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Abstract 
 

 The following work presents a parametric model approach for the optimization of a 

flexible wing aiming the improvement of the reduced model developed in parallel to this 

study. At first, how to create a complex metallic Wing-Box model for single aisle commercial 

aircrafts is demonstrated, following what big manufactures such as Airbus and Boeing use in 

theirs products, and developing a full parametric PCL code in Patran. Then, an optimization 

processes is presented using the Nastran Design Sensitivity and Optimization algorithm, also 

known as Sol200.  

 The main objective is to optimize the global structure weight respecting all structural 

criteria and constraints, and using the spars and skin thickness as design variables. After the 

optimization, the importance of upper and lower skins is minimized and almost all efforts are 

concentrated on spars, specially the rear spar. It’s also shown that the strain criterion is 

stronger than the stress one, which considers shear and buckling as the critical design points, 

although fatigue is also relevant when designing the lower Wing-Box Skin. 

 This computational model allows the determination of all Wing-Box element thickness 

that give the minimum wing weight, helping the preliminary design task to achieve the 

optimized structure in the shortest time, enhancing the results by the lowest costs possible. 

Associating this work with an aerodynamic approach using CFD would make possible to 

create a variation of the required profile to construct the real wing that, when deformed, 

would assume its best shape in terms of aerodynamics, still respecting all structural 

constraints and minimum weight possible. Finally, another important approach consists of 

doing the exactly same study but with composite materials, since the future of aviation may 

reside no more in metallic alloys, but in composites. 
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Table of Variables and Constants 
 

gj    Inequality Constraints 

hk    Equality Constraints 

xi    Side Constraints 

X    Design Variables 

b    Wingspan 

S    Wing Area 

AR    Aspect Ratio 

λ or ε   Taper Ratio 

δ    Dihedral 

Λ    ¼ Chord Sweep 

θ    Wing Tip Torsion 

MTOW   Maximum Takeoff Weight 

m    Maximum Camber 

p     Maximum Camber Position 

t   Maximum Relative Thickness 

E    Young’s Modulus 

ν    Poisson Ratio 

ρ    Density 

Ti    Cartesian Translation (i= x, y or z coordinate) 

Ri    Cartesian Rotation (i= x, y or z coordinate) 

nz    Critical Load Factor  

nzce    Extreme Load Factor 

Cm or Cmprofil   Profile Moment Coefficient  

Y    Normalized Position along Spanwise 

L    Total Lift 

Va    Aerodynamic Speed 

Cz    Lift Coefficient 

g    Gravity Acceleration 

S(Y)    Total Shear Force 

Sa(Y)    Shear Force due to Aerodynamic Efforts 

Sm(Y)    Shear Force due to Inertial Efforts 

B(Y)    Total Bending Moment 
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Ba(Y)    Bending Moment due to Aerodynamic Efforts 

Bm(Y)    Bending Moment due to Inertial Efforts 

T(Y)    Total Torsion 

Ta(Y)    Torsion due to Aerodynamic Efforts 

Tm(Y)    Torsion due to Inertial Efforts 

C    Local Chord 

Cr    Root Chord 

Mwing    Wing Mass 

Mfuel    Fuel Mass 

Mmot ou Mm   Engine Mass 

Ym    Engine Position along Spanwise 

lCG_CS    Distance between Gravity Center and Shear Center 

dF    Vertical Distance between Engine Center of Thrust and Shear Center 

dM    Horizontal Distance between Engine Center of Mass and Shear Center 

F    Engine Thrust 

σcomp    Compression Stress 

(σcomp)cr   Critical Compression Stress 

τxy    Shear Stress 

(τxy)cr    Critical Shear Stress 

ηs  and ηc   Plasticity Reduction Factor 

Ks    Buckling Coefficient due to Shear  

Kc    Buckling Coefficient due to Compression  

t    Thickness 

ts     Thickness for Local Buckling 

fty    Maximum Distortion Energy Yield 

σvm    Von Misses Stress 

dytip    Wing Tip Displacement 

ε    Strain 
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1 - Introduction 
 

This Final Year’s Thesis is intended to give a parametric approach to a flexible wing 

optimization for the Osycaf Project. This entire study is directly correlated to the reduced 

model developed by Assis Lima [1], which provides the inputs and post-processing for the 

results of this work, by its Surrogate Model. 

The main objective is to structurally optimize a Wing-Box for commercial aircrafts, 

providing the lowest weight for the entire structure that resists to all loadings and boundary 

conditions, respecting the parameters constraints and conditions that define a real wing, 

according to manufactures such as Airbus, Boeing, Embraer and Bombardier. 

To create the Wing-Box, PCL code was used as default, with the help of MSC Patran 

2007, which consists of a strong GUI tool to design complex structures to be after analyzed in 

Nastran. The first part is then to create the wing based on parameters such as span, chord 

sweep, taper ratio, tip torsion, dihedral and a given profile. This is extremely important to 

allow changing the entire wing just by changing the parameters and running the PCL code 

once more, without the need to reconstruct everything from the beginning. 

After this, the boundary conditions are implemented, as well as the loading case that is 

based on complex aerodynamics and inertial models. The geometry is then meshed and 

materials and properties added, generating a modeled structure ready to be exported as bulk 

data by Patran to Nastran. 

 With all elements generated, the optimization process starts using Sol200 in Nastran, a 

Design Sensitivity and Optimization algorithm. The Executive Control deck is defined as well 

as the Case Control Deck and the Bulk Data. In this moment, the stress, strain and 

displacement criteria are added and the constraints applied. The variables are chosen and the 

optimization parameters adjusted. 

 Running Sol200, the optimized Wing-Box configuration is returned in terms of 

thickness of every section of the Wing-Box spars and skins. The global weight is the objective 

design for minimization and the new wing presents the lightest configuration that respect all 

structural criteria and constraints, keeping wing geometry, properties and materials. 
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1.2 - Internship Objectives 
 

 One of the objectives of this internship is providing a reasonable approach to structural 

modeling in Patran and optimization and design sensitivity in Nastran. This research and 

development aim to be a direct response for the reduced model also proposed by the same 

project. In this way, the numerical optimization results shall be used to validate and improve 

the analytical equations developed for preliminary design of future aircraft programs. It is 

important to remember that even numerical solutions are still expensive, and reducing costs is 

fundamental for competitive industries. 

 Another objective is to provide all tools and academic support for a Final Year’s 

Thesis, which represents the last step on an engineering graduation program. The parametric 

approach and structural optimization using Sol200, on the other way, represents only a small 

part in a much bigger project named Osycaf. This program started on April 2010 and goals the 

optimization of a coupled fluid-structure representing a flexible wing - structural and 

aerodynamics optimization, in other words. The Osycaf Project is a partnership between 

ONERA, ISAE, IMT, CERFACS and STAE Toulouse. 

 

1.3 - Nastran Optimization 

 
 The Sol200 is the Design Sensitivity and Optimization algorithm for Nastran  based 

on gradient methods and used in this study. To understand its functioning, a few concepts 

must be established. The basic optimization problem statement is usually to find X that 

minimizes, or maximizes, the F(X) objective subjected to: 

 

g୨ሺXሻ ≤ 0   j = 1, … , n୥   inequality constraints      (1) 

 

h୩ሺXሻ = 0   k = 1, … , n୩   equality constraints      (2) 

 

x୧
୐ ≤ x୧ ≤ x୧

୙    i = 1, … , n   side constraints      (3) 

 

X = ሼxଵ, xଶ, … x୬ሽ   design variables       (4) 
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 For the profile and objective of this study, the NACA 4-Digits Series was chosen since 

its analytical equations allow inserting the entire profile as a variable when programing. This 

NACA Series has 3 parameters: 

• Maximum camber (m) 

• Maximum camber position (p) 

• Maximum relative thickness (t) 

 

The NACA 4-Digits Series equations are: 

 

௖ݕ = ௠
௣మ ሺ2ݔ݌ − ݔ ݉݋ݎ݂   ଶሻݔ = ݔ ݋ݐ 0 =  (5)       ݌

 

௖ݕ = ௠
௣మ ሾሺ1 − ሻ݌2 + ݔ݌2 − ݔ ݉݋ݎ݂   ଶሿݔ = ݔ ݋ݐ ݌ =  (6)     ܥ

 

௧ݕ± = ௧
଴.ଶ ൫0.2969√ݔ − ݔ0.1260 − ଶݔ0.3516 + ଷݔ0.2843 −  ସ൯  (7)ݔ0.1015

 

௎ݔ = ݔ − ௧ݕ sin  (8)          ߠ

 

௎ݕ = ௖ݕ + ௧ݕ cos  (9)          ߠ

 

௅ݔ = ݔ + ௧ݕ sin  (10)          ߠ

 

௅ݕ = ௖ݕ − ௧ݕ cos  (11)          ߠ

 

ߠ = tanିଵ ቀௗ௬೎
ௗ௫ ቁ          (12) 

 

 The NACA 4-Digits Series also has a special notation: NACA ABXX has A for the 

maximum camber in %; B is for maximum camber position in % times 10; XX is for 

maximum relative thickness in %, about the chord. For example, a NACA 2412 means 2% 

maximum camber, 40% maximum camber position and 12% of maximum relative thickness. 

 



 

 

 

camb

the fr

Wing

const

 

 

 

ribs, 

ratio

dispo

comp

step, 

 

 

Figur

With the

ber and afte

front spar w

g-Box is 40

tant. 

With the

the basic p

, chord sw

osition. Wi

plete frame 

 and they ar

Figur

NAC

NAC

re 6 - Examp

ese equation

er, these po

would be at 2

0% of chor

Figure 7 - W

e basic profi

profile was

eep, dihedr

ith all ribs,

is ready to

re created fo

re 8 - Comple

CA 0012 

CA 5412 

20% 

les of NACA 

ns, 40 poin

ints were sp

20% of cho

rd length in

Wing-Box sp

file, it is now

s scaled, tra

ral and tors

, lines to s

o give suppo

orm the edg

te wing geom

 4-Digits Seri

nts were ge

plined to cr

ord length, a

n each sec

pars located a

 

w possible t

anslated and

sion, respec

support the

ort to all th

ge curves or

metry generat

ies automatic

nerated for

reate the pr

and the rear

tion of the

at 20% and 60

to start the 

d rotated, a

cting so eve

e stringers 

e rest of the

r from trimm

ted by param

60%

cally generate

r upper cam

rofile contou

r spar at 60%

wing, and

0% of local c

wing creati

accordingly

ery single d

and stiffen

e geometry.

med curves.

metric PCL co

NACA 2412 

NACA 2315 

ed in Patran. 

mber and 40

ur. It was d

%. This me

d this meas

chord. 

ion. For eac

y to aspect 

dimension 

ners are cre

. Surfaces a

. 

ode in Patran

15

0 for lower

defined that

ans that the

ure is kept

ch of the 29

ratio, taper

and spatial

eated, so a

are the next

. 

5 

 

r 

t 

e 

t 

 

9 

r 

l 

a 

t 

 



16 
 
2.1.2 - Materials 
 

 The materials adopted are the same usually found in metallic single aisle aircrafts of 

the big manufacturers. In this study, they are the aluminum alloys Al 7150 T7751 and Al 

2024 T351 Bare, with homogeneous and isotropic properties, so Young’s modulus (E), 

Poisson ratio (ν) and density (ρ) are the 3 parameters that matters - the Shear modulus G is 

computed directly from the equation E = 2·(1+ν)/G. The Al 7150 T7751 is used in the upper 

Wing-Box skin, upper corners stiffeners and upper Wing-Box skin stringers. The Al 2024 

T351 Bare is used in the lower Wing-Box skin, lower corners stiffeners, lower Wing-Box skin 

stringers, front spar, rear spar and ribs. The properties are: 

 

• Al 7150 T7751: E = 71.016 GPa, ν = 0.3 and ρ = 2823 Kg/m3. 

• Al 2024 T351 Bare: E = 73.774 GPa, ν = 0.3 and ρ = 2768 Kg/m3. 

 

 Nastran translate these materials in the form of MAT1 that defines the material 

properties for linear isotropic materials. 

 

2.1.3 - Properties 
 

 When studying a Wing-Box, buckling, shear and bending stress are important to be 

analyzed. In this way, for the skin, spars and ribs the 2D property Shell was chosen, which is 

translated in Nastran as a PSHELL card that defines the membrane, bending, transverse shear, 

and coupling properties of thin shell elements. The only geometric parameter is thickness, 

which will also be the optimization variable for Sol200. 

 For stiffeners 1D beam elements were chosen. For Nastran, this is the PBEAML 

element, which defines the properties of a beam element by cross-sectional dimensions, and in 

this case is L-shaped. For stringers 1D bar elements were chosen. For Nastran, this is the 

PBARL element, which defines the properties of a simple beam element (CBAR entry) by 

cross-sectional dimension, and in this case is Z-shaped. 
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 For the 1D bar property, the Nastran translation for elements is CBAR. For the 2D 

shell, a Quad is the element shape, IsoMesh is the chosen mesher and Quad4 in the topology 

configuration.  This means that all spars and skin elements are rectangles with the edge length 

controlled by the mesh seed. Nastran translates this by CQUAD4 elements that define an 

isoparametric membrane-bending or plane strain quadrilateral plate element. The ribs were 

meshed by paver that means irregular trapezoidal shapes. 

 All parameterization, even for the mesh, is extremely important since every studied 

wing has a completely different geometry (only dimensional parameters are kept constant). 

About geometry, 4 main input parameters change as well as hundreds of secondary 

parameters. About the properties, each section has 4 defined different skin thickness and 4 

stringers and stiffeners geometrically correlated radius, and since there are 28 sections, at least 

112 thickness are inputs that changes in every wing. With this amount of variables, a not all 

parameterized wing would cost and inestimable time spend in Patran, something absolutely 

not desirable.  

 

2.2 - Nastran 
 

 Nastran is the world's most widely used Finite Element Analysis (FEA) solver. When 

it comes to simulating stress, dynamics, or vibration of real-world, complex systems, Nastran 

is still the best and most trusted software in the world. In this project, MSC Nastran 2007 is 

used for structural optimization. As presented before, the optimization process is based on 

equality and inequality constraints, side constraints and design variables, all associated by 

structural algorithms and processed by the optimizer. 
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 For the optimizer, Nastran uses a variety of optimization algorithms from the 

MSCADS suiteof algorithms as well as the IPOPT algorithm. The IPOPT algorithm is a 

special purpose optimization algorithm to address design tasks with a large number (> 3000 to 

4000) of design variables and has its primary application to topology optimization tasks, but 

can be also applied to the conventional design tasks as well. Its access requires a Topology 

Optimization license. The IPOPT algorithm is open source code available from COIN-OR 

and maintained by IBM. It implements an interior point line search filter method. Structural 

optimization has also introduced the Approximate Model concept that involves the 

construction of high-quality approximations to the finite element results so that the number of 

full scale finite element analyses is kept to a minimum. 

 The Improved Design is the point at which the finite element model is updated based 

on the results from the optimizer so that a new finite element analysis can occur.  Design 

Optimization is an iterative process and a key part of the implementation is therefore 

determining when to stop the iterations and set as converged. Tests for convergence discuss 

the many factors that enter into making this decision. 

 As for Discrete Variable Optimization, an underlying assumption of the Design 

Sensitivity and Optimization capability Nastran is that the variations in the design variables 

are continuous and that therefore the responses and their sensitivities are also continuous. 

Practical engineering considerations frequently dictate that values of the designed properties 

be chosen from a discrete set. 

 Finally, the Topology Optimization is a special version of design optimization that 

finds an optimal distribution of material, given package space, loads and boundary conditions. 

Basically, it makes a design variable out of each finite element that can vary from 0 (remove) 

to 1 (keep) and the algorithm strives to force real design variables to one of these limits. In 

this project Topology optimization will not be approached. 
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2.2.2 - Analysis 
  

 The analysis proposed is based on a static load, and the main objective is to optimize 

the entire Wing-Box according to buckling and maximum shear stress criteria, strain criterion 

and maximum wing tip displacement. With a cantilever wing, given the load case, it’s 

possible to calculate the minimum thickness for each part respecting the structural constraints. 

A global optimization will find the best thickness combination that will reduce the Wing-Box 

weight to a global minimum. 

 

2.2.3 - Design Variables 
 

 The chosen independent design variables are the section shell thickness of each 

structure, and this means 4 structures (upper and lower skins, front and rear spars) in each of 

 the 28 sections, so 112 design variable. In Nastran, this is programed by a DESVAR card, 

which defines the design variables to be used in design sensitivity and optimization. Design 

sensitivity analysis computes the rates of change of design responses with respect to changes 

in the design variables. In design optimization, the set of design variables are the quantities 

modified by the optimizer in the search for an improved design. The optional DESVAR Case 

Control command can be used to specify the set of DESVAR Bulk Data entries that are to be 

used in the design task. 

 The upper WB corner stiffeners and upper WB skin stringers also received a design 

variable each, as well as the lower ones. This means 4 more variables for each section, but 

these 112 variables are dependent of the 56 WB skin thickness variables. This is possible 

through DLINK cards that relate one design variable to one or more other design variables by 

linear relation. The linear relation, in this case, is based on the area distribution between WB 

skin, stiffeners and stringers, as mentioned before. 

 The design response that will be globally optimized is the total weight, and Nastran 

has already a specific entry in DRESP1 card for this action called WEIGHT. The total of 

design variables is so 224. 
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 The Lower Skin presents tension stress and shear stress as critical stresses. The 

criterion used is than the maximum distortion energy yield, so the Von Misses Criterion was 

adopted. The equation is so: 

 
௙೟೤

ఙೡ೘
≥ 1           (27) 

 

 For the Al 2024 T351 Bare, used in the lower skin, fty = 290.0 MPa, and the Von 

Misses stress is given directly by Nastran, so it’s not necessary to calculate it by analytical 

formula. The Von Misses used is also an average of both provided by Nastran. 

 The Front and Rear Spars presents the same behavior, so the exactly same approach 

was adopted for both structures. The critical stress is the shear stress, and the shear criterion 

was adopted. The equation is: 

 
൫ఛೣ೤൯೎ೝ

ఛೣ೤
≥ 1           (28) 

 

Where: 

 

൫߬௫௬൯௖௥ = ఎೞ௄ೞగమா
ଵଶሺଵିఔమሻ ቀ௧ೞ

௕ ቁ
ଶ
         (29) 

 

 In this case, ηs = 1.0 and Ks = 5.4. For the upper skin Al 2024 T351 Bare is used, so E 

= 73.774 GPa and ν = 0.3. Nastran provides the shear stresses in both skin boundary surfaces, 

so an average was again taken. 

 Another criteria adopted is the maximum wingtip vertical displacement that shall not 

pass 1,7 meters. In fact, for Airbus A320 wing, the destructive test shows a maximum 

deformation of 2,5 meters, and considering a safety marge of 50%, the adopted value is 

acceptable. This is a criterion also used in aeronautical industry for psychological aspect, 

since a huge wing deformation may cause panic between passengers.  

 

݀௬,௧௜௣ ≤  (30)          ݎ݁ݐ݁݉ 1,7
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 The strain criterion is also taken into account. For modern aluminum alloys, the limit 

is around 4 micro deformations, so: 

           

−4 ∙ 10ିଷ ≤ ߝ ≤ 4 ∙ 10ିଷ         (31) 

 

 In Nastran Sol200 language, a DTABLE card defines a table of constants to be used in 

conjunction with DEQATN equations. A DRESP1 card defines direct, or first-level, analysis 

responses to be used in design sensitivity and optimization. The responses identified here are 

those which are directly available from the analysis results as opposed to second-level 

responses which are defined using DRESP2 and DEQATN entries. This means all stress, 

strain, displacement or any output given directly from Nastran structural calculus will be 

given in a form of DRESP1. 

 The DRESP2 card defines equation responses that are used in the design process, 

either as constraints or as an objective. It’s in this type of card that the criteria are inserted, 

with aid of a DQATN card that defines equations for use in synthetic relations. These 

equations can be used to define either second-level responses or second-level design variable-

to-property relations. The constraints limits are imposed by DCONSTR cards that places 

limits on a design response. When selected in Case Control by either DESGLB or DESSUB, 

the DCONSTR sets define the design constraints. Finally, the relation between an analysis 

model property and design variables is made by DVPREL1 cards. 

 

2.2.5 - Design Optimization Parameters 
 

 There are numerous parameters that control various aspects of the optimization 

process itself. While all of these parameters have defaults (the DOPTPRM entry is optional), 

the defaults may be changed using the DOPTPRM card entry which overrides default values 

of parameters used in design optimization.  

 There are three types of approximation methods to choose from in Sol200: direct 

linearization, mixed method, and convex linearization. The mixed method is the default but in 

this study, the direct linearization (APRCOD = 1) will be used. It’s based on the simple first-

order Taylor series expansion directly in terms of the design variables. The method is often 

useful for dynamic response optimization, shape optimization, and optimization tasks that use 

basis vector formulations. 
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 The optimization process is iterative since the optimizer obtains data about the design 

space from approximations. The approximate model, constructed based on a detailed finite 

element analysis, is used by the optimizer to find an approximate optimum. This design is 

resubmitted for another finite element analysis followed by another approximate optimization. 

This process is repeated until convergence with respect to these overall design cycles is 

reached or until the maximum specified number of design cycles (DESMAX) is reached. In 

this problem DESMAX was adjusted to 50. 

 As the optimizer modifies the design variables, the structure’s properties and/or shape 

will vary depending on the design model description. Move limits need to be placed on the 

approximate sub problem for efficiency reasons and these move limits are imposed with 

respect to analysis model properties as well as design variables. They can be changed from 

their defaults by modifying DELX for design variables, which defines rational change 

allowed in each design variable during any optimization cycle, and was set to 0,5. 

 The parameter CONV1 is used to test for overall design cycle convergence. It is the 

Relative criterion to detect convergence. If the relative change in objective between two 

optimization cycles is less than CONV1, then optimization is terminated. This parameter is 

used in connection with tests for both hard and soft convergence. Tests for Convergence 

describe the types of convergence testing as well as the convergence decision logic. Soft 

convergence compares the design variables and design properties output from the 

approximated model optimization with these same values at the beginning of the design cycle.  

Hard convergence testing compares the analysis results of current design cycle with those of 

the previous cycle. This test is a more conclusive test of convergence since it is based on hard 

evidence. Hard convergence will always terminate the design cycle process. 

 The DELOBJ defines maximum relative change in objective between ITRMOP 

consecutive iterations to indicate convergence at optimizer level, and was set to 1.0E-3. The 

ITRMOP defines the number of consecutive iterations for which convergence criteria must be 

satisfied to indicate convergence at the optimizer level, and was set to 3. 

 The relative change in objective attempted on the first optimization iteration is 

controlled by DOBJ1. Used to estimate initial move in one-dimensional search, it is adapted 

as the optimization progresses, and is set to 0,1. The minimum move limit imposed by 

DPMIN is 0,01, and the minimum design variable move limit impose by DXMIN is 0.05. The 

constraint normalization factor GSCAL used is 1.0E-3, and finally the optimization 

METHOD adopted is the Modified Method of Feasible Directions for both MSCADS and 

DOT.  
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3.1 - Non-Optimized WB (Part I) 
 

 In this first part, the NACA 2420 Wing-Box was directly constructed from the inputs 

provided by the Reduced Model, which means without any optimization. The spars and skins 

thickness are based on an analytical model that considers only the stress criteria and all 

calculus were made on Mathlab environment. The 112 inputs were inserted in Patran PCL 

code without any processing, and the model analyzed by Nastran Sol101. 

 The results show a Wing-Box of 2091,83 Kg (total mass, including skin, spars, ribs and 

strips). The maximum vertical wing tip displacement is 2,008 meters, which is a huge 

displacement for a semi-wing of only 19 meters, and the shear stress in shell elements arrives 

up to 2,5 GPa that overpasses the resistance of any metallic material possibly used in a wing. 

The following pictures show the bending, total displacement and stress tensor on the 

deformed Wing-Box (real scaling).  

 The first and last pictures show that stress is not well distributed along span, and it’s 

visible that the wing tip is not supporting any efforts (painted in white). The Total 

Displacement picture gives the real wing tip displacement dimension, which might not 

tolerated by aerodynamics since lift vector starts to have an important horizontal component. 

Note that these pictures are presented only for quantitative analysis and comparison with the 

following analysis, and the Upper Skin and Rear Spar are the visible parts. 
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3.2 - WB optimized by Stress Criteria only (Part II) 
 

 In this second part, the Wing-Box was optimized by Sol200 based on only stress 

criteria, as presented before. This approach is a response for the Reduced Model [1] that uses 

these results for its Surrogate Model. The 112 thickness variables were redefined to give the 

minimum global weight respecting all constraints. The other 112 stringers and stiffeners 

variables were also redefined accordingly to the area relations that define its dependency to 

the thickness variables. For the NACA 2420, optimization took 18 cycles to converge, and the 

mass reduction can be seen on the picture below. 

 

 

 
Figure 26 - Mass optimization for NACA 4420 profile WB, Static Analysis optimized by Sol200 with stress 

criterion only, 18 cycles total. 
  

 After the 18 cycles, the results converge to a weight of 1805,88 Kg, that is a total 

reduction of 13,7% or 286 Kg on each semi-wing, a considerable amount in terms of 

aeronautics. Just to have an idea, the total weight reduction of 572 Kg is more than the total 

crew weight specified by FAR Part 25, for this class of transport aircraft (A320 and Boeing 

737-800). The following table presents the mass in each cycle. The initial mass was 2091,83 

Kg. 
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 Table 1 - Mass optimization process in Sol200 for the 18 cycles with stress criterion only for  

NACA 2420 profile WB, in Static Analysis. Initial Weight 2091.83 Kg. 

Cycle 1 2 3 4 5 
Total Mass [Kg] 2027,34 2424,46 2437,31 2439,26 2434,34 

Cycle 6 7 8 9 10 
Total Mass [Kg] 2295,56 2207,87 2147,50 2038,73 1994,06 

Cycle 11 12 13 14 15 
Total Mass [Kg] 1866,19 1873,71 1832,16 1833,08 1801,77 

Cycle 16 17 18 - - 
Total Mass [Kg] 1813,02 1806,55 1805,88 - - 

 

 Now the optimization results will be presented for each of the four aimed parts: Front 

Spar, Rear Spar, Upper WB Skin and Lower WB Skin. Each part presents 28 sections (series 

on the legend), and for each one the thickness optimization for each section will be presented 

(for the 18 cycles) and also the final thickness along span, before and after optimization. 

 

 
Figure 27 - Front Spar thickness optimization for the 28 sections in Sol200 with stress criterion only for 

NACA 2420 profile WB, in Static Analysis, 18 cycles total. 
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Figure 28 - Front Spar thickness before and after optimization in Sol200 for the 28 sections with stress 

criterion only for NACA 2420 profile WB, in Static Analysis. 
  

 For the front spar, thickness decreases up to the 10th section, just before the engine. 

From the 11th section to the 17th it increases again and then decreases to the minimum 

thickness. Globally it’s visible that the optimization increased the thickness distribution 

before the 10th rib, showing that the engine affects greatly the front spar, being decisive when 

designing this part of the Wing-Box.   
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Figure 29 - Rear Spar thickness optimization for the 28 sections in Sol200 with stress criterion only for 

NACA 2420 profile WB, in Static Analysis, 18 cycles total. 
 

 
Figure 30 - Rear Spar thickness before and after optimization in Sol200 for the 28 sections with stress 

criterion only for NACA 2420 profile WB, in Static Analysis. 
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 For the rear spar, on other hand, optimization increases strongly the thickness of every 

section up to the 25th. The first 4 sections has even an increase of thickness by the order of 10 

times, showing that in terms of a globally optimized structure, the rear spar is not well 

designed by the analytical model. It’s important to remember that the numerical solution 

considers the interaction between all elements of the model, and so the response may be 

extremely different than expected. After optimization, the rear spar is totally different than the 

initial structure, but still the engine influences the design process, since greater thickness 

increment can be found before the 10th rib. 

 

 
Figure 31 - Upper WB Skin thickness optimization for the 28 sections in Sol200 with stress criterion only 

for NACA 2420 profile WB, in Static Analysis, 18 cycles total. 
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Figure 32 - Upper WB Skin thickness before and after optimization in Sol200 for the 28 sections with 

stress criterion only for NACA 2420 profile WB, in Static Analysis. 
 

 The behavior of the upper WB skin is completely different from the spars. In fact the 

optimization doesn’t change much the section thickness, and the final results follow not by far 

the initial design. But in this case, the overall thickness decreases, and the engine influence is 

not visible. Almost 30% of the upper WB skin rests with the minimum 1,00mm thickness. 
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Figure 33 - Lower WB Skin thickness optimization for the 28 sections in Sol200 with stress criterion only 

for NACA 2420 profile WB, in Static Analysis, 18 cycles total. 
 

 
Figure 34 - Lower WB Skin thickness before and after optimization in Sol200 for the 28 sections with 

stress criterion only for NACA 2420 profile WB, in Static Analysis. 
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 Finally, for the lower WB skin, optimization decreases hugely the overall thickness, 

and 70% of all sections receive minimum thickness. It’s visible that after the optimization, the 

importance of the lower skin is minimized when considering only stress as criterion, and that 

is why industry such as Airbus uses fatigue as main design criteria for this structure, instead 

of stress. 

 The following pictures show the bending, total displacement and stress tensor on the 

deformed Wing-Box (real scaling). The maximum vertical wing tip displacement is now 

0,412 meters, 77% less than for the non-optimized wing. This reflects the  importance of 

optimization since, in the end, a lighter Wing-Box was generated, with better distributed 

stress along span, maximum stress respecting the material constraints and a maximum 

displacement reduced significantly, as may be desirable by aerodynamic constraints. Actually, 

the maximum displacement criterion isn’t usually active when designing a wing, and exists 

just for a critical reason. 

 The Total Displacement picture gives the real wing tip displacement dimension, which 

is much more reasonable than for the non-optimized metallic Wing-Box. Note that these 

pictures are presented only for quantitative analysis and comparison with the other analysis, 

and the Upper Skin and Rear Spar are the visible parts. 
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3.3 - WB optimized by Stress, Strain and Max. Displacement Criteria (Part III) 
 

 In this third part, the Wing-Box was optimized by Sol200 based on stress, strain and 

maximum vertical wing tip displacement criteria, as presented before. This approach is the 

most complete one, although it does not include the fatigue criterion for the lower WB skin. 

The 112 thickness variables were redefined to give the minimum global weight respecting all 

constraints. The other 112 stringers and stiffeners variables were also redefined accordingly to 

the area relations that define its dependency to the thickness variables. For the NACA 2420, 

optimization also took 18 cycles to converge, but requested more computational efforts than 

for Part II. The mass variation can be seen on the picture below. 

 

 
Figure 36 - Mass optimization for NACA 2420 profile WB, Static Analysis optimized by Sol200 with 

stress, strain and max. displacement criteria, 18 cycles total. 
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Table 2 - Mass optimization process in Sol200 for the 18 cycles with stress, strain and  

max. displacement criteria for NACA 2420 profile WB, in Static Analysis.  

Initial Weight 2091.83 Kg. 

Cycle 1 2 3 4 5 
Total Mass [Kg] 2633,28 3265,29 3888,67 4532,37 4460,57 

Cycle 6 7 8 9 10 
Total Mass [Kg] 3430,04 3873,92 2494,49 2269,92 2408,90 

Cycle 11 12 13 14 15 
Total Mass [Kg] 2349,77 2468,64 2469,77 2461,85 2459,99 

Cycle 16 17 18 - - 
Total Mass [Kg] 2456,55 2454,59 2454,59 - - 

 

 

 The exactly same stress criteria as for Part II was used, and the maximum vertical 

wing tip displacement was of only 0,128 meter, much inferior than the 1,7 meters established 

by the displacement criteria. Since there was still a mass and rigidity augmentation, it’s 

evident that the strain criterion was decisive when optimizing the structure. The maximum 

strain adopted was 4.10-3, which is a value allowed only for the best aluminum alloys 

available nowadays, and increasing this limit would imply on a non-realistic wing. 

 Now, as for Part II, the optimization results will be presented for each of the four 

aimed parts: Front Spar, Rear Spar, Upper WB Skin and Lower WB Skin. Each part presents 

28 sections (series on the legend), and for each one the thickness optimization for each section 

will be presented (for the 18 cycles) and also the final thickness along span, before and after 

optimization. 
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Figure 37 - Front Spar thickness optimization for the 28 sections in Sol200 with stress, strain and max. 

displacement criteria for NACA 2420 profile WB, in Static Analysis, 18 cycles total. 
 

 
Figure 38 - Front Spar thickness before and after optimization in Sol200 for the 28 sections with stress, 

strain and max. displacement criteria for NACA 2420 profile WB, in Static Analysis. 
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 For the front spar, the overall thickness was increased up to the 8th section, but the 

same behavior goes just before the engine, as expected. From the 11th section to the 19th, 

thickness was decreased and then follows the Reduced Model to the minimum thickness. 

Globally it’s visible that the optimization increased the thickness distribution before the 10th 

rib, showing that the engine affects greatly the front spar, being decisive when designing this 

part of the Wing-Box. Although the strain criterion is present, the optimization took a similar 

path as for Part II; 

 

 
Figure 39 - Rear Spar thickness optimization for the 28 sections in Sol200 with stress, strain and max. 

displacement criteria for NACA 2420 profile WB, in Static Analysis, 18 cycles total. 
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Figure 40 - Rear Spar thickness before and after optimization in Sol200 for the 28 sections with stress, 

strain and max. displacement criteria for NACA 2420 profile WB, in Static Analysis. 
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the 24th. The first 5 sections had even an increase of thickness by the order of 30 times, 

showing that in terms of a globally optimized structure, the rear spar is definitely not well 

designed by the analytical model. It’s important to remember again that the numerical 

solution considers the interaction between all elements of the model, and so the response may 

be extremely different than expected. After optimization, the rear spar is totally different than 

the initial structure, and the thickness distribution along span is more linear than for Part II. 
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Figure 41 - Upper WB Skin thickness optimization for the 28 sections in Sol200 with stress, strain and 

max. displacement criteria for NACA 2420 profile WB, in Static Analysis, 18 cycles total. 
 

 
Figure 42 - Upper WB Skin thickness before and after optimization in Sol200 for the 28 sections with 

stress, strain and max. displacement criteria for NACA 2420 profile WB, in Static Analysis. 
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 The behavior of the upper WB skin is again completely different from the spars. There 

was a considerable increase of thickness just after the engine, and from the 12th section up to 

the wing tip, thickness was lowered to the minimum value. This shows how diminished is the 

importance of the upper WB skin after the optimization of the spar, which takes almost all 

efforts by the end of the optimization. Nevertheless, it’s possible to see the influence of the 

engine on the upper WB skin design, although the spars support almost all efforts after 

optimization. 

 

 
Figure 43 - Lower WB Skin thickness optimization for the 28 sections in Sol200 with stress, strain and 

max. displacement criteria for NACA 2420 profile WB, in Static Analysis, 18 cycles total. 
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Figure 44 - Lower WB Skin thickness before and after optimization in Sol200 for the 28 sections with 

stress, strain and max. displacement criteria for NACA 2420 profile WB, in Static Analysis. 
 

 Finally, for the lower WB skin, optimization decreases totally the overall thickness to 

minimum (sections 5 and 6 may present a numerical error). It’s visible that after the 

optimization, the importance of the lower skin is absolutely minimized, remembering why 

industry uses fatigue as main design criteria for this part, not forgetting that the Wing-Box is a 

closed section structure and must remain this way to keep the overall aerodynamic shape of 

the profile. 

 The following pictures show the bending, total displacement and stress tensor on the 

deformed Wing-Box (real scaling). The maximum vertical wing tip displacement is now, as 

said before, of only 0,128 meters, 94% less than for the non-optimized wing. The Total 

Displacement picture gives the real wing tip displacement dimension, which is again much 

more reasonable than for the non-optimized Wing-Box. Note that these pictures are presented 

only for quantitative analysis and comparison with the other analysis, and the Upper Skin and 

Rear Spar are the visible parts. 
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4 - Conclusion 
 

 This report presented the highlights of this work conducted in four months. The 

construction of an all parameterized Wing-Box in PCL Code showed to be extremely useful, 

since the objective of the project was to analyze a great number of different structures, and 

reconstructing a new model was possible in only a few minutes. Although Patran is a nice 

GUI interface for Nastran, structures with a large number of nodes and elements may be 

easier constructed with aid of other programs such as Excel of Matlab, since the PCL code 

might overpass thousands of lines. 

 The optimization process in Sol200 also showed to more complex than expected. 

Nastran has an enormous capability of calculation, but has also its limitation as could be seen 

when trying to define a property optimization with a non-linear relation. Nevertheless, the 

response was better than expected, and results were satisfactory. 

 It was visible that the stress criterion is not a good choice when designing the lower 

WB skin, remembering why industry uses fatigue as main design criteria for this part. The 

maximum vertical wingtip displacement also showed to be useless when strain and/or stress 

criteria are also adopted. Finally, strain proved to be much stronger than stress in this type of 

analysis, so industry might adopt it in a different approach or with some modifications on the 

stress criteria. 

 After the optimization, the importance of upper and lower skins was minimized and 

almost all efforts were concentrated on spars, specially the rear spar. This makes us think if 

it’s not possible to create a simple WB model with only one or two beans and still have good 

approximate results, just for preliminary analysis. 

  A deeper step is to associate this work with an aerodynamic approach using 

CFD, optimizing the structure accordingly to its the aero response, since when in cruise, the 

deformed wing may request a new shape for the best efficiency. In this way, it would be 

possible to create a variation of the required profile to construct the real wing that, when 

deformed, would assume its best shape in terms of aerodynamics, still respecting all structural 

constraints and minimum weight possible. 

 Another important approach is to do the exactly same study but with composite 

materials, since the future of aviation may reside no more in metallic alloys, but in 

composites. The optimization of composite plates and shells, although, requests a much 

greater computational effort, since thickness is no longer the only variable, but also the 

number of layer and its orientation. 
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 Finally, the parametric model approach for structural optimization of a flexible wing, 

together with the reduced model, is a useful tool for the preliminary design of wing-boxes, 

helping the preliminary design task to achieve the optimized structure in the shortest time, 

enhancing the results by the lowest costs possible.  
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Annex 1 - More optimization results for Part II (8 NACA Profiles) 
 

 In this annex, more general results for NACA 2415, 3415, 4415, 2420, 2520, 2620, 

4420 and 4430 are presented, using the same optimization method as for Part II. The table 

below presents the final weight for each of the 8 Wing-Box studied 

 
Table 3 - Mass optimization in Sol200 for the 8 studied WB with different  

NACA profiles with stress criterion only in Static Analysis. 

NACA 2415 3415 4415 2420 2520 2620 4420 4430 
Wing Semi-Span [m] 38,3 34,2 31,2 38,3 37,4 36,2 31,2 31,2 

Initial Mass [Kg] 2361,4 2148,0 2124,0 2091,8 2001,1 1883,8 1641,2 1407,5
Final Mass [Kg] 1551,9 1343,0 1096,2 1805,9 1729,0 1620,0 1244,3 1510,9
Reduction [%] -34,3 -37,5 -48,4 -13,7 -13,6 -14,0 -24,2 7,3 

 

 The quadratic mean of mass reduction for the 8 studied NACA profile is 26,1%, which 

is a great result since aeronautical industry searches the weight minimization at all costs. This 

study was conducted in order to provide a response tool to the Reduced Model, and a much 

deeper analysis about the influence of NACA parameters on global wing weight can be found 

on reference [2]. 

 As an exception for NACA 4430, the optimizations of the other 7 models follow the 

weight order that means the wings before and after optimization keep the same position in 

terms of final mass. Since all WB were design for corresponding wing with the same total lift 

coefficient, it’s visible that the NACA 4420 is the best chosen wing when considering 

lift/weight. In fact, the profile NACA 4420 has a good thickness ratio and a considerable 

maximum camber, being very similar to the profiles uses in commercial aircrafts (e.g. Airbus 

A320 wing uses a variation of NACA 4412 profile). 

 It’s also possible to see that increasing the maximum camber position in NACA 2X20 

series decreases the weight, and the same when increasing the maximum camber in NACA 

X415 series. That explains in parts why NACA 44XX is the best choice for this type of 

aircraft, since both maximum camber and maximum camber position are high enough and 

almost at the limit of NACA 4-Digits Series equations. 
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Annex 2 - Numerical results for Part II optimization 
 

Table 4 - Numerical results for the thickness optimization in Sol200 of NACA 2420  

profile WB with stress criterion only, in Static Analysis.  Front Spar Part II. 

Section Name 
Initial 

Thickness 
[mm] 

Final Thickness 
[mm] 

FRONT SPAR [Part II] 
1 Front Spar 1 3,02 7,43 
2 Front Spar 2 2,93 5,93 
3 Front Spar 3 2,84 4,36 
4 Front Spar 4 2,75 5,02 
5 Front Spar 5 2,65 4,85 
6 Front Spar 6 2,56 3,32 
7 Front Spar 7 2,46 2,82 
8 Front Spar 8 2,36 2,50 
9 Front Spar 9 2,25 1,84 
10 Front Spar 10 2,15 1,00 
11 Front Spar 11 2,32 1,00 
12 Front Spar 12 2,22 1,00 
13 Front Spar 13 2,13 1,15 
14 Front Spar 14 2,03 1,47 
15 Front Spar 15 1,93 1,51 
16 Front Spar 16 1,83 1,68 
17 Front Spar 17 1,73 1,58 
18 Front Spar 18 1,62 1,70 
19 Front Spar 19 1,52 1,85 
20 Front Spar 20 1,41 1,76 
21 Front Spar 21 1,30 1,47 
22 Front Spar 22 1,19 1,37 
23 Front Spar 23 1,07 1,18 
24 Front Spar 24 1,00 1,01 
25 Front Spar 25 1,00 1,00 
26 Front Spar 26 1,00 1,00 
27 Front Spar 27 1,00 1,00 
28 Front Spar 28 1,00 1,00 
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Table 5 - Numerical results for the thickness optimization in Sol200 of NACA 2420  

profile WB with stress criterion only, in Static Analysis.  Rear Spar Part II. 

Section Name 
Initial 

Thickness 
[mm] 

Final Thickness 
[mm] 

REAR SPAR 
1 Rear Spar 1 2,60 27,59 
2 Rear Spar 2 2,53 26,25 
3 Rear Spar 3 2,46 27,85 
4 Rear Spar 4 2,39 24,97 
5 Rear Spar 5 2,32 24,89 
6 Rear Spar 6 2,25 25,26 
7 Rear Spar 7 2,18 23,68 
8 Rear Spar 8 2,10 21,70 
9 Rear Spar 9 2,03 17,55 
10 Rear Spar 10 1,95 12,98 
11 Rear Spar 11 2,01 10,79 
12 Rear Spar 12 1,94 9,06 
13 Rear Spar 13 1,86 8,25 
14 Rear Spar 14 1,77 7,57 
15 Rear Spar 15 1,69 6,75 
16 Rear Spar 16 1,61 6,02 
17 Rear Spar 17 1,52 5,41 
18 Rear Spar 18 1,43 4,57 
19 Rear Spar 19 1,34 3,94 
20 Rear Spar 20 1,25 3,38 
21 Rear Spar 21 1,15 2,90 
22 Rear Spar 22 1,05 2,17 
23 Rear Spar 23 1,00 1,58 
24 Rear Spar 24 1,00 1,36 
25 Rear Spar 25 1,00 1,02 
26 Rear Spar 26 1,00 1,02 
27 Rear Spar 27 1,00 1,02 
28 Rear Spar 28 1,00 1,02 
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Table 6 - Numerical results for the thickness optimization in Sol200 of NACA 2420  

profile WB with stress criterion only, in Static Analysis.  Upper Skin Part II. 

Section Name 
Initial 

Thickness 
[mm] 

Final Thickness 
[mm] 

UPPER SKIN 
1 Upper Skin 1 5,43 5,75 
2 Upper Skin 2 5,28 5,60 
3 Upper Skin 3 5,14 4,95 
4 Upper Skin 4 4,99 4,89 
5 Upper Skin 5 4,85 4,44 
6 Upper Skin 6 4,70 3,93 
7 Upper Skin 7 4,56 3,66 
8 Upper Skin 8 4,42 3,39 
9 Upper Skin 9 4,28 3,25 
10 Upper Skin 10 4,14 3,07 
11 Upper Skin 11 3,98 2,99 
12 Upper Skin 12 3,80 2,90 
13 Upper Skin 13 3,62 2,71 
14 Upper Skin 14 3,44 2,51 
15 Upper Skin 15 3,25 2,33 
16 Upper Skin 16 3,06 2,14 
17 Upper Skin 17 2,87 1,95 
18 Upper Skin 18 2,67 1,79 
19 Upper Skin 19 2,47 1,60 
20 Upper Skin 20 2,26 1,41 
21 Upper Skin 21 2,06 1,20 
22 Upper Skin 22 1,84 1,07 
23 Upper Skin 23 1,62 1,02 
24 Upper Skin 24 1,40 1,02 
25 Upper Skin 25 1,16 1,02 
26 Upper Skin 26 1,00 1,02 
27 Upper Skin 27 1,00 1,02 
28 Upper Skin 28 1,00 1,02 
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Table 7 - Numerical results for the thickness optimization in Sol200 of NACA 2420  

profile WB with stress criterion only, in Static Analysis.  Lower Skin Part II. 

Section Name 
Initial 

Thickness 
[mm] 

Final Thickness 
[mm] 

LOWER SKIN 
1 Lower Skin 1 6,08 3,02 
2 Lower Skin 2 5,95 2,88 
3 Lower Skin 3 5,82 2,01 
4 Lower Skin 4 5,70 2,20 
5 Lower Skin 5 5,58 1,73 
6 Lower Skin 6 5,46 1,26 
7 Lower Skin 7 5,34 1,13 
8 Lower Skin 8 5,24 1,01 
9 Lower Skin 9 5,15 1,01 
10 Lower Skin 10 5,07 1,01 
11 Lower Skin 11 4,89 1,01 
12 Lower Skin 12 4,65 1,02 
13 Lower Skin 13 4,40 1,02 
14 Lower Skin 14 4,14 1,02 
15 Lower Skin 15 3,87 1,01 
16 Lower Skin 16 3,59 1,01 
17 Lower Skin 17 3,31 1,02 
18 Lower Skin 18 3,01 1,01 
19 Lower Skin 19 2,70 1,02 
20 Lower Skin 20 2,39 1,02 
21 Lower Skin 21 2,06 1,02 
22 Lower Skin 22 1,73 1,02 
23 Lower Skin 23 1,40 1,02 
24 Lower Skin 24 1,07 1,02 
25 Lower Skin 25 1,00 1,02 
26 Lower Skin 26 1,00 1,02 
27 Lower Skin 27 1,00 1,02 
28 Lower Skin 28 1,00 1,02 
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Annex 3 - Numerical results for Part III optimization 
 

Table 8 - Numerical results for the thickness optimization in Sol200 of NACA 2420  

profile WB with stress criterion only, in Static Analysis.  Front Spar Part II. 

Section Name 
Initial 

Thickness 
[mm] 

Final Thickness 
[mm] 

FRONT SPAR [Part II] 
1 Front Spar 1 3,02 7,43 
2 Front Spar 2 2,93 5,93 
3 Front Spar 3 2,84 4,36 
4 Front Spar 4 2,75 5,02 
5 Front Spar 5 2,65 4,85 
6 Front Spar 6 2,56 3,32 
7 Front Spar 7 2,46 2,82 
8 Front Spar 8 2,36 2,50 
9 Front Spar 9 2,25 1,84 
10 Front Spar 10 2,15 1,00 
11 Front Spar 11 2,32 1,00 
12 Front Spar 12 2,22 1,00 
13 Front Spar 13 2,13 1,15 
14 Front Spar 14 2,03 1,47 
15 Front Spar 15 1,93 1,51 
16 Front Spar 16 1,83 1,68 
17 Front Spar 17 1,73 1,58 
18 Front Spar 18 1,62 1,70 
19 Front Spar 19 1,52 1,85 
20 Front Spar 20 1,41 1,76 
21 Front Spar 21 1,30 1,47 
22 Front Spar 22 1,19 1,37 
23 Front Spar 23 1,07 1,18 
24 Front Spar 24 1,00 1,01 
25 Front Spar 25 1,00 1,00 
26 Front Spar 26 1,00 1,00 
27 Front Spar 27 1,00 1,00 
28 Front Spar 28 1,00 1,00 
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Table 9 - Numerical results for the thickness optimization in Sol200 of NACA 2420  

profile WB with stress criterion only, in Static Analysis.  Rear Spar Part II. 

Section Name 
Initial 

Thickness 
[mm] 

Final Thickness 
[mm] 

REAR SPAR 
1 Rear Spar 1 2,60 74,36 
2 Rear Spar 2 2,53 75,91 
3 Rear Spar 3 2,46 67,46 
4 Rear Spar 4 2,39 61,74 
5 Rear Spar 5 2,32 65,54 
6 Rear Spar 6 2,25 55,26 
7 Rear Spar 7 2,18 53,68 
8 Rear Spar 8 2,10 47,10 
9 Rear Spar 9 2,03 46,08 
10 Rear Spar 10 1,95 45,19 
11 Rear Spar 11 2,01 41,43 
12 Rear Spar 12 1,94 38,75 
13 Rear Spar 13 1,86 26,13 
14 Rear Spar 14 1,77 25,83 
15 Rear Spar 15 1,69 24,13 
16 Rear Spar 16 1,61 19,56 
17 Rear Spar 17 1,52 15,88 
18 Rear Spar 18 1,43 13,82 
19 Rear Spar 19 1,34 11,71 
20 Rear Spar 20 1,25 8,42 
21 Rear Spar 21 1,15 7,08 
22 Rear Spar 22 1,05 4,86 
23 Rear Spar 23 1,00 2,76 
24 Rear Spar 24 1,00 1,83 
25 Rear Spar 25 1,00 1,00 
26 Rear Spar 26 1,00 1,00 
27 Rear Spar 27 1,00 1,00 
28 Rear Spar 28 1,00 1,00 
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Table 10 - Numerical results for the thickness optimization in Sol200 of NACA 2420  

profile WB with stress criterion only, in Static Analysis.  Upper Skin Part II. 

Section Name 
Initial 

Thickness 
[mm] 

Final Thickness 
[mm] 

UPPER SKIN 
1 Upper Skin 1 5,43 5,35 
2 Upper Skin 2 5,28 3,53 
3 Upper Skin 3 5,14 3,69 
4 Upper Skin 4 4,99 4,22 
5 Upper Skin 5 4,85 3,50 
6 Upper Skin 6 4,70 3,85 
7 Upper Skin 7 4,56 3,01 
8 Upper Skin 8 4,42 2,99 
9 Upper Skin 9 4,28 2,51 
10 Upper Skin 10 4,14 1,97 
11 Upper Skin 11 3,98 1,73 
12 Upper Skin 12 3,80 1,00 
13 Upper Skin 13 3,62 1,01 
14 Upper Skin 14 3,44 1,00 
15 Upper Skin 15 3,25 1,00 
16 Upper Skin 16 3,06 1,00 
17 Upper Skin 17 2,87 1,00 
18 Upper Skin 18 2,67 1,00 
19 Upper Skin 19 2,47 1,00 
20 Upper Skin 20 2,26 1,00 
21 Upper Skin 21 2,06 1,00 
22 Upper Skin 22 1,84 1,00 
23 Upper Skin 23 1,62 1,00 
24 Upper Skin 24 1,40 1,00 
25 Upper Skin 25 1,16 1,00 
26 Upper Skin 26 1,00 1,00 
27 Upper Skin 27 1,00 1,00 
28 Upper Skin 28 1,00 1,00 
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Table 11 - Numerical results for the thickness optimization in Sol200 of NACA 2420  

profile WB with stress criterion only, in Static Analysis.  Lower Skin Part II. 

Section Name 
Initial 

Thickness 
[mm] 

Final Thickness 
[mm] 

LOWER SKIN 
1 Lower Skin 1 6,08 3,02 
2 Lower Skin 2 5,95 2,88 
3 Lower Skin 3 5,82 2,01 
4 Lower Skin 4 5,70 2,20 
5 Lower Skin 5 5,58 1,73 
6 Lower Skin 6 5,46 1,26 
7 Lower Skin 7 5,34 1,13 
8 Lower Skin 8 5,24 1,01 
9 Lower Skin 9 5,15 1,01 
10 Lower Skin 10 5,07 1,01 
11 Lower Skin 11 4,89 1,01 
12 Lower Skin 12 4,65 1,02 
13 Lower Skin 13 4,40 1,02 
14 Lower Skin 14 4,14 1,02 
15 Lower Skin 15 3,87 1,01 
16 Lower Skin 16 3,59 1,01 
17 Lower Skin 17 3,31 1,02 
18 Lower Skin 18 3,01 1,01 
19 Lower Skin 19 2,70 1,02 
20 Lower Skin 20 2,39 1,02 
21 Lower Skin 21 2,06 1,02 
22 Lower Skin 22 1,73 1,02 
23 Lower Skin 23 1,40 1,02 
24 Lower Skin 24 1,07 1,02 
25 Lower Skin 25 1,00 1,02 
26 Lower Skin 26 1,00 1,02 
27 Lower Skin 27 1,00 1,02 
28 Lower Skin 28 1,00 1,02 
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