 et L5

Les propriétés du barycentre nous permettent d’écrire

�b =
m1�a+m2�c

m1 +m2
ie m1

�
�a−�b

�
= m2

�
�b− �c

�
(71)

Si l’on multiplie cette expression par �F1 +
�F2 alors il vient :

m2

�
�F1 ∧ �c

�
+m1

�
�F2 ∧ �a

�
= 0 (72)

d’où l’on en déduit m2.F1.c+m1.F2.a = 0 .
Dans le cas de forces gravitationnelles,

F1 = G
m1

a2
et F2 = G

m2

c2
(73)

Et donc a = c, le triangle où se situe les points d’équilibre est donc isocèle.

m2.F1.c+m1.F2.a = 0 (74)
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FIGURE 19 – Notations points de Lagrange L4 et L5

La deuxième condition pour que le point soit en équilibre est que l’accélération centrifuge qui
s’exerce sur une particule au point P compense l’accélération des deux masses test.

alors
n2b = F1 cosβ + F2 cos γ (75)

avec les notations de la figure 18. On en déduit

n2
=

G

a2b2
(m1b cosβ +m2b cos γ) (76)

En inspectant les triangles (O,P,M1) et (O,P,M2) il vient :

b cosβ = a− r1 cosα

b cos γ = a− (d− r1) cosα
(77)

or
cosα =

d

2a
et r1 =

m2

m1 +m2
d (78)

et donc

n2
=

G (m1 +m2)

a3b2
(a2 − m1m2

(m1 +m2)
2d

2
) (79)

comme b2 = a2 + r21 − 2ar1 cosα
Alors :

b2 = a2 − m1m2

(m1 +m2)
2d

2 (80)

On déduit de 79 et de 80 :
n2

= G
(m1 +m2)

a3
(81)
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Par ailleurs le problème à deux corps contraint la vitesse de rotation de l’ensemble et donc :

n2
= G

(m1 +m2)

d3
(82)

D’où a = d . Le système a donc un point d’équilibre situé à l’apex d’un triangle équilatéral
avec une base formée par la ligne joignant les deux masses. Par symétrie en en déduit l’existence
des deux points L4 et L5.
Application : les astéroïdes troyens. La figure 20 représente le Système Solaire interne, jusqu’à
Jupiter. Le dessin comprend également la ceinture d’astéroïdes principale (le blanc nuage en
forme de beignet), les Hildas ("triangle" orange juste à l’intérieur de l’orbite de Jupiter) et les
Troyens (le vert). Le groupe d’astéroïdes qui précède Jupiter est appelé "les Grecs" et le groupe
d’astéroïdes qui suit Jupiter est appelé "les Troyens". Ces astéroïdes sont situés approximative-
ment aux sommets d’un triangle équilatéral ayant pour base le segment Jupiter-Soleil.

4.4 Position des points de Lagrange - Cas général

Si le problème à trois corps n’est pas intégrable, on peut toutefois trouver un certain nombre
de solutions particulières. Continuons donc la recherche des points où la vitesse et l’accéléra-
tion d’une particule sont nuls dans le référentiel tournant (synodique). Supposons de plus que le
mouvement est confiné dans le plan x− y.

Réécrivons le potentiel U sous une forme différente. On rappelle que

µ =
m2

m1 +m2
(83)

et on notera de plus µ1 = Gm1 = 1− µ ainsi que µ2 = Gm2 = µ avec ces définitions . Si n est
le mouvement moyen du système en rotation, les équations du mouvement peuvent s’écrire :






ẍ− 2nẏ =
∂U
∂x

ÿ − 2nẋ =
∂U
∂y

z̈ =
∂U
∂z

avec U =
n2

2

�
x2 + y2

�
+

µ1

r1
+

µ2

r2
(84)

A partir des définitions de r1 et r2, il vient µ1r21 + µ2r22 = x2 + y2 + µ1µ2. On peut alors
exprimer le potentiel U sous la forme suivante :

U = µ1

�
1

r1
+

r21
2

�
+ µ2

�
1

r2
+

r22
2

�
− 1

2
µ1µ2 (85)

L’avantage de cette expression est qu’elle ne dépend plus explicitement ni de x ni de y, ce
qui va nous simplifier les dérivations partielles.

Si l’on reprend l’équation du mouvement 84 en cherchant les points d’équilibre, c’est à dire
ẋ = ẏ = 0 et ẍ = ÿ = 0 on obtient les conditions suivantes :

∂U

∂x
=

∂U

∂r1

∂r1
∂x

+
∂U

∂r2

∂r2
∂x

= 0 (86)
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FIGURE 20 – Le Système Solaire interne, entre le Soleil et Jupiter, d’après une figure
de Wikipédia Commons, basée sur les ephémérides JPL. On notera la configuration en
triangle équilatéral de la position des amas d’astéroïdes

∂U

∂y
=

∂U

∂r1

∂r1
∂y

+
∂U

∂r2

∂r2
∂y

= 0 (87)

Une simple inspection des équations 86 et 87 donne dans un premier temps l’existence de
deux solutions triviales

∂U

∂r1
= 0 et

∂U

∂r2
= 0 (88)

Ce qui donne

∂U

∂r1
= µ1

�
− 1

r21
+ r1

�
= 0 et aussi

∂U

∂r2
= µ1

�
− 1

r22
+ r2

�
= 0 (89)
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on en déduit :

(x+ µ2)
2
+ y2 = 1 ainsi que (x− µ1)

2
+ y2 = 1 (90)

ce qui donne facilement les deux solutions triviales :
�

x =
1

2
− µ2, y = ±

√
3

2

�
(91)

On retrouve bien là les résultats du paragraphe précédent. Par convention, le point L4 est le
point en avant du mouvement et le point L5 est le point en arrière du mouvement de rotation.

Si l’on reprend les équations 86 et 87 en les exprimant en fonction des paramètres r1, r2 ,
x,y .... il vient également :

µ1

�
− 1

r21
+ r1

�
x+ µ2

r1
+ µ2

�
− 1

r22
+ r2

�
x− µ1

r2
= 0 (92)

µ1

�
− 1

r21
+ r1

�
y

r1
+ µ2

�
− 1

r22
+ r2

�
y

r2
= 0 (93)

De la même façon, l’examen de l’équation 93 montre que y = 0 est une solution simple et
que les points d’équilibre restant sont situés le long de l’axe des x, et vérifient 92. On note ces
solutions les points L1, L2 et L3. Le point L1 est situé entre les masses M1 et M2, le point L2

est situé au delà de la masse M2 et le point L3 a une abcisse négative sur l’axe des x.

Position du point L1 :

Au point L1, il vient :

r1 + r2 = 1 , r1 = x+ µ2 , r2 = −x+ µ1 et
∂r1
∂x

= −∂r2
∂x

= 1 (94)

qui donne, en combinant avec l’équation 92

µ1

�
− 1

(1− r2)
2 + 1− r2

�
− µ2

�
− 1

r22
+ r2

�
= 0 (95)

Soit encore :
µ2

µ1
= 3r32

�
1− r2 +

1
3r

2
2

�
�
1 + r2 + r22

�
(1− r2)

3 (96)

Cette équation n’a malheureusement pas de solution explicite, mais une solution peut lui être
trouvée soit numériquement, soit à l’aide d’un développement en série. Si l’on note :

α =

�
µ2

3µ1

�1/3

(97)
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Il vient :

r2 = α− 1

3
α2 − 1

9
α3 − 23

81
α4

+O
�
α5

�
avec x = µ1 − r (98)

De la même façon, au point L2,

r1 − r2 = 1 , r1 = x+ µ2 , r2 = x− µ1 et
∂r1
∂x

=
∂r2
∂x

= 1 (99)

Soit encore :
µ2

µ1
= 3r32

�
1− r2 +

1
3r

2
2

�
�
1 + r22

� �
1− r32

� (100)

En utilisant la même définition de α, on peut également écrire

r2 = α+
1

3
α2 − 1

9
α3 − 31

81
α4

+O
�
α5

�
(101)

Enfin , au point L3,

r2 − r1 = 1 , r1 = −x− µ2 , r2 = −x+ µ1 et
∂r1
∂x

=
∂r2
∂x

= −1 (102)

d’où en en déduit :

µ2

µ1
=

�
1− r31

� �
1 + r21

�

r31
�
r21 + 3r1 + 3

� (103)

4.5 Critère de Tisserand.

On se place dans le problème à trois corps restreint tel que nous l’avons déjà décrit dans 4.2.
On exprime le principe fondamental de la dynamique sur le corps de masse négligeable, dans le
repère tournant lié à

−−−→
P1P2 et l’on retrouve l’expression maintenant bien connue

δ2 (�r)

δt2

����
RΩ

= −G
m1

r31
�r1 +−G

m2

r32
�r2 − 2�Ω ∧ δ (�r)

δt

����
RΩ

− �Ω ∧
�
�Ω ∧ �r

�
(104)

En intégrant cette expression, il vient
�

δ (�r)

δt

����
RΩ

�2

+ 2U = −C ie V 2
+ 2U = −C (105)

et on retrouve l’expression de la constante de Jacobi

V 2
+ 2U = −C (106)

On peut exprimer cette constante de Jacobi dans les coordonnées du repère tournant (x, y, z)

ẋ2 + ẏ2 + ż2 = x2 + y2 +
2 (1− µ)

r1
+

2µ

r2
− C (107)
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Si on l’exprime dans les coordonnées du repère non tournant (ξ, η, ζ) (c’est à dire par exemple
dans le repère héliocentrique) il vient :

ξ̇2 + η̇2 + ζ̇2 − 2

�
ξη̇ − ηξ̇

�
=

2 (1− µ)

r1
+

2µ

r2
− C (108)

On dès lors utiliser les invariants classiques du mouvement. En particulier, si l’on considère un
corps de paramètres Képlériens (a, i, e . . .) on peut écrire :

ξ2 + η2 + ζ2 =
2

r
− 1

a
(109)

ainsi que
ξ̇η − ξη̇ =

�
a (1− e2) cos i (110)

L’expression 106 devient alors :

2

r
− 1

a
− 2

�
a (1− e2) cos i = 2

�
1− µ

r1
+

µ

r2

�
− C (111)

Si l’on considère par exemple que l’on est proche du corps 1 (Par exemple comète proche
de Jupiter ...) 1

r2 est négligé et l’expression devient :

1

a
+ 2

�
a (1− e2) cos i = cste (112)

C’est ce que l’on appelle la constante de Tisserand. Historiquement, ce critère a permis de
savoir si une comète nouvelle pouvait s’identifier à une comète anciennement observée, même si
l’orbite de celle-ci avait subi entre-temps de grandes perturbations due au passage près d’une
planète telle que Jupiter.

NB : François-Félix Tisserand est né le 15 janvier 1845 à Nuits-Saint-Georges. C’est Le
Verrier qui fait nommer comme astronome adjoint, en 1866, cet agrégé sortant de l’École nor-
male supérieure : il lui demande d’étudier la théorie de la Lune de Delaunay, avec l’espoir - qui
fut déçu - que le jeune mathématicien y décèlerait des erreurs... L’oeuvre capitale de Tisserand
est son Traité de mécanique céleste [13], publié entre 1889 et 1896. Ses propres travaux sont
incorporés à cette somme des connaissances de l’époque qui, par sa précision et son élégante
clarté, forme encore de nos jours la base de l’enseignement de la mécanique céleste classique.
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Orbite Comète modifiée

Orbite Comète

Jupiter

Fly-By

Soleil

FIGURE 21 – Changement d’orbite d’une comète hypothétique après que son orbite ait
été perturbée par Jupiter. La rencontre provoque d’importants changements de para-
mètres orbitaux, mais laisse inchangé le critère de Tisserand.

4.6 Mouvement autour des points de Lagrange L4 et L5

Il ne suffit pas de savoir qu’il existe des points d’équilibre stables pour le problème restreint
à trois corps. Un point évidemment intéressant est l’étude de la stabilité de ces points, et des
trajectoires d’un point matériel autour de ces points particuliers. On peut étudier la stabilité de
ces points en considérant des ”petits” mouvements autour des points d’équilibre.

En reprenant les équations 84, on se place à proximité d’un point d’équilibre que l’on notera
(xLi , yLi). Si l’on considère un petit déplacement (X,Y ) autour de ce point L, on peut substituer
dans 86 et 87 et effectuer un développement en série autour de (xLi , yLi). Dans ce cas, comme

�
∂U

∂x

�

Li

=

�
∂U

∂y

�

Li

= 0 (113)

il vient :

Ẍ − 2nẎ ≈
�
∂U

∂x

�

Li

+X

�
∂

∂x

�
∂U

∂x

��

Li

+ Y

�
∂

∂y

�
∂U

∂x

��

Li

(114)

= X

�
∂2U

∂x2

�

Li

+ Y

�
∂2U

∂x∂y

�

Li

(115)
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Ÿ + 2nẊ ≈
�
∂U

∂y

�

Li

+X

�
∂

∂x

�
∂U

∂y

��

Li

+ Y

�
∂

∂y

�
∂U

∂y

��

Li

(116)

= X

�
∂2U

∂x∂y

�

Li

+ Y

�
∂2U

∂y2

�

Li

(117)

En mettant ces dernières équations sous forme matricielle, et en supposant la pulsation n = 1, il
vient :
�

Ẍ − 2Ẏ = XUxx + Y Uxy

Ÿ + 2Ẋ = XUxy + Y Uyy
avec

�
∂2U

∂x2

�

Li

= Uxx

�
∂2U

∂x∂y

�

Li

= Uxy et
�
∂U

∂y2

�

Li

= Uyy

(118)
On peut écrire cette équation sous la forme matricielle suivante :





Ẋ
Ẏ
Ẍ
Ÿ



 =





0 0 1 0

0 0 0 1

Uxx Uxy 0 2

Uxy Uyy −2 0









X
Y
Ẋ
Ẏ



 (119)

soit

˙̄
X = AX̄ avec X̄ =





X
Y
Ẋ
Ẏ





.
Il convient maintenant de résoudre ce système d’équations dynamiques. L’équation caracté-

ristique du système ˙̄
X = AX̄ est

det(A− λI) =

��������

−λ 0 1 0

0 −λ 0 1

Uxx Uxy −λ 2

Uxy Uyy −2 −λ

��������
(120)

= λ4
+ (4− Uxx − Uyy)λ

2
+ UxxUyy − U2

xy (121)
= 0 (122)

(On rappelle que dans la base des solutions Yi, les solutions s’écrivent Yi = Cieλit i = 1, 2, 3, 4)
On se referera à [6] pour le traitement complet des solutions. Toutefois, dans le cas des points
L4 et L5, on peut écrire r1 = r2 = 1 (sommet d’un triangle équilatéral) et dans ce cas on a

Uxx = 3/4 , Uyy = 9/4 , et Uxy = ±3

√
3
(1− 2µ2)

4
(123)

L’équation caractéristique devient alors

λ4
+ λ2

+
27

4
µ2 (1− µ2) = 0 (124)
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Les solutions sont stables (imaginaires) si et seulement si

1− 27 (1− µ2)µ2 � 0

Dans ce cas, pour des valeurs de µ2 faibles, il vient :

λ1, λ2 ≈ ±i

�����−1 +
27

4
µ2

���� et λ3, λ4 ≈ ±i

�����−
27

4
µ2

���� (125)

Le mouvement autour des points de Lagrange L4 et L5 est donc périodique. Le mouvement
a comme périodes 2π/ |λ1,2| et 2π/ |λ3,4|

Il est la composée de deux mouvements différents :

– Un mouvement à ”courte” période 2π/ |λ1,2| ≈ 2π , c’est à dire ayant la période orbitale
de la masse µ2.

– Un mouvement de libration qui se superpose à celui-là, de période 2π/ |λ3,4| , autour du
point d’équilibre.

FIGURE 22 – Mouvement au point L4 (tiré de [6] )- Le mouvement de la particule est la
somme des deux mouvements : le mouvement épicyclique et le mouvement de l’épi-
centre (grande ellipse) pour la solution trouvée. On notera que ce mouvement est stable
dans le repère tournant, ce qui explique la persistance d’astéroïdes aux points L4 et L5
de différentes planètes (Jupiter bien sûr, mais aussi Mars, Neptune).
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5 Couplages et résonances

On l’a vu, l’impact de la Gravitation n’est pas restreint aux interactions ”directes” entre le
Soleil et les planètes et leurs satellites, mais tous les corps dans le Système Solaire ressentent
leurs effets réciproques. Dans le Système Solaire, typiquement, un corps produit la force do-
minante sur un autre corps, et le mouvement résultant peut être pensé comme un mouvement
Képlérien autour d’un corps central, sujets à de petites perturbations résultant de l’impact des
autres corps. Nous avons traité dans le paragraphe précédent le mouvement d’un corps de masse
négligeable dans le champ de gravité créé par deux autres, maintenant nous allons nous intéres-
ser à un cas un peu plus général.

Classiquement, une grande partie de la discussion sur l’évolution des orbites dans le Système
Solaire fait appel à la théorie des perturbations. Cette méthode consiste pour l’essentiel à écrire
les équations du mouvement comme la somme de termes qui décrivent le mouvement Képlérien
indépendant des corps autour du Soleil, plus un terme (la fonction perturbatrice) qui contient les
termes liés aux perturbations induites par chacun des autres corps du système Solaire, selon les
ordres de grandeur considérés.

En général, on va exprimer les termes perturbateurs en fonction de "petits" paramètres du
système, comme par exemple des ratios masse de la Planète sur masse du soleil, excentricité,
inclinaison, .... ce qui va permettre d’utiliser des développements limités ("expansions") permet-
tant d’intégrer à long terme les équations du mouvement.

5.1 Résonances

Si les perturbations sur les orbites Képlériennes sont souvent petites, elles ne peuvent pas
être ignorées. Elles doivent être incluses dans les éphémérides des planètes si une grande préci-
sion est requise, par exemple dans le cas où l’on veut faire de la navigation interplanétaire pour
une sonde spatiale, ou encore pour des observations très fines, comme la prédiction d’occulta-
tions stellaires (étude des atmosphères) ou encore l’étude des petits mouvements des planètes
liés à leur structure interne (géodésie, gravimétrie). La plupart des perturbations sont de nature
périodique, leurs directions oscillant avec les longitudes des corps célestes considérés, ou bien
oscillant en fonction de fonctions plus compliquées des élements orbitaux (cf plus loin).

De petites pertubations peuvent produire des effets prépondérants si elles contiennent des
fréquences proches des fréquences naturelles de résonance des systèmes considérés. Dans de
telles circonstances, les perturbations s’additionnent et s’amplifient de manière cohérente, au
point que des conditions initiales infiniment proches ne seront pas suffisantes pour éviter une
divergence des solutions du système au bout d’un certain temps.

Pendant très longtemps, les astronomes ont cherché à retrouver dans les mouvements des
corps du Système Solaire les périodicités qui leur permettaient alors de faire des prédictions
(pour les dates des éclipses par exemple), et jusque très récemment le mouvement des planètes
dans le Système Solaire était considéré comme le modèle même de régularité (d’où la notion
de Cosmos.) Les résultats de ces dernières années issus directement des conséquences de cette
approche en termes de systèmes dynamiques et de résonances montrent au contraire que le mou-
vement des planètes lui-même est chaotique, et qu’il devient impossible de prévoir son évolution
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au delà de 100 millions d’années environ, ce qui est très court, comparé aux 4,6 milliards d’an-
nées d’existence du Système Solaire.

Aujourd’hui, les ”nouveaux” résultats acquis en mécanique céleste portent pour l’essentiel
la marque des progrès réalisés dans la compréhension de la dynamique des systèmes gravita-
tionnels, parmi lequels on trouve le ”bestiaire” des résonances entre les dynamiques des corps
célestes. La figure 23 présente quelques exemples des types de résonances que l’on trouve dans
le Système Solaire.

Amplification de e

Séculaire
Ex: Période de précession

Périodes Multiples l'une de l'autre
Périodique en fonction de la perturbation

Mouvement Moyen
Ex : période orbitale

orbitale

Couplage Orbite-Orbite

Rotation Synchrone Terre -Lune
Rotation Synchrone Mercure

Couplage Spin / Orbite

Types de résonances
dans le système Solaire

FIGURE 23 – Les différents phénomènes de résonance

Une résonance orbite-orbite se produit si deux objets célestes ont périodiquement les mêmes
positions l’un par rapport à un autre, de telle sorte que la force de gravitation réciproque tende à
conserver la configuration de manière stable (résonance stable) au lieu de s’écarter rapidement
de cette situation (cas d’une résonance instable), et ce, même si cette force de gravitation mu-
tuelle est beaucoup plus petite que la force de gravité entre le Soleil et l’un des objets célestes.
Dans le cas d’une résonance orbitale entre deux objets célestes, il y aura égalité entre un multiple
de la période orbitale (année) du premier objet et un multiple de la période orbitale de l’autre
objet.

Par exemple,
a) Les résonances orbite-orbite concernant les planètes et les Lunes du Système Solaire sont

les suivantes :
– 2 :3 Neptune-Pluton
– 4 :2 Mimas-Téthys (lunes de Saturne)
– 2 :1 Encelade-Dioné (lunes de Saturne)
– 4 :3 Titan-Hypérion (lunes de Saturne)
– 1 :2 :4 Io-Europe-Ganymède (lunes de Jupiter), l’unique résonance de Laplace.
NB : Pluton est dans une orbite résonante 2 :3 avec Neptune veut dire que le temps mis par
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Pluton pour effectuer deux révolutions autour du Soleil sera le même que celui mis par Neptune
pour effectuer trois révolutions autour du Soleil.

FIGURE 24 – Le couplage Orbite Orbite (tiré de [6] )- au passage au plus près des deux
orbites, on constate l’existence d’une force de rappel qui tend à aligner les périastres.

b) Les astéroides situés aux points de Lagrange L4 et L5 du système Soleil-Jupiter sont cap-
turés dans une orbite résonante en 1 :1 avec Jupiter (on a vu pourquoi à la section 4.6) Le groupe
d’astéroïdes Hilda est quant à lui en résonance 3 :2 avec Jupiter. Les orbites considérées sont
stables. Toutefois, les resonances orbite-orbite instables (résonances 2 :1, 3 :1, 5 :2, etc avec
Jupiter) causent les ”lacunes de Kirkwood” (ou ”Kirkwood gaps”) dans la distribution des asté-
roïdes en fonction du demi grand axe de leur orbite.

c) On peut avoir également des résonances orbite-orbite entre plus de deux objets célestes,
par exemple les lunes de Jupiter Io, Europe et Ganymede sont liées par une résonance dite ’ré-
sonance de Laplace’. Ganymede étant en résonance 4 :1 avec Jupiter, Europe en résonance 2 :2
et Io en résonance 1 :1.

La modélisation de ces effets, si elle est très intéressante, utilise des développements un
peu fastidieux. Toutefois, dans le cadre de ce cours, nous nous attacherons à un peu mieux
comprendre l’autre type de couplage (le couplage Spin Orbite), qui permet de répondre à des
questions du type :

– Pourquoi la Lune présente-elle toujours la même face ?
– Pourquoi la durée de révolution de Mercure est-elle phasée avec sa durée de rotation : à

chaque révolution, la planète effectue 1,5 rotation ?
– Comment décrire le mouvement du satellite de Saturne Hypérion ?
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FIGURE 25 – Les Lacunes de Kirkwood (nombre d’objets en fonction de la distance au
Soleil) (c)Gareth Williams/Minor Planet Center. Graph by Barbara Aulicino. )

5.2 Paradigme pendulaire en mécanique céleste

Dans cette section, nous traiterons un exemple simplifié, élémentaire de résonateur qui est
bien entendu l’oscillateur harmonique simple (le pendule). Comme nous le verrons, il sert de
matrice pour la compréhension de de nombreux problèmes.

On reprend les notations de la section 2.8.1. On a déjà vu l’expression du Lagrangien

L =
1

2
ml2θ̇2 −mgl(1− cos θ) (126)

Dans le formalisme hamiltonien, l’impulsion généralisée s’écrit, par définition :

Pθ =
∂L

∂θ̇
= ml2θ̇ (127)

On peut réécrire lénergie cinétique en fonction de Pθ : T (θ, Pθ) =
1
2

P 2
θ

ml2 (l’énergie potentielle
est inchangée). Et on en déduit le Hamiltonien classique :

H(θ, Pθ) =
1

2

P 2
θ

ml2
−mgl(1− cos θ) (128)

Les équations canoniques du système sont :
�

θ̇ =
Pθ
ml2

Ṗθ = mgl sin θ
(129)
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On retrouve ainsi le portrait de phase “classique” avec les trois régimes

– Harmonique
– Périodique mais non harmonique
– Révolutif

FIGURE 26 – Portrait de phase du pendule simple

On verra dans les sections suivantes que ce modèle est très utile pour comprendre le comporte-
ment de systèmes dynamiques célestes.
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5.3 Le couplage Spin orbite : un problème de Kepler perturbé

On considère le système formé par une planète et son satellite, ou par une étoile et une de
ses planètes satellite. Nous commencerons par exprimer l’énergie potentielle du satellite grâce
au moment quadrupolaire. Puis, nous exprimerons l’expression générale du Hamiltonien du sys-
tème associé, dans ce cas égal à l’énergie mécanique totale. Afin de déterminer la dynamique
du système, nous utiliserons les théorèmes de simplication du Hamiltonien pour exprimer que
la dynamique du système est également solution du Hamiltonien simplifié. Enfin, le découplage
des différentes parties du Hamiltonien nous permettra de déterminer les différents cas possibles.
Nous en déduirons la chaoticité de la rotation d’Hypérion d’une manière similaire à celle qui
a été utilisée par Wisdom, Peale et Mignard dans leur article de 1984 (ICARUS). Cet exemple
permettra de montrer un des intêrets majeurs du formalisme hamiltonien : c’est un formalisme
très bien adapté au traitement des problèmes intégrables perturbés.

Mvt de révolution 

O,M 
Centre de Gravité du corps central 

G,m 
Centre de Gravité du 
satellite 

P,dm 

FIGURE 27 – Conventions de notation du couplage Spin Orbite

5.4 Mise en équation du problème

Considérons un système formé d’un corps central et d’une de ses lunes, ou d’une étoile et
d’une de ses planètes. On fait l’approximation que le corps central est fixe dans un repère inertiel
et on fait également l’approximation que le satellite est solide (pas de dissipation visqueuse- ce
qui est approximatif dans le cas d’une planète, et encore plus dans le cas d’une étoile). On
supposera que la taille et la masse du satellite sont très petites devant la taille du corps central.
Le mouvement du satellite autour de du corps central est appelé mouvement de révolution. Le
mouvement du satellite autour de son centre de gravité est appelé mouvement de rotation.

Il s’agit donc à priori d’un problème à 6 degrés de liberté (3 distances et 3 angles), c’est à
dire d’espace des phases de dimension 12. Calculons les équations de ce mouvement.
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Mvt de révolution 

O(M) 
Centre de Gravité du corps central 

G(m) 
Centre de Gravité du satellite 

P,dm 
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FIGURE 28 – 4
Mouvements de la Lune autour du corps central.

On utilisera dans les calculs à venir, les notations de la figure (5.4).

5.5 Calcul du moment quadrupolaire

Dans ce paragraphe, nous exprimerons l’expression du moment quadrupolaire. Si l’on sup-
pose que le satellite est un corps solide, on peut écrire que son énergie potentielle dans le champ
de gravité créé par le corps central est :

V = −G

�
dm

OP
(130)

où G est la constante gravitationnelle et dm un élément de masse infinitésimale du satellite.

Calculons tout d’abord la distance OP :
�−−→
OP

�2
= (

−→r +
−→p )

2
= r2 + p2 + 2

−→r .−→p . (131)

C’est à dire :

1

OP
= r

�
1− 1

2

�p
r

�2
−

−→u .−→p
r

+
3

2

�−→u .−→p
r

�2

+ o
�p
r

�3
�
. (132)

Développons maintenant ces équations en p/r avec la formule de Taylor. On retrouve ici l’hy-
pothèse que la taille du satellite est très petite vis à vis de sa distance au corps central. Le
développement de Taylor à l’ordre 2 donne :

OP = r

�
1 +

1

2

�p
r

�2
−

−→u .−→p
r

− 3

2

�−→u .−→p
r

�2

+ o
�p
r

�3
�
. (133)
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Ceci nous donne l’expression approchée du potentiel V suivante :

V = −G

r

� �
1− �u.�p

r
− 1

2

�p
r

�2
+

3

2

�
�u.�p

r

�2
�
dm (134)

Il reste à calculer l’intégrale. Il est évident que pour le premier et le troisième terme sous l’inté-
grale nous avons :

�
dm = mH ,

� −→u .−→p
r

dm =

−→u
r

�
−→p dm = 0, (135)

puisque −→p prend son origine au centre de masse du satellite.

Pour calculer les deux autres termes qui sont sous l’intégrale, on se place dans le repère des mo-
ments principaux d’inertie du satellite que l’on note

�−→
I ,

−→
J ,

−→
K
�

. On note la matrice d’inertie
du satellite dans ce repère, IH :

IH =




A 0 0

0 B 0

0 0 C



 (136)

où A =
�
(y2 + z2)dm, B =

�
(x2 + z2)dm, A =

�
(y2 + x2)dm. On calcule maintenant

facilement les 2 termes qu’il nous reste sous l’intégrale, en écrivant p sur la base des moments
principaux d’inertie −→p = x

−→
I + y

−→
J + z

−→
K :

�
p2dm =

A+B + C

2
,

�
(
−→u .−→p )

2dm =

� �
x−→u .

−→
I + y−→u .

−→
J + z−→u .

−→
K
�2

dm

=

�
x2

�−→u .
−→
I
�2

dm+

�
y2

�−→u .
−→
J
�2

dm+

�
z2

�−→u .
−→
K
�2

dm

=
B + C −A

2

�−→u .
−→
I
�2

+
A+ C −B

2

�−→u .
−→
J
�2

+
A+B − C

2

�−→u .
−→
K
�2

car les termes croisés en xy, xz et yz sont nuls. On obtient au final l’expression du potentiel
quadrupolaire du satellite.

V = −GmH

r
+

G

2r3

�
2A−B − C − 3 (A−B)

�−→u .
−→
J
�2

− 3 (A− C)

�−→u .
−→
K
�2

�
. (137)

Remarque : Ce résultat est vrai pour un corps solide quelconque en mouvement Képlerien au-
tour d’un corps fixe.
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Remarque : :Si l’on note I le moment d’inertie le long de la ligne OP ,I =
�

P
r2 sin2 θ.dm

il vient aussi l’expression (plus simple) :

V = −Gm

r
− G(A+B + C − 3I)

2r3
(138)

Une fois obtenu le potentiel, on peut en déduire les composantes de la force gravitationnelle
par unité de masse :

�F = −�∇V =






−∂V
∂x

−∂V
∂y

−∂V
∂z

(139)

Ainsi que le moment associé :

�N =
−−→
GP ∧ �F =






3G(C −B)yz/r5

3G(A− C)zx/r5

3G(B − 1)xy/r5
(140)

5.6 Calcul de l’Hamiltonien

De l’expression du potentiel quadrupolaire, on déduit immédiatement du potentiel l’énergie
potentielle du satellite Ep :

Ep = −GmSmH

r
+

GmS

2r3

�
2A−B − C − 3 (A−B)

�−→u .
−→
J
�2

− 3 (A− C)

�−→u .
−→
K
�2

�
.

(141)
L’énergie cinétique quand à elle s’écrit :

T =
1

2
mH

−̇→r
2
+

1

2

�ΩT IH�Ω (142)

où
−→
Ω est la vitesse angulaire du satellite.

On en tire le Lagrangien du problème :

L =
1

2
mH

−̇→r
2
+

1

2

�ΩT IH�Ω (143)

+
GmSmH

r
− GmS

2r3

�
2A−B − C − 3 (A−B)

�−→u .
−→
J
�2

− 3 (A− C)

�−→u .
−→
K
�2

�
(144)

et l’hamiltonien correspondant

H =
1

2
mH

−̇→r
2
+

1

2

�ΩT IH�Ω (145)

− GmSmH

r
+

GmS

2r3

�
2A−B − C − 3 (A−B)

�−→u .
−→
J
�2

− 3 (A− C)

�−→u .
−→
K
�2

�
(146)
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5.7 Simplification du problème : cas découplé

Simplifions le problème pour se concentrer sur les caractéristiques du mouvement du satel-
lite qui nous intéressent. Considérons en première approximation, que le satellite considéré est
un ellipsoïde qui tourne autour de son axe d’inertie le plus grand. Considérons aussi ce satellite
a un mouvement plan autour du corps central. Et considérons enfin que ces deux mouvements
de rotation et de révolution se passent dans le même plan(cf figure (29)).On utilisera dans les
calculs à venir, les notations de la figure (29).

O,M 

I 

J 

!

x (rotation)
v (révolution)

FIGURE 29 – Simplifications du modèle de couplage Spin Orbite

Appliquons les simplifications aux résultats précédents. L’énérgie potentielle est maintenant
donnée par l’expression :

Ep = −GmSmH

r
− GmS

2r3
�
B + C − 2A+ 3 (A−B) sin

2
(x− v)

�
, (147)

puisque −→u .
−→
K = 0 et −→u .

−→
J = sin (x− v).

L’énergie cinétique se simplifie en :

T =
1

2
mH

−̇→r
2
+

C

2
ẋ2. (148)

Ceci nous donne un nouvel Hamiltonien qui s’écrit :

H =
1

2
mH

−̇→r
2
+

C

2
ẋ2− GmSmH

r
− GmS

2r3
�
B + C − 2A+ 3 (A−B) sin

2
(x− v)

�
. (149)

Ce nouveau problème est plus simple car il n’a plus que 3 degrés de liberté : 2 degrés de liberté
avec le mouvement en (r, Pr, φ, Pφ) dans le plan (avec Pr = mH ṙ et Pφ = mHr2φ̇ d’après le
§8.2) et 1 degré de liberté avec le mouvement en (x, Px) (avec Px = Cẋ) sur le cercle. C’est
maintenant un problème d’espace des phases de dimension 6 qui est (R× R× S)2.
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5.8 Un problème de Kepler perturbé

En réordonnant les termes de l’Hamiltonien de la manière suivante :

H =
1

2
mH

−̇→r
2
− GmSmH

r� �� �
HK

+
C

2
ẋ2

����
HR

− GmS

2r3
�
B + C − 2A+ 3 (A−B) sin

2
(x− v)

�

� �� �
Hp

.

(150)
On identifie dans cette expression :

– HK le potentiel Képlérien (décrit dans le 2.8.2)
– HR le potentiel associé à la rotation du satellite dans le champ de pesanteur
– HP un potentiel perturbateur.

On note bien entendu que si A = B = C (le satellite a une symétrie sphérique), alors
H = HK + HR . Dans le cas contraire, il y a couplage des équations . En revanche si le
terme Hp est non nul (i.e le satellite est considéré comme non sphérique), non seulement les 2
mouvements de révolution et de rotation du satellite deviennent couplés son mouvement autour
du corps central ne sera plus Keplerien, tandis que sa rotation autour de son centre de gravité
ne sera plus uniforme. En particulier les caractéristiques du mouvement Képlerien, à savoir une
trajectoire conique au demi grand axe et à l’excentricité constants (cf les calculs en annexe §8.2),
ne seront plus valables, et la pulsation du mouvement de rotation ne sera plus constante.

En effet, le demi grand axe et l’excentricité se mettront à varier ainsi que la vitesse de rotation
puisque maintenant les paramètres de Delaunay (voir annexe 8.2.4) vont vérifier :

L̇ = −∂H

∂l
= −∂Hp

∂l
�= 0 (151)

Ġ = −∂H

∂g
= −∂Hp

∂g
�= 0 (152)

Ṗx = −∂H

∂x
= −∂Hp

∂x
�= 0 (153)

Dans le cas général d’une planète telle qu’elle est aujourd’hui, les termes qui perturbent ici le
mouvement Képlerien et la rotation uniforme sont non nul. Les mouvements de rotation et de
révolution sont donc couplés. Ceci est particulièrement vrai pour des satellites aux formes exo-
tiques, tels que le satellite de Saturne Hypérion.

Néanmoins si on regarde le terme de couplage Hp, on remarquera que c’est un terme en
1/r3. Ce terme est petit face à HK qui lui est typiquement en 1/r2. La variation des variables L
et G (i.e. a et e) sera donc lente. A court terme nous pourrons donc considérer le mouvement du
satellite autour du corps central comme Keplerien et ainsi supprimer l’influence du mouvement
de rotation sur le mouvement de révolution.

Par contre nous ne pouvons négliger à priori Hp devant HR. Nous ne pouvons donc sup-
primer l’influence du mouvement de révolution sur le mouvement de rotation. Nous garderons
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donc dans l’étude de la rotation l’Hamiltonien complet HR + Hp. Cependant nous considére-
rons que le mouvement de révolution du satellite est Képlerien et nous étudirons dans la suite le
mouvement de rotation du satellite autour de lui- même donné par l’Hamiltonien restant :

�H =
C

2
ẋ2 − 3GmS

2r3(t)
(A−B) sin

2
(x− v(t)). (154)

avec r(t) et v(t) les solutions du problème Képlerien HK .

5.9 Etude de la rotation du satellite dans le couplage spin-orbite (modèle simpli-
fié)

Désormais, nous pouvons considérer d’une part le mouvement de révolution du satellite
comme résolu à court terme puisqu’il s’agit alors d’un mouvement Keplerien (voir §8.2 pour
sa résolution). D’autre part nous pouvons considérer le mouvement de la rotation du satellite à
court terme donné par le Hamiltonien de rotation uniforme perturbé �H .

Ce nouveau problème donné par �H est maintenant beaucoup plus simple puisqu’il est à un seul
degrés de liberté (x, ẋ). Il est cependant non autonome, i.e. dépendant du temps, à travers les
variables périodiques r(t) et v(t).
Simplifions maintenant au maximum ce nouvel Hamiltonien �H et cherchons à resoudre le mou-
vement en (x, ẋ) de rotation du satellite. En développant le terme en sin

2
(x− v(t)), �H se

reécrit :
�H =

C

2
ẋ2 − 3GmS

4r3(t)
(A−B) +

3GmS

4r3(t)
(A−B) cos 2(x− v(t)). (155)

D’aprés les équations de Hamilton, le terme −3GmS
4r(t)3 (A−B) n’aura naturellement aucun im-

pact sur la dynamique du couple (x, ẋ). Nous garderons donc l’Hamiltonien minimal qui décrit
la dynamique de (x, ẋ) suivant :

�H =
C

2
ẋ2 +

3GmS

4r3(t)
(A−B) cos 2(x− v(t)). (156)

Pour obtenir une expression simple en fonction du temps t, nous allons développer r(t) et v(t)
en séries de l’anomalie moyenne M ( Ces calculs sont un peu fastidieux, cf annexe §9.2)

De plus, si l’on suppose que le satellite a une excentricité très faible (ce qui est vrai dans le
cas général), nous pouvons encore simplifier cette écriture en developpant les séries obtenues en
degrés de l’excentricité (cf §9.2). Avant tout calcul remarquons d’abord que :

cos2(x− v(t))

r3(t)
= Re

�
ei2x

e−2iv(t)

r3(t)

�
. (157)

Maintenant, par le moyen d’un calcul long et fastidieux à la main, ou rapide et facile avec un
manipulateur algébrique (comme TRIP par exemple, développé par l’IMCCE de l’Observatoire
de Paris, voir [5]), on obtient :

a3
cos2(x− v(t))

r3(t)
= cos (2(x− t))− 1

2
e cos (2x− t) +

7

2
e cos (2x− 3t). (158)
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Remarquez qu’on a pris ici comme échelle de temps t = 2π pour une révolution. On obtient
maintenant l’expression approchée du Hamiltonien �H :

�H � C

2
ẋ2 +

3GmS

4a3
(A−B)

�
cos (2(x− t)) + e

�
−1

2
cos (2x− t) +

7

2
cos (2x− 3t)

��
.

(159)
Ce qui donne finalement,quand on pose � = (3GmS/4a3) (A−B), le hamiltonien approché de
la rotation du satellite suivant :

�H � C

2
ẋ2 + � cos (2(x− t)) + �e

�
−1

2
cos (2x− t) +

7

2
cos (2x− 3t)

�
(160)

5.10 Intégration du mouvement de rotation

Intégrons maintenant, quand c’est possible, le mouvement de rotation du satellite dans dif-
férents cas.

– 1er cas : quand � = 0.
Dans ce cas le satellite est un corps de révolution (A = B), et on retrouve une dynamique de
rotation uniforme. En effet le Hamiltonien devient :

�H =
C

2
ẋ2 =

P 2
x

2C
. (161)

Donc

Ṗx = −∂ �H
∂x

= 0, ẋ =
∂ �H
∂Px

=
1

C
= cste (162)

La rotation du satellite est uniforme i.e. de pulsation constante 1/C : x =
1
C t + x(t0). Ces

trajectoires sont des droites horizontales dans l’espace des phases :
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FIGURE 30 – Espace des phases de la rotation du satellite, � = 0.

Introduction à la Mécanique Céleste V0.9 54 ISAE - SUPAERO



5 COUPLAGES ET RÉSONANCES

– 2ème cas : quand e = 0.
Dans ce cas, le satellite a un mouvement de révolution circulaire autour du corps central. Le
Hamiltonien devient quasiment le hamiltonien d’un pendule :

�H =
C

2
ẋ2 + � cos 2(x− t) =

P 2
x

2C
+ � cos 2(x− t). (163)

Pour se rapprocher du Hamiltonien d’un pendule on a envie de faire le changement de va-
riable 2y = 2(x − t). Ici on peut utiliser la méthode habituelle des fonctions génératrices en
introduisant une fonction G3(Px, y, t) par exemple, qui transforme �H en l’hamiltonien d’un
pendule classique et on déduit le changement de variable par la méthode d’Hamilton-Jacobi.

Cependant une astuce bien connue dans ces situations simples peut nous épargner ces longs
calculs. Il suffit de remarquer que chercher un couple (x, Px) solution du système non-autonome
�H = P 2

x/2C + � cos 2(x− t) est équivalent à chercher deux couples de variables (x, Px) et
(t,K) solutions du système autonome H �

= P 2
x/2C + � cos 2(x− t) +K. En effet dans les

deux cas, les trois variables communes x, Px et t vérifient les mêmes équations. Pour x et Px

c’est évident (dans les deux cas ẋ = Px/C et Ṗx = 2� sin 2(x− t)). Pour t c’est aussi vrai
puisque dans le premier cas ṫ = 1 tout comme dans le deuxième cas ṫ = ∂H�

∂K = 1.

Cherchons donc le changement de variable qui vérifie 2y = 2(x−t) dans ce nouveau système
autonome. Quitte à choisir un changement de variable, autant en choisir un simple. Prenons
un changement de variable linéaire. D’après le deuxième exemple du paragraphe 7.1 il suffit
de trouver 2 constantes c et d telles que :

�
y
z

�
=

�
1 −1

c d

��
x
t

�
, et

�
Py

Pz

�
=

��
1 −1

c d

�t
�−1�

Px

K

�
.

Par souci de simplicité, on choisit c = 0 et d = 1. On obtient donc dans le nouveau jeu de
variables (y, z, Py, Pz), le Hamiltonien :

H =
(Py − 1)

2

2C
+ � cos 2y + Pz −

1

2
. (164)

Ici Pz est constant, il ne change donc pas la dynamique et on peut l’absorber dans H sans
changer les équations. Enfin en faisant le changement de variable canonique I = Py − 1 on
obtient bien le Hamiltonien du pendule à double fréquence :

H =
I2

2C
+ � cos 2y (165)

Intégrons ses trajectoires numériquement et traçons les dans l’espace des phases (I, y) :

On retrouve ici bien sûr, l’espace des phases du pendule (double). On parle alors de résonance.
On dira que le mouvement de rotation du satellite est en résonance avec son mouvement de
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FIGURE 31 – Espace des phases de la rotation d’un satellite en couplage spin/orbite,
� = 0.1 et e = 0.

révolution lorsque les conditions initiales du mouvement du satellite sont telles que sont mou-
vement de rotation est compris dans l’une des deux zones centrales (peuplées de courbes
fermées) de l’espace des phases : les zones de libration. Dans ce cas la vitesse angulaire de
rotation du satellite est quasi-égale à sa vitesse angulaire de révolution.

On conclut de cette première analyse que, chaque fois qu’on a A �= B, il existera des zones
de résonance : les zones de libration. Si les conditions initiales du mouvement du satellite
sont telles que le mouvement de rotation se trouve dans une de ces zones, alors la rotation
sera en résonance avec sa révolution et les deux mouvements auront des vitesses angulaires
quasi-identiques.

Remarque 1 : Ceci peut arriver souvent car la taille de la zone de libration n’est pas nulle.
En effet l’énergie de la trajectoire séparatrice qui passe par le point (1, 0) est H = �. Or
H = (I − 1)

2/(2C) + � cos 2y, donc pour y = π/4 la séparatrice passe par le point
(I = 1 +

√
2C�). La largeur de la zone de résonance est donc

√
2C�. On retrouve bien

figure 32 que la taille de la zone de libration augmente avec �.

Remarque 2 : Le pendule est le modèle générique des résonances, il représente localement
toutes les résonances sauf celles qui existent dans les systèmes à plus de 2 degrés de liberté
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FIGURE 32 – Espace des phases de la rotation d’un satellite en couplage spin/orbite,
� = 0.2 et e = 0.

où entrent en résonance plus de 2 fréquences.

Remarque 3 : L’état final couplé (où la période de rotation et la période de révolution du sa-
tellite sont dans un ratio rationel simple) représente en fait l’état final résonant pour les couples
planète-satellites décrits dans l’introduction de ce paragraphe. Pour le couple Terre-Lune, il
s’agit d’un couplage 1 :1. Mais en fonction des paramètres � et e, ainsi que des caractéris-
tiques liées à la dissipation interne de l’énergie que nous avons négligée, l’état final peut être
différent, comme par exemple le couplage 3 :2 de Mercure autour du Soleil.
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– 3ème cas : cas général quand � �= 0 et e �= 0.
Dans ce cas général, le problème est réellement à 2 degrés de liberté. Il n’est plus intégrable.
Les trajectoires séparatrices ne joignent plus les points ”selles”. Il y a apparition de chaos au
voisinage des points elliptiques comme on voit figure 33

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.2 0.4 0.6 0.8 1.0

I

y

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.2 0.4 0.6 0.8 1.0
I

y

FIGURE 33 – Espace des phases de la rotation d’un satellite en couplage spin/orbite,� =
0.2 et e = 0.001, e = 0.01

De plus même avec une faible perturbation, il ne subsiste plus d’ensemble continu de trajec-
toires régulières. Pas même dans la zone de circulation bien que ce ne soit pas évident à l’oeil
nu. Les trajectoires régulières deviennent isolées et il apparait au milieu des anciens domaines
de trajectoires régulières d’autres résonances plus petites. On peut noter néanmoins que pour des
perturbations faibles, les trajectoires régulières limitent le chaos. Ceci apparait nettement figure
33.

En revanche, pour de fortes perturbations, le chaos se généralise, il ne reste des trajectoires ré-
gulières qu’au voisinage très proche de la résonance ou aux frontières de la zone de circulation,
cf figure 34. Le mouvement de rotation du satellite n’est plus prédictible, même à court terme.
On parle de rotation chaotique

Ce phénomène, loin d’être exceptionnel, existe dans le système solaire. La figure suivante
applique les paramètres dynamiques du couple Saturne-Hypérion ( � = 0.2 et e = 0.1 ) au
modèle que nous avons décrit.

Nous venons de voir que le mouvement de rotation d’Hypérion est un mouvement chao-
tique qui se trouve dans la région chaotique voisine des points instables de sa résonance 1 :1
spin-orbite. Ceci nous a permis de comprendre l’intérêt du modèle générique de pendule. Ceci
nous a permis aussi de montrer l’apparition du chaos dans un problème de mécanique céleste.
L’apparition de régions chaotiques au voisinage de résonances est un phénomène extrêmement
répandu !
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FIGURE 34 – Espace des phases de la rotation d’Hypérion, � = 0.2 et e = 0.1.
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6 Perspectives

De la même manière, les couplages orbites-orbites font apparaître des comportements simi-
laires. La figure ci-contre (35) présente par exemple le paramètre critique θ qui est une fonction
linéraire des paramètres Képlériens ΩTerre ,ωTerre,ΩMars et ωMars.

FIGURE 35 – Paramètre critique theta, evolution sur 100 Millions d’années.

Le terme perturbateur est dans ce cas bien inférieur, aussi les phénomènes de chaos arrivent à
des horizons temporels bien supérieurs. Toutefois, ces phénomènes deviennent dominants passé
100 millions d’années, au point qu’il est impossible de déterminer la position des planètes au-
delà de cet horizon temporel. Non que l’on soit incapable de faire les calculs ou que l’on se
heurte à des problèmes numériques (voir figure 6), mais le système dynamique amplifie de façon
importante toute incertitude sur les conditions initiales (|δZ(t)| ≈ eλt |δZ0|)

FIGURE 36 – Au bout de 100 millions d’an-
nées, la précision sur la position est per-
due : comparaison des erreurs de mo-
dèle et des erreurs numériques (Laskar,
1994). Les positions (phases orbitales )
des planètes ne sont plus déterminables
au delà de 100 Mans. On a perdu le dé-
terminisme . . . on parle alors de chaos
déterministe
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7 Annexe A : Changements de coordonnées -

7.1 Coordonnées canoniques et transformations canoniques

l’objet de ce chapitre est de déterminer quelles sont les transformations que l’on peut faire
sur les variables p et q tout en laissant au système hamiltonien sa forme simple et pratique. On
appelle cette classe de transformation les transformations canoniques.

Le choix des coordonnées généralisées q n’est limité par aucune condition si ce n’est qu’elles
doivent définir de façon univoque la position du système dans l’espace. L’aspect formel des
équations de Lagrange (28) ne dépend pas de ce choix, et dans ce sens on peut dire que les
équations de Lagrange sont invariantes par rapport à la transformation qui fait passer des co-
ordonnées généralisées q = (q1, . . . , qm) à d’autres coordonnées généralisées indépendantes
Q = (Q1, . . . , Qm). Les nouvelles coordonnées Q sont fonctions des anciennes q. Il est facile
de voir qu’elles peuvent dépendre aussi de la variable t de manière explicite. Ainsi ces transfor-
mations qui laissent invariant le lagrangien sont des transformations du type :

Qi = Qi(q, t)

Outre les équations de Lagrange, ces transformations laissent évidement invariante la forme (36)
des équations de Hamilton.
Cependant les équations de Hamilton admettent en réalité une classe beaucoup plus grande de
transformations qui les laissent invariantes. Cette circonstance découle du fait que dans la mé-
thode de Hamilton, les impulsions généralisées p = (p1, . . . , pm) jouent le rôle de variables
indépendantes au même titre que les coordonnées q. C’est pourquoi la notion de transformation
peut être élargie de façon à englober la transformation des 2m variables indépendantes q et p en
les nouvelles variables Q et P suivant les formules :

Qi = Qi(q, p, t), Pi = Pi(q, p, t) (166)

Cet élargissement de la classe des transformations qui laissent le système d’équation inva-
riant constitue un des avantages essentiels de la méthode de Hamilton en Mécanique.
Cependant, attention ! Il serait complètement faux d’en déduire que les équations hamiltoniennes
du mouvement conservent leur forme canoniques pour toute transformation du type (166). Déter-
minons donc, parmi les transformations de type (166), quelles sont les transformations permises
sur les variables p et q qui laissent au système (36) sa forme hamiltonienne.

Introduisons tout d’abord la définition suivante :

Définition : Considérons un système d’équation Hamiltonien définit par la fonction de Hamilton
H(q, p, t) dans le jeu de variables canoniques (q, p). C’est à dire que :

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
avec H = H(q, p, t)
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Soit une application g :
m × Rm −→ Rm × Rm qui définit un changement de variable du jeu

de coordonnées (q, p) dans le jeu de coordonnées (Q,P ) = (Q(q, p, t), P (q, p, t)). On dira que
g est canonique si dans les nouvelles variables Q et P les équations hamiltoniennes se mettent
encore sous la forme :

Q̇ =
∂ �H
∂P

, Ṗ = −∂ �H
∂Q

avec �H une application de Rm × Rm × R dans R qui est fonction de (Q,P, t) 4.

Cherchons maintenant, à quelle condition un changement de variable est canonique. Consi-
dérons le système hamiltonien donné dans la définition H(q, p, t) dans le jeu de variables (q, p).
Supposons donné un changement de variables entre les anciennes variables (q, p) et des nou-
velles variables (Q,P ) explicité par 2m fonctions fi et gi de R2m+1 dans R de la manière
suivante :

qi = fi(Q,P, t),
pi = gi(Q,P, t)

(167)

(Ce système de 2m fonctions à 2m variables est supposé bijectif bien sûr, au moins localement,
puisque ce sont des changements de variables. Le système inverse donne alors les (Q,P ) en
fonction des (q, p).)
Pour déterminer à quelle condition ce changement de variables est canonique nous allons cal-
culer les dérivées partielles de la fonction H(q(Q,P, t), p(Q,P, t), t) par rapport à chacune des
variables Pi et Qi. Nous en déduirons les expressions des Q̇i et des Ṗi. On en tirera ensuite
facilement des conditions de canonicité.

On appelle H∗ la fonction de Hamilton H écrite en les variables (Q,P, t) :

H∗
(Q,P, t) = H(q(Q,P, t), p(Q,P, t), t)

Donc pour toute variable x parmi l’ensemble des variables ((Qi, Pi)) on a :

∂H∗

∂x
=

�

i

(
∂H

∂qi

∂qi
∂x

+
∂H

∂pi

∂pi
∂x

) =

�

i

(
∂H

∂qi

∂fi
∂x

+
∂H

∂pi

∂gi
∂x

)

Or d’aprés les équations de Hamilton et l’expression (167) on a :

4. Il existe en fait une autre définition des transformations canoniques comme étant celles qui conservent la 2-
forme différentielle dq ∧ dp. C’est une définition trés proche de celle-ci mais un peu plus restrictive. Elle est plus
généralement admise, mais elle est plus compliqué en ce qu’elle nécessite tout l’appareil des k-formes différentielles
pour sa définition. La définition donnée ici sera largement suffisante pour les besoins de ce cours. Voir [1] pour plus
de détails.
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∂H

∂pi
= q̇i =

dfi
dt

=

�

j

(
∂fi
∂Qj

Q̇j +
∂fi
∂Pj

Ṗj) +
∂fi
∂t

, (168)

−∂H

∂qi
= ṗi =

dgi
dt

=

�

j

(
∂gi
∂Qj

Q̇j +
∂gi
∂Pj

Ṗj) +
∂gi
∂t

(169)

On obtient donc l’expression générale de la dérivée partielle de H∗ en fonction des Qi et Pi :

∂H∗

∂x
=

�

j

�

i

(
∂fi
∂Qj

∂gi
∂x

− ∂fi
∂x

∂gi
∂Qj

)Q̇j +

�

j

�

i

(
∂fi
∂Pj

∂gi
∂x

− ∂fi
∂x

∂gi
∂Pj

)Ṗj +

�

i

(
∂fi
∂t

∂gi
∂x

− ∂fi
∂x

∂gi
∂t

)

Pour simplifier les notations, on introduit le crochet de Lagrange de 2 variables u et v associé
au changement de variable défini par les fi et les gi qui s’écrit :

[u, v] =
�

i

(
∂fi
∂u

∂gi
∂v

− ∂fi
∂v

∂gi
∂u

)

Ainsi l’équation générale se réécrit simplement de la manière suivante :

∂H∗

∂x
=

�

j

([Qj , x]Q̇j + [Pj , x]Ṗj) + [t, x]

Il suffit maintenant d’identifier cette équation aux équations canoniques en (Q,P ) pour déter-
miner les conditions de canonicité. On obtient le théorème suivant :

Théorème 1 : Soient 2m fonctions Q(q, p), P (q, p) de 2m variables p, q définissant un change-
ment de variable g : Rm × Rm −→ Rm × Rm. Ce changement de variable est canonique si et
seulement si les conditions suivantes sont respectées :

– pour tout i et tout j on a : [Qi, Pj ] = δij , [Qi, Qj ] = 0 et [Pi, Pj ] = 0.
– il existe une application F : Rm × Rm × R −→ R telle que ∂F

∂x = [t, x] pour x pris dans
l’ensemble des variables (Qi, Pi).

Le nouvel hamiltonien est alors �H = H∗ − F .

Remarque : Si le changement de variables ne dépend pas explicitement du temps t, on a ∂fi
∂t =

∂gi
∂t = 0 pour tout i. Les crochets [t, Qj ] et [t, Pj ] sont alors nuls quelque soit j et l’on peut
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prendre F = 0. Dans ce cas l’hamiltonien conserve sa valeur : �H = H∗.

En résumé, on a donc avec ce théorème, une méthode simple de vérification qu’un change-
ment de variable est canonique. Dans le cas général où le changement de variables dépend du
temps, et l’on veut générer un changement de variable particulier, il reste cependant à trouver
la fonction F . Le théorème suivant, qui donne une autre condition nécessaire et suffisante de
canonicité plus concise et plus facile à utiliser peut aider à trouver cette fonction comme on le
verra dans le paragraphe suivant :

Théorème 2 : Pour qu’une transformation (q,p) −→ (Q,P ) soit canonique, il faut et il suffit
qu’il existe une fonction �F telle que la forme différentielle :

�

j

pjdqj − PjdQj +
�Fdt (170)

soit une différentielle totale. On a alors �F = �H −H∗
= −F

Ce théorème découle directement du théorème précédent. On pourra consulter [3] pour plus de
détails sur la démonstration.
Remarque : si le changement de variable ne dépend pas du temps alors une condition nécessaire
et suffisante pour que le changement de variable (Q,P ) soit canonique est que

�
(pjdqj − PjdQj)

soit une différentielle totale.

Du théorème 2 on déduit immédiatement 4 conditions équivalentes pour qu’un changement
de variables soit canonique. Il s’agit simplement de la condition (170) du théorème écrite dans 4
jeux de variables différents : (q,Q), (q, P ), (p,Q) et (p, P ). Voici ces conditions équivalentes :

�

j

pjdqj − PjdQj + ( �H −H∗
)dt = dG1, (171)

�

j

pjdqj +QjdPj + ( �H −H∗
)dt = dG2, (172)

�

j

−qjdpj − PjdQj + ( �H −H∗
)dt = dG3, (173)

�

j

−qjdpj +QjdPj + ( �H −H∗
)dt = dG4. (174)

où les second membres sont les différentielles totales de fonctions différentes notées G1(q,Q, t),
G2(q, P, t), G3(p,Q, t) et G4(p, P, t). La relation (171) n’est autre que la condition nécessaire
et suffisante du théorème 2, tandis que les relations suivantes s’en déduisent immédiatement. (cf
[3] pour les détails).

Remarque : Dans la pratique ce sont ces 4 conditions que l’on utilisera car elles sont faciles
à manier. Cependant on fera attention à choisir une fonction G parmi G1, G2, G3 ou G4 adaptée
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au problème. En effet on ne peut pas prendre n’importe quel jeu de variable pour n’importe quel
changement de variable. Il faut naturellement que le jeu de 2m variable dont dépend G soit in-
dépendant. Par exemple pour la transformation canonique identité le choix de G1(q,Q) ne peut
fonctionner car le jeu de variable (q,Q) n’est pas indépendant, donc la différentielle (171) n’est
pas totale et le théorème ne s’applique pas. Il en va de même pour G4. Par contre, bien sûr pour
la transformation identité le théorème s’applique parfaitement avec G2 et G3.

En conclusion, les théorèmes 1 et 2 nous donne 2 caractérisations simples de l’ensemble des
changements de variable canoniques. Naturellement, on utilisera préférentiellement le théorème
1 lorsque l’on voudra vérifier qu’un changement de variable donné est canonique puisque dans
ce cas la vérification est quasi immédiate. Par contre on utilisera plutôt le théorème 2 lorsque l’on
voudra générer un changement de variable canonique puisque dans ce cas cela est simple : il suf-
fit de choisir n’importe quelle fonction G1(q,Q) ou G2(q, P ) ou G3(p,Q) ou encore G4(p, P )

et il en découle immédiatement le changement de variable et le nouvel hamiltonien associé. Pour
cette raison, on appelle les fonctions du types G1(q,Q), G2(q, P ), G3(p,Q) ou G4(p, P ), des
fonctions génératrices.

Exemples de changements de variables canoniques :
– On peut vérifier facilement, que le changement de variables qui envoie les coordonnées

polaires (r, φ) dans les coordonnées cartesiennes (x, y), definit de la manière suivante, est
canonique :

�
x =

√
2r cosφ

y =
√
2r sinφ

– On peut vérifier facilement, que le changement de variable linéaire (Q,P ) = (A.q,B.p)
est canonique si et seulement si B = (At

)
−1. Ceci est particulièrement utile lorsqu’on

veut (et cela arrive souvent !) un changement de variable qui soit linéaire et qui vérifie
Q = A.q par exemple. Il n’y a alors qu’une seule solution, c’est la transformation indiquée
au dessus.

Exemples de fonctions génératrices :
– La fonction G2 =

�
qiPi engendre la transformation identique puisqu’on a :

pi =
∂G2

∂qi
= Pi, Qi =

∂G2

∂Pi
= qi, et �H = H∗

– La fonction G1 =
�

qiQi inverse le rÙle des variables et de leur conjuguées puisqu’on
a :

pi =
∂G1

∂qi
= Qi, Pi = −∂G1

∂Qi
= −qi, et �H = H∗

Attention cependant au changement de signe qui ne peut être supprimer si l’on veut un
changement de variable canonique.

Introduction à la Mécanique Céleste V0.9 65 ISAE - SUPAERO



7 ANNEXE A : CHANGEMENTS DE COORDONNÉES -

7.2 Fonctions génératrices

Dans ce chapitre, on montre comment utiliser le théorème 2 pour trouver des changements
de variables canoniques qui aboutiront à une simplification de l’hamiltonien.

On vient de voir plus haut qu’il est facile de générer un changement de variables canonique.
Cependant en pratique il est difficile de prévoir quelle sera la modification que ce changement
de variable va induire sur l’hamiltonien au moment ou l’on choisit les fonctions G1, G2, G3 ou
G4. Pourtant, pour que la modification de l’hamiltonien aille dans le sens d’une simplification,
il faudrait pouvoir la déterminer dès le choix des fonctions Gi et ainsi aboutir à la simplification
voulue à l’avance. On peut arriver à ce résultat en utilisant le théorème 2.

Prenons par exemple, un changement de variables canonique qui vérifie la condition (172)
du théorème 2. D’aprés sa définition, la fonction G2 est une fonction des variables (q, P, t). On
peut donc naturellement écrire sa différentielle totale sous sa forme classique suivante :

dG2 =
�

j

(
∂G2

∂qj
dqj +

∂G2

∂Pj
dPj) +

∂G2

∂t
dt

En égalisant les termes de cette différentielle totale avec la condition de canonicité (172), on
déduit immédiatement le système d’équation suivant :

∀i, pi =
∂G2(q, P, t)

∂qi
, (175)

∀i, Qi =
∂G2(q, P, t)

∂Pi
, (176)

�H(Q,P, t)−H∗
(q, p, t) =

∂G2(q, P, t)

∂t
(177)

Le choix de la fonction G2 détermine donc entièrement, non seulement le changement de va-
riable au travers des 2m équations (175) et (176) comme on l’a vu plus haut, mais aussi la
simplification induite sur l’hamiltonien comme le montre l’équation (177). Jusque là il n’y a
rien d’étonnant puisque la fonction G2 est une fonction génératrice.
Maintenant, si l’on cherche à ramener l’hamiltonien à une fonction simple donnée �H , il suf-
fit de prendre comme fonction génératrice, la fonction G2 qui verifie l’équation aux dérivées
partielles :

∂G2(q, P, t)

∂t
= �H(Q,P, t)−H∗

(q, p, t)

C’est à dire :
∂G2(q, P, t)

∂t
= �H(

∂G2(q, P, t)

∂Pj
, Pj , t)−H∗

(qj ,
∂G2(q, P, t)

∂qj
, t) (178)

Ceci constitue donc une méthode pour déterminer à priori la fonction génératrice G2 du change-
ment de variable qui donnera les simplifications attendues sur l’hamiltonien. Notez que tout ce
qui vient d’être montré avec G2 pourrait être fait de la même manière avec G1, G3 ou G4. Dans
la pratique on choisira une fonction génératrice des variables les plus adaptées à la transforma-
tion souhaitées.
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7.3 Résolution par la méthode d’Hamilton-Jacobi

Dans ce chapitre, on montre que l’utilisation des changements de variables canoniques peut
dans certains cas s’avérer être une méthode d’intégration des équations du mouvement extrê-
mement efficace.

Remarquons tout d’abord, que les équations canoniques dans lesquelles l’hamiltonien H dé-
pend uniquement des coordonnées Q s’intègre facilement. En effet, si H = K(Q), les équations
canoniques s’écrivent :

Q̇ = 0, Ṗ =
∂K

∂Q
.

D’où l’on déduit immédiatement :

Q(t) = Q(0), P (t) = P (0) + t
∂K

∂Q

����
Q0

. (179)

Cherchons maintenant les transformations canoniques qui ramènent le hamiltonien H(p, q)
à une forme K(Q). Cherchons pour cela une fonction génératrice G1(q,Q) d’une telle transfor-
mation, par exemple. De la relation (171) nous obtenons :

p =
∂G1(Q, q)

∂q

Ceci nous donne la condition sur G1 suivante,

H

�
∂q,G1(q,Q)

∂q
, t

�
= K(Q), (180)

où aprés dérivation il faut remplacer q par q(Q,P ). L’équation (180) quand Q est fixé s’appelle
l’équation de Hamilton-Jacobi.
On vient de montrer ici la condition nécessaire du théorème de Jacobi :

Théorème de Jacobi : Si l’on a trouvé une solution G1(q,Q) de l’équation de Hamiton-Jacobi
(180) dépendant de m paramètres Qi et telle que det( ∂

2G1
∂Q∂q ) �= 0

5, alors les équations cano-
niques

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
(181)

s’intègrent explicitement par quadrature (cf (179)). Les fonctions Q(q, p) définies par les équa-
tions ∂G1(q,Q)

∂q = p sont n intégrales premières des équations (181).

5. Cette condition sur le déterminant de la Hessienne de G1 n’est autre qu’une condition nécessaire et suffisante
pour assurer que le jeu de variable (q,Q) est indépendant et qu’on peut utiliser la fonction G1 comme génératrice (cf
la remarque sur le théorème 2 au paragraphe 7.1).
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Montrons rapidement la condition suffisante du théorème. Considérons la transformation cano-
nique de génératrice G1(q,Q). D’aprés (171), p =

∂G1(Q,q)
∂q , d’où l’on déduit Q(q, p) (au moins

localement) puisque det( ∂
2G1

∂Q∂q ) �= 0. Calculons alors la fonction H(q, p) dans les nouvelles co-
ordonnées (Q,P ). On a H(q, p) = H(q, ∂G1

∂q (q,Q)). Pour trouver le hamiltonien il suffit alors
de remplacer dans cette relation (aprés dérivation) q par son expression en fonction de P et Q.
Or, puisque par hypothèse G1(q,Q) est solution de l’équation de Hamilton-Jacobi l’expression
de cette fonction H(q, ∂G1

∂q (q,Q)) ne dépend pas de q de sorte que l’on a tout simplement :

H(p, q) = K(Q)

Il en resulte le théorème de Jacobi.

Remarque : La méthode d’Hamilton-Jacobi s’étend facilement au cas où la fonction génératrice,
ici G1, dépend du temps. Dans ce cas, seule l’équation d’Hamilton-Jacobi est modifiée tandis
que le théorème reste le même. Elle devient l’équation suivante :

H

�
∂G1(q,Q, t)

∂q
, q, t

�
+

∂G1(q,Q, t)

∂t
= K(Q).

En résumé, on vient de montrer que si l’on trouve une solution G1 à l’équation de Hamilton-
Jacobi (180), le problème de l’intégration des équations canoniques est résolu et le changement
de variable qui permet de passer dans le jeu de variables qui intègre le problème se formule
simplement. Notez que ce qui vient d’être montré pour G1 est encore vrai pour G2, G3 ou en-
core G4 telles quelles sont définies dans les relations (172) à (174) pour peu que l’on adapte les
hypothèses du théorème de Jacobi au jeu de variables correspondant à chaque Gi.

La méthode d’Hamilton-Jacobi que l’on vient de voir, ramène donc la résolution d’un sys-
tème d’équations différentielles (36) à la recherche de l’intégrale complète de l’équation aux
dérivées partielles (180). Il parait étonnant que cette réduction d’un problème simple à un pro-
blème plus compliqué constitue une méthode efficace de résolution. Et pourtant, dans la pratique
c’est une méthode puissante d’intégration analytique. Elle constitue d’ailleurs un des atouts ma-
jeurs de l’utilisation du formalisme hamiltonien.
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8 Annexe B : Le pendule harmonique et le problème de Kepler -
Approche hamiltonienne

8.1 Cas du pendule harmonique

8.1.1 Ecriture de l’hamiltonien

Le problème du pendule harmonique est le problème du pendule aux petites oscillations. Il
s’agit du problème du pendule simple définit au paragraphe 2.8 dans lequel on limite l’étude au
domaine θ << 1. Dans la pratique, l’énergie cinétique reste la même et l’énergie potentielle
devient :

U = mgl
θ2

2
. (182)

On appelle encore ce problème le problème de l’oscillateur harmonique, car il dépasse le cadre
de la mécanique classique et il concerne tous les problèmes d’attraction d’un point par un centre
fixe selon une force proportionnelle à la distance. On retrouve ce problème fondamentale dans
toutes les dynamiques aux voisinages d’équilibres linéairement stables, dans la physique. Sous
sa forme fondamental, on introduit en général la variable élongation : q = lθ et le coefficient
d’attraction : k = mg

l de sorte que l’énergie cinétique et l’énergie potentielle s’écrivent main-
tenant :

T =
1

2
mq̇2, U =

1

2
kq2 (183)

Le lagrangien du problème prend donc la forme suivante :

L(q, q̇) =
1

2
mq̇2 − 1

2
kq2 (184)

La variable conjuguée de q est alors p =
∂L
∂q̇ = mq̇. Ceci nous donne l’hamiltonien de l’oscilla-

teur harmonique :

H(q, p) =
1

2m
p2 +

1

2
kq2. (185)

8.1.2 Recherche d’une fonction génératrice

Intégrons cette équation par la méthode d’Hamilton-Jacobi. Pour cela cherchons si elle
existe, une fonction génératrice G2(q, P, t) de la transformation (q, p) −→ (Q,P ) telle que le
jeu de variables (q, P ) soit indépendant ( i.e. det( ∂

2G2
∂P∂q ) �= 0) et qui soit solution de l’équation

d’Hamilton-Jacobi :
H

�
q,

∂G2

∂q
, t

�
+

∂G2

∂t
= K(P ). (186)

On suppose dans un premier temps, que G2 génère les variables (Q,P ) de telle sorte que le jeu
(q, P ) soit indépendant et on résoud l’équation d’Hamilton-Jacobi. Nous vérifierons par la suite
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que la solution trouvée pour G2 vérifie bien cette condition. L’équation de Hamilton-Jacobi se
traduit ici par :

1

2m

�
∂G2

∂q

�2

+
1

2
kq2 +

∂G2

∂t
= K(P ). (187)

Etant donnée la forme de cette équation aux dérivées partielles qui contraint G2, on cherche G2

sous la forme suivante : G2 = F1(q, P ) + F2(t, P ). Ceci transforme l’équation aux dérivées
partielles en l’équation suivante en F1 et F2 :

1

2m

�
∂F1

∂q

�2

+
1

2
kq2 = −∂F2

∂t
+K(P ). (188)

Le membre de gauche de cette équation est une fonction de q et de P , tandis que le membre de
droite est une fonction de t et P . Comme les variables q, P et t sont 3 variables indépendantes,
d’une part le membre de gauche est indépendant de q, puisque c’est une fonction qui ne dépend
que de P et t d’aprés l’égalité, et d’autre part le membre de droite est indépendant de t, puisque
c’est une fonction qui ne dépend que de q et P d’aprés l’égalité. Ainsi chacun des 2 membres
est égal à une même fonction de P uniquement, qu’on note f(P ).

f(P ) = −∂F2

∂t
(189)

f(P ) =
1

2m

�
∂F1

∂q

�2

+
1

2
kq2 (190)

Ce système s’intègre facilement en introduisant 2 fonctions arbitraires g1 et g2 de la manière
suivante :

F2 = −f(P )t+ g2(P ) (191)

F1 = ±
� �

m(2f(P )− kq2)dq + g1(P ) (192)

C’est à dire

G2 = −f(P )t±
� �

m(2f(P )− kq2)dq + h(P ) avec h = g1 + g2. (193)

Ce G2 ne sera solution que si, comme nous l’avons indiqué plus haut, det( ∂
2G2

∂P∂q ) �= 0. On vient
donc de trouver ici grâce à la méthode d’Hamilton-Jacobi toute une famille (paramétrée par f et
h) de fonctions génératrices G2 qui envoient (q, p) dans un jeu de variable (Q,P ) dans lequel le
système hamiltonien est facile à intégrer (i.e. H = K(P )). Cette famille de fonction génératrice
est définie par le système :






G2(q, P, t) = −f(P )t±
� �

m(2f(P )− kq2)dq + h(P )

1√
2f(P )−kq2

df(x)
dx

���
x=P

�= 0

(194)
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Exhibons parmi ces solutions, la génératrice G2 la plus simple à écrire en choisissant f(P ) = P

afin que det( ∂
2G2

∂P∂q ) �= 0, et h(P ) = 0. Alors on obtient une génératrice simple qui amène l’ha-
miltonien H dans un jeu de variables (Q,P ) dans lequel H = K(P ) est facilement intégrable :

G2 = −Pt±
� �

m(2P − kq2)dq. (195)

8.1.3 Integration du système

Quitte à chercher un H facilement intégrable, cherchons carrément un H nul, si c’est pos-
sible et le problème sera tout intégré. Si G2 génére une transformation de (q, p) dans un jeu de
variables (Q,P ) qui annule H alors Q et P seront des constantes. Nous les appellerons α et β.
Alors G2 s’écrira :

G2 = −βt±
� �

m(2β − kq2)dq (196)

Ce changement de variable est bien possible tant que β �= kq2

2 puisque :

det(
∂2G2

∂P∂q
) =

1�
2β − kq2

dx

dx

����
x=β

=
1�

2β − kq2
. (197)

C’est gagné ! On a un jeu de variable dans lequel le système hamiltonien s’intègre immédiate-
ment puisqu’il y est nul à toutes dates. Ce jeu est le suivant :

Q = α =
∂G2

∂β
= −t±

�
mdq�

m(2β − kq2)
, P = β (198)

C’est à dire :

Q = −t±
�

m

k
arcsin

��
k

2β
q

�
, P = β. (199)

Si on préfére l’écrire dans les varaibles initiales. Cela donne :

q = ±
�

2β

k
sin

�
k

m
(t+ α), p =

∂G2

∂q
= ±

�
2mβ cos

�
k

m
(t+ α). (200)

On reconnait ici en α et β les 2 constantes d’intégrations. Quant au signe ± il est choisi selon
les conditions initiales, par exemple suivant le signe de la vitesse à l’instant t = −α.
Ces trajectoires sont des ellipses dans l’espace des phases (q, p).

Remarque : Dans cet exemple, β représente l’énergie totale du système car on a en fait :
H = −∂G2

∂t = β. Cette énergie est bien constante comme on pouvait s’y attendre puisque le
système est conservatif. Sachant cela à l’avance, on aurait pu chercher des variables canoniques
(x, y) qui vérifient H(q(x, y), p(x, y)) = K(y) et qui conservent en même temps la valeur de
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l’hamiltonien (i.e. H(q, p) ≡ K(y)). Pour obtenir un tel hamiltonien il suffit de considérer la
fonction génératrice G2 indépendante du temps qui vérifie l’équation de Hamilton-Jacobi :

H

�
q,

∂G2

∂q

�
= y. (201)

On a alors en effet y qui est constante puisque ẏ =
∂K(y)
∂x = 0. H est bien constant egal à K(y)

puisque K(y)−H(p, q) = ∂G2
∂t = 0. On a alors y = β l’énergie et x sa variable conjuguée est

le temps puisque ẋ =
∂K(y)
∂y = 1. Cette méthode, qui consiste à rechercher un jeu de variables

dont l’une est constante et égale au nouvel hamiltonien, convient à tous les systèmes conserva-
tifs. Ceci n’est pas pour nous étonner puisque dans les systèmes conservatifs le hamiltonien se
conserve, c’est donc une intégrale première du mouvement et donc si on l’utilise comme variable
dans le nouveau jeu de variables, elle sera constante égale au nouvel hamiltonien. La variable
conjuguée de l’hamiltonien est alors toujours le temps.

8.2 Cas du problème de Kepler

8.2.1 Ecriture de l’hamiltonien

Reprenons le problème de Kepler tel que nous l’avions posé au paragraphe 2.8.2. On a mon-
tré dans ce paragraphe que le lagrangien du problème s’écrivait dans les coordonnées polaires
(r, φ) :

L =
1

2
m(ṙ2 + r2φ̇2

) +
mµ

r
. (202)

Pour simplifier les écritures, on s’affranchit de la masse en introduisant un nouveau lagran-
gien L� tel que :

L�
=

L

m
=

1

2
(ṙ2 + r2φ̇2

) +
µ

r
. (203)

Ce lagrangien n’est autre que l’ancien lagrangien L dans lequel on a pris pour unité de masse,
la masse m. Ceci définit de nouvelles impulsions généralisées (Pr, Pφ) de la manière suivante :

Pr = ṙ, Pφ = r2φ̇. (204)
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On en déduit le hamiltonien du problème affranchi du paramètre m :

H(r, φ, Pr, Pφ) =
1

2
(P 2

r +
P 2
φ

r2
)− µ

r
. (205)

8.2.2 Recherche d’une fonction génératrice

Intégrons cette équation par la méthode d’Hamilton-Jacobi. Pour cela cherchons si elle
existe, une fonction génératrice G2(r, φ, y1, y2, t) de la transformation (r, φ, Pr, Pφ) −→ (x1, x2, y1, y2)
telle que le jeu de variables (r, φ, y1, y2, t) soit indépendant, et telle qu’elle soit solution de
l’équation d’Hamilton-Jacobi :

H

�
r, φ,

∂G2

∂r
,
∂G2

∂φ
, t

�
+

∂G2

∂t
= K(y1, y2). (206)

Dans le problème de Kepler, le système représenté par l’hamiltonien est conservatif. H est donc
constant et vaut une valeur que l’on note h. Sachant cela, on cherche un changement de variable
qui face apparaitre cette intégrale première dans les nouvelles variables sous la forme y1 = h.
D’aprés la remarque du paragraphe précédent, il suffit de chercher une fonction génératrice
G2 indépendante de t telle que K(y1, y2) = y1. Cela revient donc à rechercher une fonction
G2(r, φ, y1, y2) telle que (r, φ, y1, y2, t) soit indépendant et que G2 soit solution de l’équation
d’Hamilton-Jacobi suivante :

1

2

��
∂G2

∂r

�2

+
1

r2

�
∂G2

∂φ

�2
�
− µ

r
= y1. (207)

Notons, avant de se lancer dans les calculs, que la variable φ n’apparait pas explicitement dans
l’expression de H(r, φ, Pr, Pφ). Sa variable conjuguée Pφ est donc constante, c’est une autre
intégrale première du mouvement indépendante de h. Afin de faire apparaitre cette intégrale
première dans les nouvelles variables, nous allons choisir G2 telle qu’elle engendre l’identité
selon la variable φ. Il suffit pour cela, de choisir G2 de la forme suivante :

G2(r, φ, y1, y2) = φy2 + S(r, y1, y2), (208)

où S est une fonction quelconque. En effet dans ce cas Pφ =
∂G2
∂φ = y2 (cf l’exemple du

paragraphe 7.1).
Ainsi désormais, le changement de variables que l’on cherche peut être réduit à la transformation
(r, φ, Pr, Pφ) −→ (x1, x2, h, Pφ) telle que le jeu de variables (r, φ, h, Pφ, t) soit indépendant et
avec la génératrice G2(r, φ, h, Pφ) = φy2 + S(r, h, Pφ) dans laquelle S est maintenant solution
de l’équation d’Hamilton-Jacobi :

1

2

�
∂S

∂r

�2

− µ

r
+

y22
2r2

= y1. (209)

D’après les réductions faites sur G2 grâce aux 2 intégrales premières que l’on a trouvées, cette
équation se réécrit :

1

2

�
∂S(r, Pφ)

∂r

�2

− µ

r
+

P 2
φ

2r2
− h = 0. (210)
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C’est à dire
∂S(r, Pφ)

∂r
=

�

2h+
2µ

r
−

P 2
φ

r2
(211)

Cette équation s’intègre de la manière suivante :

S(r, Pφ) = ±
� r

ro

�

2h+
2µ

r
−

P 2
φ

r2
dr, avec r0 = r0(h, Pφ). (212)

Ceci nous donne immédiatement les 4 équations qui définissent le changement de variable de
(r, φ, Pr, Pφ) en (x1, x2, h, Pφ) :

Pr =
∂S

∂r
= ±

�

2h+
2µ

r
−

P 2
φ

r2
, (213)

Pφ =
∂G2

∂φ
= y2, (214)

x1 =
∂G2

∂y1
=

∂S

∂h
= ±

� r

ro

dr�
2h+

2µ
r − P 2

φ

r2

∓ ∂r0
∂h

�

2h+
2µ

r0
−

P 2
φ

r20
, (215)

x2 =
∂G2

∂Pφ
= φ∓

� r

ro

Pφdr

r2
�
2h+

2µ
r − P 2

φ

r2

. (216)

Remarque : On peut vérifier à ce stade que le jeu de variables (r, φ, h, Pφ) est bien indé-
pendant en calculant la Hessienne de G2.

8.2.3 Intégration du système

Le changement de variable que l’on vient de trouver précédemment, transforme H(r, φ, Pr, Pφ)

en K(x1, x2, y1, y2) = y1 = h qui est constant. Donc en particulier il contient l’intégration du
système. Exhibons cette intégration et écrivons là dans les variables initiales (r, φ, Pr, Pφ). Ainsi
on obtiendra les trajectoires du système dans ce jeu variables qui a un sens physique plus naturel.
Tout d’abord, en ce qui concerne l’intégration, elle est évidente dans le nouveau jeu de variables
(x1, x2, y1, y2). Elle est donnée par les 4 équations suivantes dans lesquelles on introduit une
nouvelle constante ω :
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x1 =

� t

t0

∂K

∂h
= t− t0, (217)

x2 =

� t

t0

∂K

∂y2
= ω constante, (218)

y1 = −
� t

t0

∂K

∂x1
= h constante, (219)

y2 = −
� t

t0

∂K

∂x2
= Pφ constante. (220)

Ecrivons maintenant ces équations intégrées dans l’ancien jeu de variables :

– On égalise tout d’abord l’équation (215) à l’équation (217). Cela nous donne l’équation
suivante :

±
� r

r0

dr�
2h+

2µ
r − P 2

φ

r2

∓ ∂r0
∂h

�

2h+
2µ

r0
−

P 2
φ

r20
= t− t0. (221)

Selon cette équation t0 sera l’instant pour lequel r vaut r0 si r0 est l’une des racines de

l’équation 2h +
2µ
r0

− P 2
φ

r20
= 0 (car cela annule le terme en ∂r0

∂h ). Mais d’autre part si

r0 est racine de l’équation 2h +
2µ
r0

− P 2
φ

r20
= 0 alors r0 annule ṙ puisque ṙ = Pr =

±
�
2h+

2µ
r − P 2

φ

r2 d’aprés l’équation(213). En d’autres termes, pour que t0 soit l’instant
pour lequel r vaut r0, il suffit de choisir r0 comme étant un extremum de r. Prenons par
exemple r0 comme étant le péricentre. Alors t0 = tp la date de passage au péricentre et
r0 est donné par l’expression :

r0 =
P 2
φ/µ

1 +

�
1 + 2hP 2

φ/µ
2

(222)

– Ayant choisi r0 de cette manière, on égalise maintenant l’équation (216) à l’équation
(218). Cela donne :

φ∓
� r

ro

Pφdr

r2
�

2h+
2µ
r − P 2

φ

r2

= ω (223)

ω s’interprète donc comme la valeur de l’angle φ lors du passage au péricentre.

– On peut maintenant intégrer l’équation du mouvement. En posant u =
1
r , l’équation (223)

s’intègre facilement pour donner :
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u =

1 +

�
1 + 2hP 2

φ/µ
2 cos (φ− ω)

P 2
φ/µ

(224)

Cette équation correspond à l’équation polaire d’une conique de foyer le centre attracteur,
d’excentricité e =

�
1 + 2hP 2

φ/µ
2 et de paramètre p = P 2

φ/µ. L’angle φ−ω s’interprète
comme étant l’anomalie vraie v.

r =
p

1 + e cos v
(225)

Traçons ces trajectoires dans le plan :

FIGURE 37 – Exemple de trajectoire Keplerienne.

Finalement le problème de Kepler admet donc le nouveau jeu de variables canoniques sui-
vant :

(t− t0, ω, h, Pφ) (226)

dont les 3 dernières, étant des constantes, sont des éléments d’orbite canoniques. L’énergie h
est la variable conjuguée du temps et le moment cinétique Pφ est conjugué de l’argument du
péricentre. L’hamiltonien dans ces variables vaut : K(t− t0, ω, h, Pφ) = h.

Remarque : Si on avait considéré le problème de Kepler dans un espace euclidien de dimension
3 (pour espace de configuration) au lieu de le regarder dans le plan, nous aurions alors bien sûr,
un couple de variable supplémentaire. Ce couple de variables aurait donné 2 éléments d’orbite
canoniques supplémentaires qui se seraient interprétés comme Θ, une projection du moment
cinétique et Ω la longitude du noeud ascendant. L’hamiltonien aurait valu dans ces variables :
K(t− t0, ω,Ω, h, Pφ,Θ) = h.
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8.2.4 Ecriture en variables de Delaunay

Pour plus de clarté, on peut exprimer le mouvement en écrivant r comme une fonction de t.
Nous le faisons dans cette section en introduisant les éléments de Delaunay.
Dans le cas du mouvement elliptique, posons a = − µ

2h et utilisons la relation Pφ =

�
µa(1− e2)

issue de l’expression de l’excentricité dans (224). Ceci nous permet d’ introduire le changement
de variable régularisant : r −→ E défini par r = a (1− e cosE). Ce changement de variable,
associé à la définition faite plus haut de r0 permet d’intégrer l’équation (221) et donne l’équation
de Kepler :

t− tp =

�
a3

µ
(E − e sinE) . (227)

Il apparait maintenant une nouvelle variable naturelle qui est l’anomalie moyenne M =�
µ
a3 (t − tp). C’est une variable pratique car d’une part elle est plus facile à manipuler que

E puisque son mouvement est régulier et d’autre part elle est physiquement plus adaptée aux
problèmes liés aux orbites que (t− tp) puisqu’elle est périodique de même période que l’orbite.
On peut faire en sorte, que M soit une des variables canoniques et garder l’expression trés simple
de K. Il faut alors définir une transformation canonique entre (t − tp, h) et (M,L) (L étant la
variable conjuguée de M ) qui ne modifie ni l’hamiltonien ni les autres variables. Il suffit pour
cela d’avoir (t − tp)dh = MdL car alors le remplacement des variables (t − tp, h) par les
variables (M,L) n’a aucun impact sur dG2 et donc ni sur les autres variables ni sur K. Ceci se
traduit par un choix de L tel que :

(t− tp)
µ

2a2
da−

�
µ

a3
(t− tp)dL = 0 soit

dL

da
=

1

2

�
µ

a
(228)

On en déduit L =
√
µa et h = − µ2

2L2 . C’est ainsi qu’on obtient ce qu’on appelle les éléments
canoniques de Delaunay (l, g, L,G) définis avec les notations de Poincaré par :

l = M L =
√
µa

g = ω G = L
√
1− e2

(229)

L’hamiltonien correspondant conserve sa valeur :

H(l, g, L,G) = − µ2

2L2
. (230)

On en déduit immédiatement les équations d’Hamilton dans le jeu de variables de Delaunay :

l̇ = µ2

L3 , L̇ = 0,
ġ = 0, Ġ = 0.

(231)
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Remarque : Naturellement ici, tout cet appareil de fonction génératrices et de système ha-
miltonien peut sembler lourd pour la résolution d’un problème aussi simple que l’oscillateur
harmonique ou même pour la résolution du problème de Kepler qui est plus simple avec le for-
malisme vectoriel habituel. Notez cependant que dans chaque cas, il nous a permis de mettre en
évidence non pas une seule solution mais toute une famille. Néanmoins l’avantage majeur de ce
formalisme n’est pas là, il est dans le fait que ce formalisme se généralise immédiatement aux
systèmes à plusieurs degrés de liberté (ici la résolution aurait été la même avec 6 variables au
lieu de 2 ou 4) et aux systèmes perturbés.
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9 Annexe C : Developpements en série

Trés souvent, la complexité des calculs en mécanique celeste ne laisse pas d’autres choix que
de développer les diverses expressions en séries infinies qui sont ensuite tronquées pour simpli-
fier les calculs. Même si souvent, l’approximation des restes est trés grossière, cette approche
donne de nombreux résultats pertinents. Dans ce chapitre, nous présentons quelques dévelop-
pements en série des équations du problème de Kepler qui sont extrêmement utiles pour traiter
de nombreux problèmes de mécanique celeste.

9.1 Eviter les séries

Avant de présenter quelques développements en série trés utiles, notons qu’il existe quelques
exemples de grandeurs dans le problème de Kepler qui se calculent de manière exactes. Dans ce
cas il ne faut pas s’en priver ! Pour cela, les relations suivantes entre les différentes anomalies
v = φ− ω, E et M sont extrêmement utiles :

dE

dM
=

a

r
,

dv

dM
=

a2

r2

�
1− e2,

dv

dE
=

a

r

�
1− e2. (232)

La première relation découle de l’équation de Kepler (227). La deuxième est obtenue en éga-
lisant Pφ =

�
µa(1− e2) issue de l’expression de l’excentricité dans (224) et l’équation de

Hamilton φ̇ = Pφ : ce n’est autre que la loi des aires. Et la troisième est le quotient des deux
premières.

On en déduit l’expression exacte de la valeur moyenne de

an

rn

, n ∈ Z:

1

2π

� 2π

0

a

r
dM =

1

2π

� 2π

0
dE = 1, (233)

1

2π

� 2π

0

a2

r2
dM =

1

2π

� 2π

0

1√
1− e2

dv =
1√

1− e2
. (234)

Et pour n ≥ 1, cela donne

1

2π

� 2π

0

an+2

rn+2
dM =

1

2π

� 2π

0

(1 + e cos v)n

(1− e2)n+1/2
dv (235)

=
1

(1− e2)n+1/2

[n/2]�

k=0

n!

22k(n− 2k)!(k!)2
e2k (236)

où [n/2] est la partie entière de n/2. De la même manière on a :
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1

2π

� 2π

0

rn−1

an−1
dM =

1

2π

� 2π

0
(1− e cosE)

n dE (237)

=

[n/2]�

k=0

n!

22k(n− 2k)!(k!)2
e2k. (238)

9.2 Equation de Kepler et développements en série

Le calcul des coordonnées du mobile en orbite nécessite le calcul de l’anomalie vraie v ou
de l’anomalie excentrique E, qui s’obtient à partir de l’anomalie moyenne M grâce à l’équation
de Kepler :

M = E − e sinE. (239)

On a, comme on a vu précedemment :

dM

dE
= 1− e cosE =

r

a
. (240)

Si e < 1, alors dM
dE > 0 et M sera une fonction strictement croissante de E. Cette équation

possédera dans ce cas une solution unique. Cette équation se résoud de manière numérique. Il
existe d’ailleurs un grand nombre de façons différentes de le faire. Cependant, lorsqu’on désire
une approche analytique pour expliquer les phénomènes, il faut obtenir l’inversion de cette for-
mule analytiquement. Dans la pratique on la réalise à l’aide de développements en série, avec
des séries de Fourier quand les grandeurs sont périodiques ou à l’aide de séries de Taylor lorsque
l’excentricité est petite par exemple.
Prenons le cas de a

r par exemple. C’est une fonction périodique de M , on peut donc effectuer
son développement en série de Fourier de la manière suivante :

a

r
=

+∞�

−∞
cke

ikM (241)

avec

ck =
1

2π

� 2π

0

a

r
e−ikMdM =

1

2π

� 2π

0
e−ik(E−e sinE)dE =

1

2π

� 2π

0
eike sinEe−ikEdE.

(242)
D’aprés l’égalité précédente, ck est aussi le k-ème coefficient de Fourier du développement en
série de Fourier de eike sinE . Or on sait que :

eike sinE
= e

ke
2 (e

iE−e−iE)
=

+∞�

−∞
Jn(ke)e

inE , (243)

où l’on reconnait la définition des fonctions de Bessel Jn(x) (voir l’annexe, chapitre ??). On a
donc,

a

r
=

+∞�

−∞
cke

ikM , avec ck = Jk(ke) (244)
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9.3 Développements en anomalie moyenne M

Développement de a/r :
D’aprés les propriétés des fonctions de Bessel, J−k(−x) = Jk(x) (voir l’annexe, chapitre ??).
En introduisant ce résultat dans le développement (241) de a/r on a :

a

r
= 1 +

+∞�

k=1

2Jk(ke) cos (kM). (245)

Développement de sin (mE) et cos (mE) :
En intégrant dE

dM =
a
r par rapport à M , on a :

E = M +

+∞�

k=1

2Jk(ke)

k
sin (kM). (246)

On aura plus généralement :

eimE
=

+∞�

−∞
cm,ke

ikM (247)

où les coefficients cm,k vérifient :

cm,k =
1

2π

� 2π

0
eimEe−ikMdM =

1

2π

� 2π

0
eimEe−ikM

(1− e cosE) dE. (248)

Ce qui donne quand on intègre par parties pour k �= 0 :

cm,k =
m

2kπ

� 2π

0
eimEe−ikMdE =

m

2kπ

� 2π

0
ei((m−k)E+ke sinE)dE. (249)

C’est à dire, d’aprés la définition des fonctions de Bessel :

cm,k =
m

k
Jk−m(ke). (250)

Pour k = 0, on aura :

cm,0 =
1

2π

� 2π

0
eimEdM =

1

2π

� 2π

0

�
eimE − e

2
ei(m+1)E − e

2
ei(m−1)E

�
dE. (251)

Soit :

c0,0 = 1, c1,0 = c−1,0 = −e

2
, cm,0 = 0, pour m /∈ {−1, 0, 1} . (252)

On a donc finalement :
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eimE
= cm,0 +

�

k �=0

m

k
Jk−m(ke)eikM (253)

cos (mE) = cm,0 +

+∞�

k=1

m

k
(Jk−m(ke)− Jk+m(ke)) cos (kM) (254)

sin (mE) =

+∞�

k=1

m

k
(Jk−m(ke) + Jk+m(ke)) sin (kM). (255)

En particulier, on aura pour m = 1 en utilisant les propriétés des fonctions de Bessel :

cos (E) = −e

2
+ 2

+∞�

k=1

J �
k(ke)

k
cos (kM), (256)

sin (E) = 2

+∞�

k=1

Jk(ke)

ke
sin (kM) (257)

Développement de rn/an :
Les développements de cosE et sinE précédents permettent d’obtenir directement les 3 déve-
loppement suivants :

r

a
= 1− e cosE = 1 +

e2

2
− 2e

+∞�

k=1

J �
k(ke)

k
cos (kM), (258)

r

a
cos v = cosE − e = −3e

2
+ 2

+∞�

k=1

J �
k(ke)

k
cos (kM), (259)

r

a
sin v =

�
1− e2 sinE = 2

�
1− e2

+∞�

k=1

Jk(ke)

ke
sin (kM) (260)

Ces relations, combinées avec le développement (241) de a/r permet, par développement des
produits, d’obtenir tous développements de la forme :

an

rn
eimv, avec n,m ∈ Z. (261)

Ces développements interviennent dans de nombreux problèmes et peuvent être trés utiles. Ce-
pendant, ils sont lourds à produire puisqu’il faut développer n produits de développements à
l’ordre n... Dans la pratique, on les produit sur des manipulateurs algébriques en faisant des
opérations formelles tronquées à l’ordre voulu. Il est beaucoup plus difficile et souvent aujour-
d’hui impossible, d’obtenir des expressions exactes utilisables.
On remarquera cependant, que pour tout n ∈ N et tout m ∈ Z, on peut obtenir sans difficultés,
les expressions de la forme :

rn

an
eimv. (262)
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Il suffit de faire un développement intermédiaire en anomalie excentrique E que l’on linéarise,
pour ensuite pouvoir utiliser les développements de eimE , cos (mE) et sin (mE). Par exemple,
en utilisant la relation Jk−2(x)− Jk+1(x) =

4k
x J �

k(x)−
4k
x2Jk(x), on aura :

r2

a2
= (1− e cosE)

2
= 1 +

e2

2
− 2e cosE +

e2

2
cos 2E (263)

= 1 +
3e2

2
− 4

+∞�

k=1

Jk(ke)

k2
cos (kM). (264)

Remarque : Les développements en anomalie excentrique sont en général plus simples que les
développements en anomalie moyenne. Certains sont même polynomiaux.
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