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Modeshape approximation with few sensors at
high sampling frequency

SP approach
We are not analyzing a problem of ”Sensor Placement Optimization
(SPO)”, which aims at identifying the sensor layout that will
optimize one or more of the probabilistic performance measures.

We prefer to have a ”Signal Processing (SP)” approach. According
to well known theorem sampling theorem, if you want to reconstruct
high frequency modeshapes you’ll need a high density regular grid of
sensors.

Using few sensors at ”random” location, it is possible to have good
modeshape reconstruction ?
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Sparsity

The advanced mathematical techniques so-called Compressive
Sensing (CS 1) benefit fields as diverse as sensors, signal
processing, image compression etc ... The traditional approach to
data acquisition is based on the Shannon-Nyquist theorem : to
acquire a signal with a bandwidth of size W must be sampled at a
higher frequency 2W. CS exploits that many real signals can be
expressed in a sparse way and the inconsistency between type of
bases to reduce the number of samples. A vector S sparse is a
vector that has at most S nonzero components.

1E. J. Candès, J. Romberg and T. Tao. Stable signal recovery from
incomplete and inaccurate measurements. Comm. Pure Appl. Math., 59
1207-1223, 2006.
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Example1

Example of sparse matrix (in black nonzero elements of FE Rigidity
Matrix)
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Example2

Few sensors, incomplete measurements etc... SPATIAL SAMPLING
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Data Compression

This technique combines two key ideas : sparse representation
through an informed choice of linear basis for the class of signals
under study ; and incoherent (eg. pseudorandom) measurements of
the signal to extract the maximum amount of information from the
signal using a minimum amount of measurements

Figure: Fourier basis and random measurement matrix
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To enforce the sparsity constraint when solving for the
underdetermined system of linear equations, one can minimize the
number of nonzero components of the solution. The function
counting the number of non-zero components of a vector was
called the L0 norm by [Donoho. Candès. et. al.], proved that for
many problems it is probable that the L1 norm is equivalent to the
L0 norm.
In a technical sense : This equivalence result allows one to solve
the L1 problem, which is easier than the L0 problem.
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An optimal sparse representation in a given basis is obtained by
performing a constrained L1 optimization over the linear
coefficients that appear in the representation of the signal. That is,
given some signal f and basis elements φ, a minimization is
performed, as

min
N∑

j=1
|aj | st

∥∥∥∥∥∥f −
N∑

j=1
ajψj

∥∥∥∥∥∥ < ε (1)

The L1 minimization tends to concentrate the energy of the signal
on to a few non-zero coefficients aj, unlike the least squares (L2
minimization) which tends to spread the energy around.
By replacing the absolute value of the aj with the difference of the
positive and negative parts, the L1 function becomes a linear
objective solved by linear programming method (simplex).
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Let’s take a signal f (t) with S=2 sinusoids in it, with frequency
content in the band 0 to 10Hz, and seek a resolution of 0.1Hz. At
this bandwidth and resolution, some 100 sinusoids are required in
the basis. Compressive sampling requires on the order of K = S log
N random samples, or about K = 2 log 100 = 9.2 samples.

Figure: Signal sampling (time) and signal sparsity (frequency) by
Lamoureux et al
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Let’s take a signal f (t) with S=2 sinusoids in it, with frequency
content in the band 0 to 10Hz, and seek a resolution of 0.1Hz. At
this bandwidth and resolution, some 100 sinusoids are required in
the basis. Compressive sampling requires on the order of K = S log
N random samples, or about K = 2 log 100 = 9.2 samples.

Figure: L2 reconstruction (time) and Spectrum of the L2 reconstruction
(frequency) by Lamoureux et al
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CS takes this idea one step further by creating a measurement
system so that the real signal itself can be recorded in compressed
form ”on the fly” =⇒ A key step is the creation of measurement
vectors φ for taking physical measurements on the signal in the
form of inner products of the signal with the measurement vectors,
yk =< f , φk >. The measurement vectors are carefully designed to
extract the maximum amount of information from a generically
sparse vector in the given basis system.

Figure: Principe of CS
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Main objectives CS : the Big PICTURE 1D Vibration Reconstruction 2D Modeshapes Reconstruction Conclusion

The optimization problem is replaced by a linearly constrained
problem where the measurements of the signal must match the
measurements on the representative solution. That is, one solves :

min
N∑

j=1
|aj | st ym =<

N∑
j=1

ajψj , φm >,m = 1...M (2)
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A simple, yet surprisingly effective, way to do so is L1 minimisation
(or basis pursuit) ; thus

x∗ = argminx :φx=y ‖x‖l1 (3)

results always compared to classical L2 norm

x∗ = argminx :φx=y ‖x‖l2 ou x∗ = (φTφ)−1φT y pseudoinverse (4)
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1D vibration example

Applications :
1 Long time monitoring (Bridge over a year)
2 Flutter diagnosis (Aircraft under operational loads)

Limitations : No ”industrial” hardware

As an illustrative Matlab code 2,let’s consider the case of a 1D
signal (sparse in the frequency domain). We assume a function f
(of length N) expressible in the form of a sum of a small number of
sinusoids.
f = (1 ∗ sin(2pi ∗ 30 ∗ t) + 0.5 ∗ sin(2pi ∗ 60 ∗ t) + 0.1 ∗ sin(2pi ∗
100 ∗ t) + 0.1 ∗ sin(2pi ∗ 130 ∗ t))/4

2L1-MAGIC is a collection of MATLAB routines :
http ://users.ece.gatech.edu/ justin/l1magic/
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comparison of the reconstruction of signals

Analog signal (in BLUE Fs = 400Hz >> Nyquist frequency) has 4
frequency components 30, 60, 100 and 130 Hz

Regularly sampled at Fs = 150 Hz using L2 reconstruction formula
(Shannon in MAGENTA)

L1 reconstruction (CS) with fewer points of observations (but
random sample IN GREEN)
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Figure: Analog signal (in blue), discretized signal (magenta) respecting
Nyquist frequency (N points) and randomized signals at low resolution
(N/10) (a), and DCT spectrum comparison (b)
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Sparse Basis and incoherent measurement system
The sparse basis for this type of signal would be collections of
sinusoids of the form sin(ωjt), j=1...N, where the frequencies span
the bandwidth at the desired resolution.

A suitable incoherent measurement system for this basis is to select
random samples in the time domain, obtaining measurements yk =
f(tk), where the tk, k=1...K, are selected randomly.

The L1 optimization problem is the constrained minimization (with
2N variables and K linear constraints) over the variables aj ,
expressed in the form :

min
N∑

j=1
|aj | st ym =

N∑
j=1

ajcos(ωjtm),m = 1...M (5)
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We see that the spectrum (DCT) has four resonances in the continuous signal, and 4
also in the digital signal but aliasing appears because Fs is too low. When we solve
this problem using Moore- Penrose pseudoinverse, we can note the appearance of
noise (whereas CS imposes zero coefficients).
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Figure: Comparison of DCT spectrum of reconstructed signals by L1
inversion (a) and L2 inversion (b) of randomized signals. The L2
inversion is not capable of good reconstruction (noise)
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It is then easy to compare the result of the spectrum reconstructed by L2 norm and
the L1 norm
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Figure: Comparison of reconstructed signals by L1 inversion (green) for
different sampling N/10 (a) and N/5 : (b) of randomized signals. From
the time domain (zoom) The L2 inversion (red) is not capable of good
reconstruction of the continuous signal (blue) whereas L1 optimization
(green) is reliable even for low sampling.
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Spatial aliasing
When dealing with modeshapes reconstruction the principle is
classicaly to make a regular grid of sensors. CS principles will permit
to make sensor placement random and use less sensors.

Classicaly using few sensors the modeshapes estimation is not
robust.=⇒ Model Validation in structural dynamics

Even on a simple plate example, we exhibit the crucial choice of
dictionary basis (Fourier Basis)

Figure: Mapping a continuous function to a discrete one is called
sampling. In general artefacts are due to under sampling or poor
reconstruction : Temporal aliasing (Shannon’s theorem) (a), Spatial
aliasing (b) due to limited spatial resolution and induce loss of details.
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As a first example we study the modeshape reconstruction from
grid placement. It highlights the fact that mode shapes
visualization is often biased due to spatial aliasing. We can see
that 9 grid point measurement are not enough precise to
reconstruct the (2, 1) mode shape.

Figure: (2,1) mode of vibrating plate plus regular grid distribution of
sensors in white circles (a) and The cubic interpolation which shows a
spatial aliasing in mode shape reconstruction (b). A regular grid of 9
sensors permits only to reconstruct the (0,1).
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Experimentaly modeshapes are commonly estimated from the residues obtained by
curve fitting algorithm from set of FRFs. This numerical study can be compared to
experimental test where Laser Doppler Vibrometer can be moved automatically and so
control the succession of acquisition for each point of the grid (regular or random).
What kind of Sampling ? What are the best reconstruction scheme ?

Figure: Previous IMAC (2009) we test 3 different sampling and
interpolation methods have been tested and compared using simulated
(peaks) data
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Plate example : 1st Modeshape
The normal mode and harmonic analysis was done using following
geometrical and material properties (length=width= 0.8m ; height=
0.01m ;E = 210e9 Pa ; nu = 0.33 ; rho = 7700).

How do we reconstruct the first modeshape using few random
sensors and a natural basis of the first eigenmodes ?

Just compare least square L2 inversion with L1 (CS method)

Figure: Vizualisation one FRF of the SSSS plate example and mode 14Joseph Morlier (ICA), Dimitri Bettebghor (ONERA) IMAC2012 23/ 27
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Sparse Basis and incoherent measurement system
The sparse basis for this type of signal would be collections of
modeshapes (sin(ωjtm/a)) ∗ (sin(ωjtm/b)) at the desired resolution
(5x5 modes).

A suitable incoherent measurement system for this basis is to select
random samples (6 sensors) in the space domain, obtaining
measurements yk = f(tk), where the tk, k=1...K, are selected
randomly.
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First Result L2 vs L1 reconstruction

Figure: First modeshape reconstruction. L2 vs L1 and error versus
continuous modeshape (maximum error of 5E − 3)

=⇒ Just a premilinary results, we need to analyse the RMSE for
mode 1 to 14, and even on this simple example, automating the

procedure will be complex
Joseph Morlier (ICA), Dimitri Bettebghor (ONERA) IMAC2012 25/ 27
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Second Result L2 vs L1 reconstruction (12 sensors, 14x14 modes)

Figure: Higher modeshape reconstruction. L2 vs L1 and error versus
continuous modeshape (maximum error of 4E − 2)
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Conclusion and Future works
These promising results induce lot of numerical works in order to
establish adapted dictionnaries and automatic sensors placement
tools for plate example (We only study the 1st Modeshape
reconstruction).

We shall continue these works by merging different methods
function of the modal density (Mixture of experts). For
example, on should use L1 inversion at low frequency (dictonnary
based on physical parameters) and interpolation such as neural
networks for high frequency.

Use on complex structure : Assembly of plate/beam or thin
walled structures...

The algorithm should also take into account the existence of nodal
lines (passage to zero = a priori information)
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Questions
?
joseph.morlier@isae.fr
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