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Résumé 
La Méthode de la Balance Harmonique est une démarche très attractive pour faire le 

calcul de la réponse d’un système de vibrations non linéaire. Il est possible d’obtenir un 

dégrée élevée de précision même si pas beaucoup d’harmoniques sont utilisés pour 

approximer la valeur de la solution cherchée. De plus, c’est naturel d’éteindre les concepts de 

la méthode pour évaluer des solutions de systèmes avec plusieurs dégrées de liberté, une fois 

qu’une approche matricielle est mise en œuvre dans ce modèle, ce qui devient la méthode plus 

facile à implémenter. Dans ce cadre, la solution issue de la méthode peut être traitée pour 

trouver un modèle d’identification de paramètres modaux. 

Une autre question abordée dans ce travail est comment la Transformée de Hilbert 

peut être employée pour analyser l’identification modale et pour savoir si le système a un 

comportement linéaire ou pas. Sur ce sujet, deux méthodes, démarrées par l’article (1) seront 

mises en examen. La première est la méthode ‘Freevib’, lequel analyse la réponse au cours du 

temps et est capable d’identifier les paramètres modaux d’un système avec un seul dégrée de 

liberté libre d’excitations externes. Le deuxième est la méthode ‘Forcevib’, qui agit de façon 

similaire à la première, mais avec une force d’excitation externe. 

Pour conclure, nouvelles techniques d’identification et des idées sont relevées pour 

l’avenir de telle façon à agrandir les recherches sur des systèmes avec plusieurs dégrées de 

liberté. 

  



 

 

 

   

 

Abstract 
The Harmonic Balance Method (HBM) is a way very useful for calculating the 

response from a nonlinear vibration system. It’s possible to obtain a high degree of accuracy 

even if few harmonics are used to approximate the required solution. In addition, it’s natural 

to extend the concepts of that method for evaluating solutions of multi-degree of freedom 

(MDOF) systems, since a matrix approach is implemented in that model, what becomes the 

method easier to be dealt with. In that context, the generated solution from this method can be 

treated to perform a parametric modal identification of a vibration system.  

Another topic to be studied in that work is how the Hilbert Transform (HT) can be 

used to analyze the modal identification and to realize if the system has a linear behavior or 

not. On that field, two methods, introduced by the article (1) will be investigated. The first 

one is the ‘Freevib’ method, which analyzes the response through the time and is capable of 

identify the modal parameters of a single-degree of freedom (SDOF) system free of external 

excitations. The second is the ‘Forcevib’ method, which does the same thing of the previous 

one, but with an external excitation. 

In the conclusion, new techniques of identification and some ideas for future projects 

are arisen in order to try to broaden those researches for a MDOF system. 
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1. Overview 

1.1. Introduction 

The human beings were always surrounded by a great number of vibrations. They 

appear in several places around us, even if we don’t take into account of it, such as every time 

we hear some sound or in natural phenomena like earthquakes or sea waves. As it’s 

mentioned by (2), probably the study of vibrations became familiar for ancient civilizations 

when these people, especially the Greeks, began to produce their first musical instruments, so 

that the link between music and science started being more natural. By that time, the Chinese 

had been experiencing a great amount of earthquakes. Thus they had to come up with a way 

of measuring the quakes’ intensity. Using a mechanism consisting of a system of pendulums, 

Zhang Heng, a Chinese astronomer, invented the world’s first seismograph in A.D. 132, 

illustrated by Figure 1. It was capable of recording the time and the direction of occurrence of 

the earthquake. 

 

Figure 1: World’s first seismograph invented by Zhang Heng, in the Exhibition Hall of the 
Museum of Chinese History in Beinjing, China. 
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1.2. Why to study vibrations? 

As it was told previously, many processes involve vibrations during their execution. 

According to (3), our voice is derived from the larynges vibrations with the tongue. Also, the 

respiratory activity is a result of the oscillatory motion of lungs. Specifically in engineering, 

lots of problems rolling machines may be generated if it isn’t paid attention with their 

balance. There may be unexpected consequences of it such as nuisance in urban areas or even 

an offset of locomotive’s wheels at high speeds (Figure 2). 

 

Figure 2: Example of unbalanced wheel 

In addition, vibrations can originate mechanical failures which may result in 

catastrophic situations. It’s very important to know whether an external excitation in a system 

can coincide with its natural frequency, because it may lead to an extreme phenomenon called 

resonance, in which huge deflections are generated, so that failures would be very hazardous. 

A known example of it was the collapse of Tacoma Narrows Bridge just four months after its 

inauguration, as it can be seen in Figure 3. 

 

Figure 3: Crash of the bridge due to wind-induced vibrations. 
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Besides, it can’t be forgotten human beings are usually part of many engineering 

systems. For instance, when a car is driven, the driver would like to be as comfortable as it 

can be, without noises and vibrations from the engine. So, it’s also useful to control the 

transmission of vibrations among different components of a system. 

1.3. Types of systems and methods of evaluation 

 

Going further, in a mechanical project of engineering, it’s very important to get under 

control of the vibration processes of the different materials which a structure is made of.  

Until the middle of the twentieth century, it was so difficult to evaluate systems from complex 

engineering problems, since great computer mathematics weren’t bore by the calculators from 

that time. However, after the 1950s, the use of high-speed digital computers became more 

usual in terms of treatment of data calculation, making possible to yield solutions based on 

classical methods with numerical evaluation of terms that cannot be expressed in a closed 

form. As (4) pointed out, this led the engineering research to develop high-level techniques in 

which it hadn’t ever been before, because for the first time in ages one was able to carry out 

huge mathematics with a great amount of accuracy and fast. The pursuit and the need of 

designing lighter and at the same time resistant structures contributed so much to the 

improvement of study of mechanical vibrations. 

Unfortunately, most progress in dynamical systems that were made throughout the 

time, since the 1600s when Galileo Galilei (1564-1642) watched the pendulum movement and 

were amazed by the fact that its period depended on its length (2), considered the systems 

were linear. Nevertheless, it has been recognized almost all real structures are some kind of 

nonlinearity (5), either caused by its shape, or by its inertial or material in nature. According 

to (6), nonlinearity is qualified as being geometric if it comes from large curvatures, resulting 

in big amplitudes. In case of movable edges, one would find nonlinear inertia effects. In the 

end, material nonlinearities take place whenever the stress doesn’t vary linearly with the 

strain.  

It’s true that for most purposes regarding the structures as a system with linear 

behavior is satisfactory, but sometimes it can’t be neglected the nonlinear effects, especially 

when the system has features which take it to an extreme condition of nonlinearity, such as 

great external oscillations like the Foucault pendulum (Figure 4). In this context, the works 
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carried out by Poincaré and Lyapunov at the end of nineteenth century increased significantly 

the knowledge and improved the research in that area. The French scientist came up with the 

perturbation method, one of the ways of working out a nonlinear ordinary differential 

equation, and the Russian one made progress on the foundations of modern stability theory, 

used in all dynamical systems. 

 

Figure 4: The Foucault pendulum at the Panthéon of Paris, France, used to show the Earth 
rotates on its axes. It has a nonlinear behavior for big amplitudes. 

Other methods were studied with the purpose of yielding a solution of nonlinear 

systems. One of the most famous is the Harmonic Balance Method (HBM), in which 

essentially the solution is assumed to have one or at the most two dominant frequency 

component (7). In case of weak nonlinearities, the HBM is considered the most 

computationally efficient method for calculating steady-state solutions of such systems.  

Nevertheless, if there are big harmonics in the solution of the system, this method 

produce an innacurate solution at the same time it’s quite complicated to solve the set of 

necessary equations  to reach that solution (8). That’s why (9) proposed a new method more 

accurate even if the system had strong nonlinearities with multiple harmonics, the 

Incremented Harmonic Balance Method (IHBM). However, it must be paid attention on 

implementing this method because it catches the multiples of fundamental harmonics, but 

neglects possible subharmonics ones.  
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1.4. Objectives 

In this work, it will be seen several methods for calculating the solution of nonlinear 

systems, examining possible advantages of implementing the Harmonic Balance Method or 

the Incremental Harmonic Balance Method. After that, techniques of identification of modal 

parameters will be shown as an example in which the solutions obtained by the previous 

methods can be useful for engineering projects. 

 

2. Dynamic systems 

2.1. Linear systems 

As it was mentioned before, great part of structures in the real world take part of a 

nonlinear dynamic system. However, before tackling this kind of system, it’s really 

recommended the mathematical definition and the physical concept beyond of the meaning of 

what would be a linear system is well assimilated.  

One consequence of having a linear system is that it follows the principle of 

superposition. From (10), it can be stated as: 

“If a system in a initial condition � � � �^ `1 1 10 , 0S y y  responds to an input � �1x t  with 

an output � �1y t  and in a separate test an input � �2x t  to the system initially in state 

� � � �^ `2 2 20 , 0S y y  produces an output � �2y t  then the superposition holds if and only if the 

input � � � �1 2x t x tD E�  to the system in initial state � � � � � � � �^ `3 1 2 1 20 0 ,  0 0S y y y yD E D E � �  

results in the output � � � �1 2y t y tD E�  for all constants D , E  and all pairs of inputs � �1x t ,

� �2x t .” 

The principle of superposition is important because it can be applied in both static and 

dynamic way to verify the total response of the system in terms of time or frequency domain 

analysis. In practice, however, this principle isn’t a good test for linearity since it will be 

required infinite tests with all possible values of D , E , � �1x t  e � �2x t . On the other hand if 

with one set of values the principle doesn’t hold, the system is nonlinear. 
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2.1.1. Time domain 

The simplest system that can be modeled in the study of vibrations is the mass-spring 

one, as indicated in Figure 5.  

 

Figure 5: Mass-spring system with one degree of freedom. Adapted from (10). 

This system can be easily analyzed by means of Newton’s second law, yielding the 

equation: 

 � �my ky x t�   (2.1) 

In equation (2.1), one can find the mass m , the stiffness k  and one external excitation

� �x t . If there aren’t external forces, the system is called unforced and a free motion is 

observed. Looking for non-trivial solutions specifying initial conditions � �0y A  and

� �0 0y  , it’s found the following result: 

 � � � �cos ny t A tZ  (2.2) 

In equation (2.2), the parameter nZ  is the natural frequency of free oscillations due to 

the fact it would be the frequency which the system would vibrate with indefinitely. 

Therefore, as it isn’t possible thanks to the validity of thermodynamic constraints (10), there 

must exist some mechanism of dissipation of energy. From that, it’s introduced the damping 
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coefficient in (2.1), so that the system becomes represented by Figure 6 and described by 

equation (2.3). 

 

Figure 6: Damped mass-spring system with one degree of freedom. Adapted from (10). 

 � �my cy ky x t� �   (2.3) 

Once again, if the interest is evaluate the non-trivial solutions for the damped system 

provided of free motion of Figure 6 with initial conditions � �0y A  and � �0 0y  , one will 

arrive at (2.4): 

 � � � �cosnt
t dy t Ae t]Z Z�  (2.4) 

In which 

 
2

c
mk

]   (2.5) 

 � �
1

2 21d nZ Z ] �  (2.6) 

The factors indicated by (2.5) and (2.6) are respectively the damping ratio and the 

damped natural frequency.  From the analysis of (2.4) and (2.6), one can notice the damping 

ratio must be positive; otherwise the response of the system would be unbounded. If 1]  , 

there will not be oscillations, and the system will tend asymptotically from the initial 

condition to zero. Similar situation would be found if 1] ! , the system being non oscillatory 

but coming back to its equilibrium. Finally, if 0 1]� � , the oscillations will decay 

exponentially. That’s why the solution (2.4) is also known as the transient solution, once it 

disappears as time goes on, as one can appreciate in Figure 7. 
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Figure 7: Transient response for a SDOF system with positive damping. Adapted from (10). 

Now if it’s considered a forced system, by Fourier analysis, the external signal may 

put in the form of Fourier series, regarding to the periodic part of excitation, with one single 

frequency of excitation Z , so that the system can be modeled by (2.7): 

 � �cosmy cy ky X tZ� �   (2.7) 

The solution of equation (2.7) will be composed by two parts (2.8): the homogenous 

one, which it’s already been calculated and is expressed by (2.4), and the particular one, 

which must be defined by inspection.  

 � � � � � �t sy t y t y t �  (2.8) 

In linear systems, the particular solution won’t be dependent of initial conditions and 

will persist as time goes on as well even if there is not the transient solution anymore. For this 

reason, it’s called steady-state solution. Besides, it must be periodic and consist of the same 

frequency of the external excitation, but not necessarily in phase with it. So, a nice guess for 

the steady-state solution of (2.7) would be: 

 � � � �cossy t Y tZ I �  (2.9) 

In order to obtain the amplitude Y and the phase angle I , one can substitute (2.9) in 

(2.7) and separating the coefficients of sin and cos, giving: 

 2 cosm Y kY X I� �   (2.10) 

 sinc Y XZ I  (2.11) 
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Eliminating the sin and cos from (2.10) and (2.11), yields to: 

 
� �22 2 2

1Y
X m k cZ Z
 

� � �
 (2.12) 

Before analyzing equation (2.12), one can rewrite it in function of the natural 

frequency and of the damping ratio, in order to study what happens if the external frequency 

is modified which gives: 

 � �
� �22 2 2 2 2

1

4n n

Y
X m

Z
Z Z ] Z Z

 
� �

 (2.13) 

Looking into equation (2.13), it is easy to show that equation has a maximum value 

when the frequency obeys the relation (2.14): 

 � �2 2 21 2nZ Z ] �  (2.14) 

When it happens, we say rZ Z , called resonance frequency. It corresponds to the 

maximum amplitude the system can reach, and its value is very important in terms of 

designing and conception of an engineering project. In the Figure 8, it is illustrated the 

response of a SDOF system considering only the steady-state solution. 
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Figure 8: Gain of the system varying with the frequency. Adapted from (10). 

From the equations (2.10) and (2.11), it is also possible to know how the phase angle 

changes if the external frequency is modified, obtaining the relation: 

 � � 2 2

2tan n

n

]Z ZI Z
Z Z

 
�

 (2.15) 

Then it’s plotted the evolution of the phase angle with the variation of frequency: 
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Figure 9: Evolution of phase angle for a SDOF damped forced system. Adapted from (10). 

One can notice in Figure 9, there is a change of phase when the frequency is greater 

than the value of resonance.  

If one gathers the functions (2.13) and (2.15) as part of a complex function � �H Z , 

with amplitude represented by (2.13) and phase angle equal to (2.15), this complex function 

will be called FRF (Frequency Response Function). One should also realize that for linear 

systems this function doesn’t depend on the amplitude of excitation, so that it is quite useful 

way to discover if a system is linear or not.  

2.1.2. Frequency domain 

In this section, it’s going to be notice there is another way of solving a SDOF system 

with an input � �y t  and output � �x t  like the previous section and determining its FRF 

function. For it, it will be employed the Fourier transformation, which is defined by the 

integral (2.16): 

 � � � �^ ` � �i tG F g t e g t dtZZ
f �

�f
  ³  (2.16) 

With the Fourier transform, the input and output signals of the system discussed have 

frequency-domain representations, what make possible to set up a link from � �X Z  to � �Y Z . 

For that, one can take the Fourier transform given by (2.16) of both sides of the equation 

(2.3), which describes the SDOF system analyzed, generating the relation (2.17): 
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 � � � � � �2m ic k Y XZ Z Z Z� � �   (2.17) 

So, the FRF can be made explicit directly by means of the evaluation of the Fourier 

transform calculated (equation (2.18)). 

 � � 2

1H
k m ic

Z
Z Z

 
� �

 (2.18) 

Or still, in terms of nZ  and ] : 

 � � 2
1

1 2
n n

H

i

Z
Z Z]
Z Z

 
§ · § ·

� �¨ ¸ ¨ ¸
© ¹ © ¹

 (2.19) 

From (2.19), it can be seen that a system is determined if its modal parameters nZ  and 

]  are defined. 

2.1.3. Multi degree of freedom system 

In order to treat the notion of a system that has many degrees of freedom (MDOF), 

one can generalize what was seen in the previous sections. According to (4), one system of 

that type with n degrees of freedom can be described by the following relation: 

 > @^ ` > @^ ` > @^ ` ^ ` i tM y C y K y F e Z� �   (2.20) 

Where in (2.20), > @M is the matrix n x n of mass, > @C  is the matrix n x n of damping, 

> @K  is the matrix n x n of stiffness and ^ `F is the vector n x 1 of external forces applied to the 

system.    

As the matrices> @M , > @C and> @K  are symmetric and have inverse, there is a theorem 

from Algebra Linear theory which assures the existence of an orthogonal matrix> @< , which 

owns your rows formed by the eigenvectors of the system MDOF, so that: 

^ ` > @^ `y z <  

Therefore, if the equation (2.20) is multiplied on the right by> @T< , this relation 

becomes: 

 > @ > @> @^ ` > @ > @> @^ ` > @ > @> @^ ` > @ ^ `> @T T T T i tM z C z K z F e Z< < � < < � < <  < <  (2.21) 
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The new terms generated from this operation represented by the equations (2.22), 

(2.23) and (2.24) are called modal parameters and are diagonal matrices. 

 > @ > @ > @> @T
dM M < <  (2.22) 

 > @ > @ > @> @T
dC C < <  (2.23) 

 > @ > @ > @> @T
dK K < <  (2.24) 

This yields to a decoupled system of equations, becoming easier to evaluate it for each 

degree of freedom labeled i, according to the relations for: 

 i t
i i i im z c z k z p e Z� �   (2.25) 

Where ip  is a generalized force component. If  ip  is zero, their solutions for each 

degree of freedom is similar to (2.9): 

 � �sini nit
i i di iz Ae ] Z Z T� �  (2.26) 

In which iA  and iT  are defined by the initial conditions of the problem and i]  is the 

modal damping ratio and niZ  is the thi  modal natural frequency, described by the respective 

relations (2.27) and (2.28). 

 
2

i
i

i i

c
m k

]   (2.27) 

 21di ni iZ Z ] �  (2.28) 

Coming back to the initial problem’s variables, it’s obtained: 

� � � �
1

sini i

n
t

i ij j di i
j

y t A e t] Z Z T�

 

 < �¦  

In case there are non-null forces, it’s interesting to develop the solution in the 

frequency domain. As an analogously manner as it was done in (2.17), one can define a modal 

FRF for each SDOF from decoupled MDOF system in modal coordinates. So, the thi  modal 

FRF will be: 

 � � 2

1
i

i i i

G
m ic k

Z
Z Z

 
� � �

 (2.29) 

One can thereby write an FRF matrix so that: 
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 � �^ ` � � � �^ `U G PZ Z Z ª º¬ ¼  (2.30) 

With � � � � � �� �1 ,..., nG diag G GZ Z Z ª º¬ ¼ . 

So, substituting (2.30) into the equation of the motion, the relation (2.31)  is found: 

 � �^ ` > @ � � > @TH GZ Z < <ª º¬ ¼  (2.31) 

Writing each element of � �^ `H Z , one can explicit the FRF functions for any process

i jy yo , given for the transfer functions: 

 � � � �2 2
1 2

n
ij

ij
k nk k nk

kA
H

i
Z

Z Z ] Z Z 

 
� � �

¦  (2.32) 

Where 

 ik jk
ij ik jk

k

kA
m

I I
< <

   (2.33) 

Are the residues or modal constants. 

It’s really important to do some remarks about these methods of solution, especially 

related to nonlinear systems. As is pointed out by (10), nonlinearity has destructive effects on 

modal analyses, since the last relies on principle of superposition, which generally doesn’t 

hold for nonlinear systems. Also, the decoupling properties for linear systems in modal 

variables is lost if one have a nonlinear system. Thus it’s indispensable to figure out other 

techniques for calculating specifically nonlinear systems, what it will be showed in next 

sections of this work. 

3. Nonlinear systems 

In search of solutions for nonlinear systems, some methods will be carried out 

focusing on the calculating of Duffing equation (3.1), which arises in many cases of 

oscillators whose stiffness don’t follow Hooke’s law. 

 � �3 cosy y y y tG D E J Z� � �   (3.1) 
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3.1. Perturbation method 

3.1.1. Development of the method 

The method developed here is generally used when nonlinearity is small. In other 

words, when the coefficient E  is near zero (11).  In order to examine systems which present 

weak nonlinearities, they can be expressed by the general equation (3.2). 

 � �2u u f uZ H�   (3.2) 

One can think of this equation as a family of ordinary differential equations, if the 

scaling parameter H  is in the interval 0 1Hd �� . If 0H  one fall into the linear case for 

instance. The goal of this method is to try to find all periodic solutions in the form of power 

series of H  (12). So, let’s suppose there is a periodic solution � �u t of period T. It can’t be 

forgotten that periodic solutions are being sought. That’s the reason a solution like (3.3) 

cannot be guessed. 

 � � � � � � � �2
0 1 2 ...u t u t u t u tH H � � �  (3.3) 

If it so, non-periodic terms like � � � �2cos , sint t t t  would take part of the solution, what 

isn’t admissible. However, this feature can be prevented if the period T is expanded in terms 

of H .  

 � � � �2
1 2

2 1 ...T h hSH H H
Z

 � � �  (3.4) 

Providing a variable tW Z  change in (3.2) and substituting (3.4) on it, yields to the 

new equation of the system, that admits a periodic solution � �u W  of constant period 2S : 

 � � � � � �2 22 2
1 2 1 221 ... 1 ...u h h u h h f uHH H H H

Z
cc� � � �  � � �  (3.5) 

In which the dashes represent differentiation with respect to W . Now it may be 

assumed as solution the time series (3.6): 

 � � � � � � � �2
0 1 2 ...u u u uW W H W H W � � �  (3.6) 

Substituting relation (3.6) into (3.5), expanding � �f u  in Taylor series and grouping 

the coefficients of power of H , a set of linear differential equations is generated. 
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 0 0 0u ucc �   (3.7) 

 � �1 1 1 0 12u u hu M Wcc�  � �  (3.8) 

 � � � �2
2 2 2 1 0 22u u h h u M Wcc �  � � �  (3.9) 

... 

And so on, where functionsM �  are equal to: 

 � � � �0
1 2

f u
tM

Z
  (3.10) 

 � � � � � �1 0 1 0
2 1 12

2
2

u f u h f u
t h uM

Z
c �

 �  (3.11) 

... 

To solve these equations the initial conditions are supposed to be: 

 � � � � � �0 1
0 ,  0 0,  0 0,  for 0,1,...kk

u a u u k
�

c     (3.12) 

The general solution for equation (3.7) is: 

 � � � �0 cosu aW W  (3.13) 

In order to solve (3.8), the relation (3.10) is expanded in terms of Fourier series, after 

substituting it on (3.8), yielding to: 

 � � � � � �1 1 1 10 11 1
2

2 cos cos cosk
k

u u h a C C C kW W W
f

 

cc�  � � � �¦  (3.14) 

Since there are no secular terms presented in the solution, the expression 

1 112 0h a C� �   must hold for all W . Consequently, 

 11
1 2

Ch
a

  (3.15) 

So, the general solution of (3.14), after having taking into account the initial 

conditions is: 

 � � � � � �1
1 10 2

2
1 cos cos cos

1
k

k

Cu C k
k

W W W W
f

 

 � � �
�¦  (3.16) 
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After that, this process is repeated as many times as one want, until an acceptable 

solution is reached. In each step, the function M  will be equal to: 

 � � 0 1
2

cos cosm m m mk
k

C C C kM W W W
f

 

 � �¦  (3.17) 

The periodic condition (3.18) must hold for all the domain of the problem: 

 11
1 1 2 2...2m m m

Ch h h h h
a � � � �  (3.18) 

Leading to the thm - equation to be solved: 

 0
2

cosm m m mk
k

u u C C kW
f

 

cc �  �¦  (3.19) 

So that, at the end, the solution is obtained: 

 � � � � � �0 2
2

1 cos cos cos
1

mk
m m

k

Cu C k
k

W W W W
f

 

 � � �
�¦  (3.20) 

According to (12), even though the method seems to be great, it always good to 

remember every step ahead it’s given throughout the solution, this method just introduces 

small corrections of second order or higher, making it very laborious for tiny variations in the 

final response.  

 

3.2. The Lindstedt –Poincaré Technique 

In this technique, the nonlinear dependence of the frequency on the nonlinearity is 

taken into account. For this, the frequency of the system is exhibited explicitly by means of 

the following transformation (3.21): 

 tW Z  (3.21) 

With it, the independent variable of the system is changed, using the chain rule and 

becomes: 

 2 3 0u u uZ Hcc� �   (3.22) 

In equation (3.22), the prime indicates the derivative with respect toW . Now the 

variables Z and u are exhibited as unknowns of the system. Then, solutions can be sought by 

requiring the expansion of Z and u. 
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 � �0 1 ...u u uW H � �  (3.23) 

 11 ...Z HZ � �  (3.24) 

Substituting (3.23) and (3.24) in (3.22) and separating the coefficients of 0H  and 1H

yields to, respectively: 

 0 0 0u ucc �   (3.25) 

 3
1 1 0 1 02u u u uZcc cc�  � �  (3.26) 

The first equation (3.25) has the general solution (3.27): 

 � �0 cosu a W E �  (3.27) 

Where D  and E  are constants. So, the relation (3.26) becomes: 

 � � � �3 3
1 1 1cos 2 cosu u a aW E Z W Ecc�  � � � �  (3.28) 

Or if the equation (3.28) is rearranged, it becomes: 

 � � � �3 3
1 1 1

3 12 cos cos 3 3
4 4

u u a a aZ W E W E§ ·cc�  � � � �¨ ¸
© ¹

 (3.29) 

Whose particular solution is: 

 � � � �3 3
1 1

1 3 12 sin cos 3 3
2 4 32

u a a aZ W W E W E§ · � � � �¨ ¸
© ¹

 (3.30) 

One can notice there is a secular term in the solution found (3.30), which would lead 

the system to a non-periodic solution. As periodic solutions are being sought, the coefficient 

of this term must be eliminated. That is: 

 3
1

32 0
4

a aZ �   (3.31) 

Then, combining the result from (3.30) and (3.23), the solution of the equation (3.22) 

is found: 

 � � � �31cos cos 3 3 ...
32

u a aW E H W E � � � �  (3.32) 

Where its associated natural frequency is: 

 231 ...
8

aZ H � �  (3.33) 
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If it’s remembered that tW Z : 

 2 3 23 1 3cos 1 cos 3 1 3 ...
8 32 8

u a a t a a tH E H H Eª º ª º§ · § · � � � � � �¨ ¸ ¨ ¸« » « »© ¹ © ¹¬ ¼ ¬ ¼
 (3.34) 

3.2.1. Results and analysis 

Then, let’s solve the equation (3.35) just for an example. 

 � �2 21 0u u uZ H� �   (3.35) 

Its initial conditions are � � � �0 0,  0 0,  where ,   and  are constants.u a u aZ H !   

If one approximation of third order is carried out to solve (3.35), the solution will have 

the form: 

 � � � � � � � � � �2 3
0 1 2 3u u u u uW W H W H W H W � � �  (3.36) 

Evaluating the method using the previous approach will result in: 

� � � � � � � �

� �

3 3 5

3 7

cos cos3 cos cos5 24cos3 23cos
32 1024

          4cos7 104cos5 2115cos3 2015cos
98304

a au a

a

H HW W W W W W W

H W W W W

 � � � � �

� � � �
 

Also, the period of the response can be made explicit: 

 
2 2 4 3 63 21 811

8 256 2048
a a aH H HZ  � � �  (3.37) 

The equation (3.37) is the third order approximation for the frequency of the system. If 

one stops at the previous approximations (first and second), it would be possible to analyze if 

the solutions converge. To illustrate that, in the Figure 10, with a natural frequency of 0 1Z  

and a cubic stiffness of 1E  , the results for frequency are evaluated for these first 

approximations. 
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Figure 10: Variation of the frequency in function of the initial displacement ( 0 1Z  and 1E  ). 

Then, the same thing is made, but now with a natural frequency 0 0.1Z   and a cubic 

stiffness equal to 0.1E  . The results can be appreciated in the Figure 11: 

 

Figure 11: Variation of the frequency in function of the initial displacement     ( 0 0.1 Z and

0.1E  ). 

In the Figure 11, it’s possible to see that the second and the third approximation 

diverge. If we remember that the following relation holds: 

 2
0

 
EH
Z

 (3.38) 

0 0.2 0.4 0.6 0.8 1 1.2 1.41

1.1

1.2

1.3

1.4

Initial displacement

Z

 

 

Fisrt approximation
Second approximation
Third approximation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.70.1

0.11

0.12

0.13

0.14

0.15

0.16

Initial displacement

Z

 

 

Fisrt approximation
Second approximation
Third approximation
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We notice the value of epsilon is increasing in fact. So, the method starts to diverge, 

since there aren’t small perturbations anymore. 

To overcome it, one method similar to the Lindstedt –Poincaré technique was 

developed, basing on a different way of representing the perturbation. Instead of the previous 

equation (3.38), one expands the frequency as (3.39): 

 2 2
0

1 
 �¦

n
i

i
i

eZ Z E  (3.39) 

Doing that, the parameter of perturbation H  stays in the same order of the natural 

frequency and the cubic stiffness (4). 

3.3. Harmonic Balance Method 

By continuing the idea of the previous methods discussed, if one searches some kind 

of periodic solutions for nonlinear systems, certainly it can be sought in the form of Fourier 

series. Nevertheless, how it’s impossible to make considerations with infinite terms, the 

general solution is approximated by finite sums of trigonometric functions: 

 � � � �
0

cos sin
n

i i
i

u t A i t B i tZ Z
 

 �¦  (3.40) 

The procedure for evaluating the solution starts with the replacement of (3.40) the 

relation into the differential equation of the problem. After that, the trigonometric products 

and powers arisen from the expansion of (3.40) are replaced by harmonics sums and balanced, 

so that the harmonic coefficients of both sides of the resulting equation are the equal. Each 

harmonic yields to a nonlinear equation that can be solved by an iterative method like 

Newton-Raphson to determine the coefficients of the approximated solution. 

For getting a good approximation, one should consider the type of non-linearity 

involved in the system, bearing in mind, for instance, even power expansion terms generate 

even harmonics with a constant term, and odd power expansion terms yield to odd harmonics. 

So, the cubic non-linearity requires only the odd harmonics, whereas the quadratic non-

linearity needs all harmonics. In problems with free vibrations or forced vibrations without 

damping, the approximated solution must have just one of the trigonometric function (sin or 

cos) (13). Just in case of forced damped systems these terms must be presents or to add a 

phase angle on each harmonic: 
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 � � � �0
1

sin
n

i i
i

x t c c i tZ I
 

 � �¦  (3.41) 

3.3.1. Analytical approach 

So, to show how the process is, one takes once again the Duffing’s equation, 

representing a free vibration system: 

 2 3
0 0x x xZ E� �   (3.42) 

The following solution (3.43) will be proposed for getting the response of the system: 

 � � 1 3cos cos3x t c t c tZ Z �  (3.43) 

Replacing the value of (3.43) into (3.42), expanding the trigonometric powers and 

joining only the present harmonics that belong to approximated solution, one system of two 

unknowns are obtained: 

 2 2 2 3 2
1 0 1 1 3 1 1 3

3 3 3 0
4 4 2

c c c c c c cZ Z E E E� � � � �   (3.44) 

 2 2 2 3 3
3 0 3 1 3 1 3

3 1 39 0
2 4 4

c c c c c cZ Z E E E� � � � �   (3.45) 

If one considers an initial condition like 0 1 3x c c � , and substitutes it on equations 

(3.44) and (3.45), there will be just 3c  and Z as parameters to be determined. 

 2 2 2 2 2 2 2 3
3 0 0 3 0 0 3 3 0 3 0 0

3 9 3 3 0
2 4 2 4

c x c x c c x c x xZ Z Z Z E E E E� � � � � � � �   (3.46) 

 2 2 2 2 2 2 3
3 0 3 0 0 3 3 0 3 0 0

9 3 19 2 0
4 4 4

c c x c c x c x xZ Z Z E E E E� � � � � � �   (3.47) 

For calculating the result of the problem, one has to work out the system composed of 

the relations (3.46) and (3.47) computationally. 

After, the same thing may be done, if it’s considered a forced system, like indicated by 

the relation, instead of one with free vibrations. 

 2 3
0 sinx x x F tZ E� �  :  (3.48) 

If one harmonic is admitted as an approximated solution, i.e. � � 1 sinx t c t : , and 

substituted into (3.48), it will conduct to the relation (3.49): 



23 

 

 

   

 2 2 3 3
1 0 1 1 1

1 3sin sin sin3 sin sin 0
4 4

c t c t c t c t F tZ E E� : : � : � : � : � :   (3.49) 

In order to hold the equality, it’s necessary that: 

 � �3 2 2
1 0 1

3 0
4

c c FE Z� �: �   (3.50) 

By equation (3.50), it’s noticed it’s the behavior of a nonlinear resonance, in which 

may exist until three real roots. (colocar aqui o fenomeno do jumping). 

Another way of evaluating a nonlinear solution is by means of a variation of Harmonic 

Balance method called Incremental Harmonic Balance (IHB), developed by (9). First of all, 

one expands the general solution by using Taylor series before the substitution of the 

approximated one. For example, the forced damped system represented by relation (3.51) is 

taken: 

 2 2
0 02 cos 0x x x FM ]Z E Z Wcc c : � : � �   (3.51) 

Where the prime indicates the derivative in respect to W and tW  : . So, carrying out 

this expression around 0M  yields to (3.52): 

 0 x x x F
x x x F
M M M M M MM M E

E
w w w w w wcc c � ' � ' � ' � ':� ' � '
cc cw w w w: w w

 (3.52) 

In which 2 2
0 0 02 cosx x x FM ]Z E Z Wcc c : � : � � . Adopting the simplest solution for 

(3.51), one has: 

 

1 1

1 1

1 1

1 1

1 1

1 1

sin cos
cos sin

sin cos
sin cos
cos sin

sin cos

x c d
x c d
x c d

x c d
x c d
x c d

W W
W W
W W
W W
W W
W W

 �
c  �
cc  � �
'  ' � '
c'  ' �'
cc'  �' �'

 (3.53) 

Substituting the equations (3.53) into the expression (3.52) and eliminating the 

harmonics, the following equations are obtained: 
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2 2 3 3
1 1 1 0 1 1 1 1 0 1 0 1

2 2 2
1 1 1 1 0 1 0 1 1 1

2 2 2
0 1 1 1 1 1 0

3 3 3 32
2 4 4 4
9 3 2 2 2
4 4

3 2 0
4

c d d c c d c c c

c c d c d d c c

c c d c d

E Z E E Z Z E

E E ]Z ]Z

Z E ] Z

' � ' � ' � � ' � ' �

' � ' � � ' �: � : ':�

� �: ' � '  

 (3.54) 

 

2 2 2 3
1 1 1 1 0 1 1 1 1 1 1

3 2 2
1 1 1 0 1 0 1 0 1 1

2 2 2
0 1 1 0 1 1

3 9 3 32
4 4 4 2

3 3 32 2
4 4 4

2 0

c d d d d d d c d c

F d c d c d c d

c d d d

E E Z E E

E E ]Z Z Z

]Z Z

� ' � ' � : ':� � ' �

� ' � ' � ' � ' � ' �

�: � �: '  

 (3.55) 

If we remember that ,   and F E:  are constant, ,   and F E': ' '  are also constants 

and can be eliminated from (3.54) and (3.55), resulting in the system represented under the 

form of matrix: 

 

� �

� �

2 2 2 2
1 1 0 1 1 0

1

2 2 2 2 1
1 1 0 1 1 0

3 2 2 2
1 0 1 1 0 1 1 1

2 3 2 2
1 1 1 0 1 1 0 1

3 33 2
4 2

3 32 3
2 4

3 32
4 4

3 3 2
4 4

c d c d c
dc d c d

c d c c c d

c d d F c d d

E Z E ]Z

E ]Z E Z

E ]Z Z E

E E ]Z Z

ª º� � �: �« » '­ ½
 « » ® ¾'¯ ¿« »� � � �:« »¬ ¼

­ ½� �: � �° °° °
® ¾
° °� � � �: �
° °¯ ¿

 (3.56) 

Firstly, one attributes values to 1 1 and dc  what leads to the solution of the system 

(3.56) and new values of 1 1 and dc' '  are found. This process is repeated until that 

1 10 and d 0c' | ' | . When it happens, one will have found the solution 1 1 and dc for the 

parameters 0,  ,   and F E Z: . Sometimes, there will be critical points on the curve which don’t 

converge. In order to avoid these cases, the arc length is used, having :  the resonance as a 

control parameter. 

 � � � � � �2 22 2
1 1 1 1 1 1 1c c d d rM  � � � � : �: �  (3.57) 

In which 1 1,   and c d : correspond to the last solution evaluated. If we expand the 

relation (3.57) in Taylor series, we’ll have; 
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� � � � � � � �

� � � �

2 22 2
1 1 1 1 1 1 1 1

1 1 1

2 2

                             2 2 2 2

c c d d r c c c

d d d

M  � � � � :�: � � � ' �

� ' � :� : ':
 (3.58) 

Then, the relation is added on the system, resulting in: 

 

� � � � � �

1 1 0 1

1

1 1 0 1 1

1 10 1 10 1 0

3 2 2 2
1 0 1 1 0 1 1 1

2 3 2 2
1 1 1 0 1 1 0 1

2 2 2 2
1 10 1 10 0

3 2 2
2

3 2 2
2

2 2 2 2 2 2

3 32
4 4

3 3 2
4 4

a c d c
c

c d b d d

c c d d

c d c c c d

c d d F c d d

c c d d r

E ]Z

E ]Z

E ]Z Z E

E E ]Z Z

ª º� � :« »
'­ ½« »

° °« »� � : '® ¾« » ° °':« » ¯ ¿� � : � :« »
« »¬ ¼
­ ½� �: � �°
°
° � � � �: � �® ¾
°
° � � � � :�: �
°̄

°
°
°

°
°
°¿

 (3.59) 

Where  

 

2 2 2 2
1 1 0

2 2 2 2
1 1 0

9 3
4 4
3 9
4 4

a c d

b c d

E E Z

E E Z

 � � �:

 � � �:
 (3.60) 

3.3.2. Numerical approach 

In the previous examples, the Harmonic Balance method was implemented 

considering one degree of freedom. In addition the methods of evaluation may be tedious and 

laborious if the required approximation has to be quite refined (7). So, following the approach 

performed by (14), it will be seen how it’s possible to make the method interactive and 

feasible to implement through a computational environment, extending the idea for any 

degrees of freedom. 

Firstly, the system with n degrees of freedom can be represented by the relation: 

 � � � �3
0

1
cos sinM C K

L

l l l
l

x x x x f f l t g l tD
 

� � �  � : � :¦  (3.61) 
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Where M, C and Kl are matrix n x n. Once again, the sought solutions are the ones 

that are periodic. So, its response may be expressed approximately by M term harmonic 

Fourier series, in which Mh > L, so that: 

 � � � �
M

0
1

cos sin
h

k k
k

x t a a k t b k t
 

 � : � :¦  (3.62) 

The next steps are: 

x Divide the time period for analysis of the response into N number equals 

intervals of size dt T N , remarking the fact that the Nyquist criterion must 

be satisfied 

x Carry out � �x t  at the times � � � � � � � �� �0 ,  ,  2 ,...,  1x x t x t x N t' ' � ' for the 

whole period of the signal 

x For M harmonic terms, and one degree of freedom the equation (3.61) can be 

written by the system (3.63): 

 

� �
� �
� �

� �� �

� � � � � � � �
� � � � � � � �

� �� � � �� � � �� � � �� �
0

1

1

0

2
.
.
1

1 1 0 . 1 0
1 cos sin . cos M sin M
1 cos 2 sin 2 . cos M 2 sin M
. . . . . .
. . . . . .
1 cos 1 sin 1 . cos M 1 sin M 1

.

h h

h h

h h

M

M

x
x t

x t

x N t

t t t t
t t t t

N t N t N t N t

a
a
b

a
b

ª º
« »'« »
« »'

 « »
« »
« »
« »

� '« »¬ ¼
ª º
« »:' :' :' :'« »
« »:' :' : ' :'
« »
« »
« »
« »

: � ' : � ' : � ' : � '« »¬ ¼
ª
«
«
«

u«
«

¬

º
»
»
»
»
»

« »
« »
« »¼

 (3.63)   
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This system can be represented in a compact form X A * . At the beginning, the 

vector A is guessed. 

x The nonlinear terms are evaluated for the results obtained from the precedent 

step in time domain: 

 � �� �

� �
� �

� �� �

0

.

.
1

h
h t

H h x t

h N t

ª º
« »'« »
« »  
« »
« »
« »� '¬ ¼

 (3.64) 

 And by means of the procedure known as Alternating Frequency/Time 

Domain, firstly carried out by (7), it’s possible to get their coefficients of their representation 

in Fourier series; 

 � � � �0
1

cos sin
N

k k
k

h t q q k t r k t
 

 � : � :¦  (3.65) 

x Finally, substituting all that relations (3.63), (3.64) and the correspondent 

coefficients from the Fourier series of the external force F, yields to the system 

(3.66): 

� �
� �

0

0 0 1
2

1 1 1
2

1 1

2

2

. .

.

. .
0. . . . . . . .

. .
..
0

L

h h M M L

M Mh h

f
a q f
a q g
b r

f
a q g
b r

ª º
« »ª º ª º ª º « »« » « » « »� : : « »« » « » « » « »« »� : � : « » « » « »« » � �  « » « » « »« » « » « » « »« » « » « »� : : « »« » « » « » « »« » « » « »� : � : ¬ ¼ ¬ ¼¬ ¼ « »
« »¬ ¼

K 0 0 0
0 K M C 0 0
0 C K M 0 0

0 0 K M M MM C

0 0 0 MM C K M M

 (3.66) 

Or in a reduced form 0eYA Q F� �  . The goal of the system (3.66) is to find the 

coefficients 0 1 0 1,  ,  ,  ,...,  , and M Ma a a b a b that satisfy the system above. It’s important to watch 

as well that each row of the system is a function of those coefficients, i.e.: 

 � �0 1 1, , ,..., , 0,  for 1,2,...,2 1i M Mf a a b a b i N  �  (3.67) 
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The easiest way to work out it is to evaluate Newton-Raphson method, in which an 

initial set of values is guessed. For this, it’s performed a Taylor series around this point, so 

that: 

 

� � � �

00 10 10 0 0 00 10 10 0 000 10 10 0 0

0 1 1 00 10 10 0 0

0 1
0 1 , , ,..., , , , ,..., ,, , ,..., ,

, , ,..., , , , ,..., ,

... ...

i M M i M M

i i i
M

Ma a b a b a a b a ba a b a b

f a a b a b f a a b a b

f f fa a b
a a b

 �
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If 2 1hnt M �  and higher order terms are neglected, the system (3.66) may be 

rewritten as: 

 

1 1 1 1

0 1 11 10 0

2 20 1

0

0 1 1

.

. . . . .
. . .. . . . .
. . .. . . . .

.

M

nt nt Mnt nt nt nt

M

f f f f
a a b bf f a

f f a

f f bf f f f
a a b b

w w w wª º
« »w w w w 'ª º ª º ª º« »« » « » « »'« »« » « » « »« »« » « » « » � « »« » « » « »« »« » « » « »« »« » « » « »'w w w w ¬ ¼¬ ¼ ¬ ¼ « »
« »w w w w¬ ¼

 (3.69) 

This can be taken as 0i i i iF F J A � ' , where is the vector of coefficients of the solution. 

The force on the system is the sum of linear forces iYA , the nonlinear forces iQ  and the 

external forces eiF . Y is the Jacobian part of the linear part and “i” is the suffix which denotes 

the iteration number. At the end of the iteration, the net force is: 

 i i i eiF YA Q F � �  (3.70) 

The Jacobian related to (3.70) can be calculated at every step by: 

 � � 1T TF QJ Y Q H
A A

�w w
  �  * * * *
w w

 (3.71) 

Where 

 � �

� �
� �

� �� �

1

0 0 . 0 0
0 . 0 0
. . . . .
0 0 . . 0
0 0 . 0 1

T T

h
h t

Q
A

h N t

�

cª º
« »c '« »w « » * * * *

w « »
« »
« »c � '¬ ¼

 (3.72) 

The algorithm therefore can be summarized by the following steps: 
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x Guess a set of initial Fourier coefficient A. Solve it for iA' which makes 

0iF  in equation (3.70), i.e., 1
0i i iA J F�'  � ; 

x Set new values for coefficients in iteration as 1i i iA A A�  �' ; 

x Calculate iF and verify if iF
f

< tolerance, in which : maxi iF F
f
 ; 

x If the above condition is valid, computation stops, otherwise repeat the above 

process until the tolerance value reaches its condition. The final set  A gives the 

coefficients of periodic solution. 

3.3.3. Jump phenomenon 

One curious thing that may happen in a nonlinear system is the jump phenomenon. In 

this section, it will be demonstrated by using the harmonic balance method. 

A harmonic forced damped system governed by the relation (3.73) is used for the 

following examples: 

 � �3 cos� � �  mx cx kx x F tE Z  (3.73) 

Adopting the harmonic balance method, we’ll find a solution by using an 

approximation with one harmonic i.e.: 

 � � cos sin �x t a t b tZ Z  (3.74) 

Taking the expression (3.74), replacing the value of the solution in (3.73) and 

eliminating the higher order terms, yields to the system (3.75); 

 
� � � �

� � � �

2 3 2

2 3 2

3 0
4
3 0
4

­ � � � �  °°
®
° � � � � �  
°̄

a k m bc a ab

ac b k m b ba F

Z Z E

Z Z E
 (3.75) 

Then, to obtain the solution of the equation (3.73), one must work out the nonlinear 

system (3.75) in terms of a and b. The Figure 12 illustrates that solution for the parameters 

1,  0.1,  1 and 1    m c FE . 
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Figure 12: Variation of the amplitude in function of the frequency of the nonlinear system. 

The first thing on can notice is the abrupt discontinuity in both curves. On the blue 

curve, as the frequency increases, the amplitude follows this behavior, until it drops abruptly. 

Similar behavior can be watched in respect to the red curve, this time in another sense. As the 

frequency decreases, the amplitude increases, until it changes so fast to a greater value of 

amplitude.  

This is called jump phenomenon and it comes from the fact that for some values of 

frequency there will be until three possible values for the amplitude, as we can see by 

inspection of the real possible solutions of the system (3.75). 

This phenomenon is a characteristic of many nonlinear physical systems, reflected in 

the Duffing equation as well. To attenuate this feature, one can vary the amplitude of the 

external force as it’s drawn in Figure 13: 
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Figure 13: Influence of the amplitude of external force in jump phenomenon. 

Seeing the curves in Figure 13, it’s possible to observe that the smaller is the value of 

the external force, the weaker is the jump phenomenon, for increasing values of frequency. 

To conclude this section, it’s also important to know the effect of the sign of the 

system stiffness. In other words, to know what happens whether we have a hardening system 

or a softener one. In we see the effect of this cubic parameter E . 

 

Figure 14: Variation of amplitude with decreasing values of frequency 0.5 c . 

 In the Figure 14, we can realize that the inclination of the curve has changed as well as 

with the reducing of the cubic stiffness, the jump phenomenon is still damped. 
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4. Parametric Identification 

In this part of work, one is interested in obtaining the unknown parameters of the 

model of a system from the input-output information.  

There are two sorts of approaches in order to come up with the identification problem. 

If it’s known which equation the system has as a model, the only thing to do is to carry out the 

unknown parameters of the system. This way for making the identification is called 

parametric identification. However, there are some situations in which not even the governing 

equations of the structure system is available. This problem is known as non-parametric 

identification. The latter one is clearly more difficult to be evaluated than the former, since 

there is no even evidence about what kind of problem one is dealing with.  

The theory of linear system identification is well developed, but more and more 

nonlinear there have been presented in engineering projects, so that new techniques of 

nonlinear identification have been developed throughout the years. Various researches have 

been done to investigate the nonlinear vibratory identification feature (15), (16). Some applied 

the principle of harmonic balance for the identification of multi degrees-of-freedom systems 

(17). Nevertheless, this method has encountered some difficulties especially with respect to 

numerical features of these systems. 

In this section, an approach by using Hilbert transforms will be employed for carrying 

out parametric and non-parametric identifications of nonlinear systems. 

4.1. Hilbert transform 

4.1.1. Introduction 

Integral transforms are very important on developing techniques in physics systems, 

since with them one can change the domain of study to another one more convenient to 

develop some theory. With the Fourier transform, for instance, it’s possible to move from a 

time to frequency domain depending on the circumstances. In this section, the another integral 

transform, the Hilbert transform, meaningful for the identification of dynamical systems, will 

be tackled. 
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4.1.2. Definition 

To understand on what one talks about, it’s necessary to define a bi-dimensional plan 

with coordinates � �,t W . Let’s take D as one domain of this plan, with each point\ , a complex 

number, belonging to D. So, it’s defined a complex function � �z\ , with z D� , such that: 

 � � � � � � � �, , ,z t u t jv t\ \ W W W  �  (4.1) 

In which � �,u t W  and � �,v t W  are complex functions and 2 1j  � . 

The function given by (4.1) is said to be analytic in D if, and only if, � �,u t W  and 

� �,v t W  are continuous and can be differentiate in the whole domain D. So, taking a point 0z

inside a neighborhood C D� , such that � �0z\  is analytical in C, according with Cauchy 

theorem, (18), it follows: 

 � � � �
0

0

1
2

z
z dz

j z z
\

\
S

 
�³  (4.2) 

One calls a signal to be analytical, if it can be represented by a complex function with 

real variable t in the form: 

 � � � � � �,0 ,0t u t jv t\  �  (4.3) 

So, if the relation (4.3) is compared with the definition (4.1), the analytical signal is 

just the value of an analytical function � �0z\  through the real axe t. 

 

Figura 15: Complex plan. Adapted from (18).  



34 

 

 

   

It can be demonstrated that the line integral along a semi-circle with radius R, Figura 

15, when Rof , is an analytical signal (18). In other words: 

 � � � �
0

0

1
2

t
t P dt

j t t
\

\
S

f

�f

 
�³  (4.4) 

Where P is the principal value of Cauchy. Thus, if one takes the equation (4.3) with 

the relation (4.4), it can be written that: 

 � � � � � � � �
0 0

0

1
2

u t jv t
u t jv t P dt

j t tS

f

�f

�ª º
�  « »�¬ ¼

³  (4.5) 

If the real part is separated from the imaginary one of the expression (4.5), it yields to 

 � � � �
0

0

v tPu t dt
t tS

f

�f

 
�³  (4.6) 

And 

 � � � �
0

0

u tPv t dt
t tS

f

�f

 �
�³  (4.7) 

Where each of one of the integrals (4.6) and (4.7) are defined as Hilbert pairs. It 

follows that the Hilbert transform and its inverse are defined respectively as (4.8) and (4.9): 

 � � � � � �uPH u t v t d
t

K
K

S K

f

�f

  �ª º¬ ¼ �³  (4.8) 

And 

 � � � � � �1

0

vPH v t u t d
t
K

K
S K

f
�

�f

  ª º¬ ¼ �³  (4.9) 

In these equations, � � � � and u t v t  are real functions. Just to feel how this mathematical 

tool works, let’s carry out the Hilbert transform of a harmonic signal with constant frequency: 

 � � � �cosu t tZ  (4.10) 

So, 

 � � � � � � � �cos
cos sinPH t v t d t

t
ZK

Z K Z
S K

f

�f

  �  ª º¬ ¼ �³  (4.11) 
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Therefore, one can notice this transform produces an offset of -90° in the signal phase, 

with the response in the same domain.  

4.1.3. Polar notation 

An analytical signal has a geometrical representation in the form of a phasor rotating 

in the complex plane, as illustrated by Figure 16: 

 

Figure 16: Analytic signal in the complex plan. 

A phasor is a vector at the origin of the complex plane having length, called envelope 

as well, � �A t , and an angle � �tI . So, it’s possible to represent the analytic signal in its 

trigonometric form: 

 � � � � � � � � � � � �cos sin j tX t X t t j t A t e II I �  ª º¬ ¼  (4.12) 

In this way, we’ll have: 

 � � � � � �cosu t A t tI  (4.13) 

And 

 � � � � � �sinv t A t tI  (4.14) 

From that, it’s defined the instantaneous amplitude (envelope, magnitude, modulus): 
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 � � � � � �2 2A t u t v t �  (4.15) 

And its instantaneous phase: 

 � � � �
� �

1tan
v t

t
u t

I �  (4.16) 

If one takes the derivative of (4.16) related to time, it will be obtained the 

instantaneous natural frequency � �t: : 

 � � � � � � � � � � � �
� � � �2 2

d t u t v t v t u t
t

dt u t v t

I �
:   

�
 (4.17) 

With the relations (4.15), (4.16) and (4.17), one can build up a signal and with the 

concept of phasor, to get the amplitude, the phase and the frequency, instantaneously, of 

whatever signal it there can be and to determine if one system is linear or not.  

4.2. Freevib method 

Now, it will be presented a technique first introduced by (1). It consists in doing a 

signal processing analysis of vibration systems, linear or not, in order to get the characteristics 

of these oscillatory systems. 

The method will be performed, by taking an example of a SDOF system with viscous 

damping and writing the governing differential equation: 

 � � � � � � � � 0my t c A y t k A y� �   (4.18) 

In which � � � � and c A k A  are respectively the damping coefficient and the stiffness in 

function of the amplitude. One can divide the equation (4.18) by the mass and to obtain the 

relation (4.19): 

 � � � �2
0 02 0y h A y A yZ� �   (4.19) 

Where � � � �
0 2

c A
h A

m
  is related to the viscous damping characteristics, and 

� � � �2
0

k A
A

m
Z   is the undamped natural frequency of the system, and � �y t is the dynamic 

response of the problem. Using some properties of Hilbert transforms, where � � � � and h t y t
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are signals with non-overlapping spectra and � �h t  is lowpass with � �y t  highpass, such as 

� � � � � � � � � � and H h t y t h t H y t H y y  ª º ª º¬ ¼ ¬ ¼  (1), it’s possible to apply the Hilbert transform 

in both sides of the equation (4.19), so that; 

 � � 2
0 02 0y t h y yZ� �   (4.20) 

Multiplying the relation (4.20) by j, 2 1j  � , and adding it to equation (4.19), yields 

to: 

 � � � �2
0 02 0Y h A Y A YZ� �   (4.21) 

The relation (4.21) is the analytical function of the system, i.e. 

� � � � � � � � � �j tY t y t jy t A t e I �  , with � � � � � �2 2A t y t y t �  and � � � �
� �

1tan
y t

t
y t

I � . The 

function � �y t is the Hilbert transform of the system, � �A t  is the envelope and � �tI , the 

instantaneous phase. It’s important to remark both 2
0Z  � �2

0 tZ and � �0 0h h t  are functions of 

time. 

Then, the first and second derivatives are taken and substituted in equation (4.21), 

obtaining the equation for free vibration analysis: 

 2 2
0 0 02 2 2 0A A AY h j h

A A A
Z Z Z Z Z

ª º§ ·
� � � � � �  « »¨ ¸

© ¹¬ ¼
 (4.22) 

Avoiding trivial solutions 0Y z , the real and imaginary parts in the brackets must be 

zero: 

 2 2
0 02 0A Ah

A A
Z Z� � �   (4.23) 

 02 2 0A h
A
Z Z Z� �   (4.24) 

One can thereby write expressions for the instantaneous modal parameters, natural 

frequency and damping coefficient, depending on the derivatives of the envelope and the 

instantaneous frequency: 

 � �
2

2 2
0 22A A At

A A A
ZZ Z
Z

 � � �  (4.25) 
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 � �0 2
Ah t
A

Z
Z

 � �  (4.26) 

So, with the equations (4.25) and (4.26) with the relations (4.15) and (4.17), it’s 

possible to evaluate the modal parameters evolution through the time if the amplitude � �y t  

and its Hilbert transform � �y t  are known. In addition, the restoring force � �sf A and damping 

force � �df A  presented in the system can be carried out by means of the equations (4.27) (10): 

 
� � � � � �
� � � �2

0

d

s

f A A Ah A

f A A A

Z

Z

 

 
 (4.27) 

4.3. Forcevib method 

In the previous section, on was interested in calculating parameters data from a free 

vibrations system. However, in practical life, performing a method capable of handling modal 

analysis of nonlinear systems with an input signal excitation would be very useful. 

Having it in mind, a method named ‘Forcevib’ was presented by (19). For this, the 

same approach in the precedent section is done, with the difference that one can now 

represent the external excitation by its analytical signal form as it follows: 

 � � � �2
0 02Y h A Y A Y X mZ� �   (4.28) 

Where now � � � � � �j t
xX t A t e I is the force in analytical form. Evaluating the same 

process done before, the equation for forced vibration is obtained: 

 � �2 2
0 0 02 2 2A A AY h j h X t m

A A A
Z Z Z Z Z

ª º§ ·
� � � � � �  « »¨ ¸

© ¹¬ ¼
 (4.29) 

Splitting up the relation (4.29) into real and imaginary parts, after some algebraic 

manipulation, yields to; 

 � � � � � � � � 2
2
0 2

2t t A A A At t
m A m A A A

D E ZZ Z
Z Z

 � � � � �  (4.30) 

 � � � �
0 2 2

t Ah t
m A

E Z
Z Z

 � �  (4.31) 
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In which � � � � � � � � � � � �Re , Imt X t Y t t X t Y tD E  ª º ª º¬ ¼ ¬ ¼ are real and imaginary 

parts of input and output ratio signals according the relation: 

 
� �
� � � � � � � � � � � � � �

� � � �
� � � � � � � �

� � � �2 2 2 2

X t x t y t x t y t x t y t x t y t
t j t j

Y t y t y t y t y t
D E

� �
 �  �

� �
 (4.32) 

And � � � � and x t x t  is the force vibration and its Hilbert transform respectively. Like is 

pointed out by (19), equations (4.30) and (4.31) are general form compared to relations (4.25) 

and (4.26), since the latter reduce to the former if there’s no excitation forces

� � � �� �0t tD E  . Besides, according to (19), expressions (4.30) and (4.31) have more 

robustness, as a result of the presence of the first and second derivatives of the signal 

envelope and instantaneous frequency, determining modal parameters even under complicated 

test conditions, such as when excitation is a non-stationary quasi-harmonic signal with a high 

sweep frequency.  

To work out equations (4.30) and (4.31), it’s necessary the value of the mass, which is 

unknown a priori. To deal with this problem, a modal mass value must be defined. As in the 

majority of the cases, the mass is constant and the natural frequency doesn’t vary along the 

time, eliminating that frequency from (4.30), one defines the modal mass as: 

 
2

2 2

A
A

m
A A A
A A A

ED
Z

ZZ
Z

§ ·
' �¨ ¸
© ¹ 

§ ·
' � � � �¨ ¸
© ¹

 (4.33) 

And the operator ' denotes the deviation of the corresponding functions in the 

numerator and denominator during time t' . So, making a plot of the values of the numerator 

by the values of the denominator, the mass will be the slope angle of straight line for a linear 

sdof system. If there are lots available data, the least square method can be performed for the 

mass value calculation (19). 

5. Analysis of identification 

In order to assure the efficacy of determining the modal parameters, one software was 

developed with the guide MatLab interface, adapting the source code from Michael Feldman 
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of Faculty of Mechanical Engineer – Israel Institute of Technology, to become easier the 

handling by an ordinary user. Some tests cases were carried out, using either the freevib 

method or the forcevib one. 

The first system to be tested is the SDOF system with unitary mass represented by the 

equation (5.1): 

 30.08 0.14 0� � �  y y y y  (5.1) 

With the following initial conditions: 

 � � � �0 3 and 0 0  y y  (5.2) 

By inspection of relation (5.1), it’s possible to infer that its modal parameters are 

respectively: 

 2
0 1Z   (5.3) 

 0.04c   (5.4) 

Evaluating the freevib method for the system governed by (5.1), generates: 

 

Figure 17: The envelope of the analyzed system. 
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Figure 18: Instantaneous natural frequency of the studied system. 

In the Figure 18, there is a slightly change in the beginning of the experiment, what 

agrees with the idea it’s not a linear system. Besides the program gave the values of modal 

parameters, which will be showed together later.  

Then, another system SDOF is tested with unitary mass represented by the equation: 

 � �2 35 15.2 2000 0y y y yS� � �   (5.5)   

With the following initial conditions: 

 � � � �0 3 and 0 0  y y  (5.6)   

One more time, by inspection of relation (5.5), it’s possible to infer that its modal 

parameters are respectively: 

 � �22
0 15.2Z S  (5.7) 

 5c   (5.8) 

Evaluating the freevib method for the system governed by (5.1), generates: 
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Figure 19: The envelope of the second analyzed system. 

 

Figure 20: Instantaneous natural frequency of the second studied system. 

Once again, the symptoms of nonlinearities are noticed by the variation of the 

frequency during the time. 

In the end, one system SDOF with an external force is tested to verify the forcevib 

method. It’s ruled by the equation: 

 � � � �2 21.2 10.2 400sin 2 4y y y tS S� �   (5.9) 
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 � � � �0 0 and 0 0y y   (5.10) 

Its modal parameters are:  

 � �22
0 10.2Z S  (5.11) 

 1.2c   (5.12) 

Thus, the forcevib method generates as a result for the system (5.9) the following 

figures: 

 

Figure 21:The envelope of the third analyzed system. 

 

Figura 22: Instantaneous natural frequency of the third studied system. 
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In Figura 22, one notice that is dealing with a linear system since its instantaneous 

frequency doesn’t change during the time. 

To summarize the performance of the methods, in Table 1, are the tested values with 

their errors: 

Table 1: Summary of the modal parameters estimated by the method using Hilbert transforms. 

 0f  c 

Real Measured Error Real Measured Error 

System 1 0,159 0,16 6,28% 0,08 0,076 -5% 

System 2 15 14,96 -0,27% 5 5.008 0,16% 

System 3 10 10,023 0,23% 1,2 1,15 4,17% 

 

If we pay attention to Table 1, we’ll see the errors from the estimative of the program 

based on freelib and forcelib methods can be neglected, since they are inferior to 10%. So, we 

can conclude they are good methods and practical to be implemented. 

6. Conclusion 

The study of nonlinear systems is fascinating. However, it arises questions almost 

always forgotten by the engineers, since the majority of models available aren’t capable of 

doing calculations when the problem is nonlinear. 

Some techniques were performed with the goal of trying to estimate a better set of 

values for a nonlinear systems. In all those techniques presented in this work, the solutions 

found represent a steady solution for each system. In the perturbation method, the solution 

was carried out through an approximation with a series expansion. With it, the response and 

the natural frequency of the steady state were found, with a considerable degree of 

confidence. The Harmonic Balance Method implemented was also capable of treat the 

solution for a nonlinear system, showing also given phenomena may happen in a nonlinear 

system, like the jumping phenomenon, and the influence of modal parameters in this dynamic. 
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After, the methods using the Hilbert Transform were successful performed in order to 

identify the modal parameters, even if there are no equations or previous knowledge about the 

system which is being studied.  This technique known as non-parametric estimation is very 

useful for evaluating test when one doesn’t know a priori whether the system is linear or not. 

As a form of continuing the work, it will be interesting if new ways of application of 

Hilbert Transform were evaluated especially the Hilbert-Huang Transform modification and 

the Empirical Mode Decomposition (EMD) described in (20). This technique would permit 

the MDOF analysis by using HT. 

Also, studies with Volterra Series have been demonstrating quite well at performing 

results of a nonlinear MDOF system (21). Adopting this series of functional, the concept of 

transfer function is naturally broadened to nonlinear systems since it generalizes the 

superposition principle.   

In a general way, the HBM method and the HT methods demonstrated to be very 

consistent with the results performed, showing to be good tools for the study of nonlinear 

systems. 
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