
Institut Supérieur de l’Aéronautique et de l’Espace

Intelligent Mode Shape Recognition,

application to Turbine Blades

Final Project

Internship tutors Dr. Joseph Morlier (ISAE/DMSM)

Student Mauricio Bergh (ITA)

Index

Chapter I

1. Introduction

2. Theoretical Background

2.1 Modal analysis

2.2 Natural frequency

2.3 Linear Correlation Coefficient

2.4 Example of a New Mode shape Assurance Criterion using ZMD of a Circular Plate

2.5 Image Processing

2.6 Pattern Recognition

2.7 Fourier Descriptors

2.8 Moment Descriptors

2.9 Zernike Moment descriptor

2.10 Wavelet Descriptors

3. Development of Fourier reconstruction Matlab routine

3.1 Testing of Fourier Descriptor with Single Plate Data

3.1.1 Nodal line detection

3.1.2 Image description

4. Conclusion

Chapter II

1. Introduction

2. Our Approach

2.1 Example for Rectangular Plate

2.1.1 Undamaged Plate Data

2.1.2 Damaged Plate Data

2.2.1 Damaged Plate MAC

2.2.2 Undamaged Plate MAC

3. Conclusion

Chapter III

1. CATIA Model

2. Frequencies

3. Creating Image file

3.1 Using CATIA Export Data

3.2 Interpolation using Radial Basis Function (RBF)

4. MAC

4.1 Results for Data Set 1 (Top)

 4.2 Results for Data Set 2 (Lateral)
5. Conclusion

Conclusion

References

Appendix

Chapter I

1. Introduction

 The final objective of this study is to develop an alternative criterion for Model Shape
assurance, as the most currently used one, MAC (classic Modal Assurance Criteria), alongside
other calculations useful in Modal Assurance techniques, like the linear correlation
coefficient, still lack a more profound analysis of mode shape similarities. The new method is
meant to provide a criterion that can detect rotational and translational invariance of these
mode shapes, as well as furnish a wider set of factors for comparing them. This new method
will use computational Image Processing and Pattern Recognition features so as to obtain a
more detailed mode shape description and modelling.

2. Theoretical Background

2.1 Modal analysis

 Modal analysis is a process whereby one can describe a structure in terms of its natural
characteristics which are the frequency, damping and mode shapes – its dynamic properties.

Consider a certain structure submitted to a determined force. Let us imagine the case
in which this force possesses a fixed frequency of oscillation. If we change the rate of
oscillation of the force while the peak force value remains the same, measuring the response
on the structure (for example, using an accelerometer) we will notice that the displacement
amplitude changes as we change the rate of oscillation of the input force. This response
amplifies as we apply a force with a rate of oscillation that gets closer and closer to the
natural frequency (or resonant frequency) of the system and reaches a maximum when the
rate of oscillation is at the resonant frequency of the system. [1]

Let us consider a freely supported plate submitted to the test described before.
Measuring the displacement while increasing the oscillation frequency, we obtain a response
spectrum like the one below:

Fig.– Response spectrum

For any structure submitted to an oscillatory force, there will be a specific response
spectrum. The notable peaks in the response correspond to the natural frequencies.

The rate of oscillation is increased within a time period, so this is a time based
displacement response. Applying a Fourier Transform we can see a frequency based response.

Fig.– Frequency spectrum

In the figure above the natural frequencies become very clear: they are represented by

the peaks in which the response has higher magnitude. The deformation patterns at these
natural frequencies also take on a variety of different shapes depending on which frequency is
used for the excitation force. These deformation patterns are referred to as the modeshapes of
the structure. (From a mathematical standpoint, there are still factors to be considered, but
from a practical standpoint these deformation patterns are close enough execute modeshape
analysis)

These natural frequencies and mode shapes occur in all structures that we design.
Basically, there are characteristics that depend on the weight and stiffness of my structure
which determine where these natural frequencies and mode shapes will exist. A design
engineer needs to identify these frequencies and know how they might affect the response of
the structure when a force excites it. Understanding the mode shape and how the structure will
vibrate when excited helps to design better structures.

So, basically, modal analysis is the study of the natural characteristics of structures.
Understanding both the natural frequency and mode shape helps to design my structural
system for noise and vibration applications. We use modal analysis to help design all types of
structures including automotive structures, aircraft structures, spacecraft and computers. [1]

Therefore, the comparison of finite element (FE) modeshape predictions with
experimental measurements is an essential step in the model validation process for structural
dynamics. A reliable FE model can represent the modeshape pattern before any experiment
and make the design more trustworthy.

 Currently the most widely used method for comparison between the FE modeling and
experimental data is the modal assurance criterion (MAC), which can be interpreted as the
cosine of the angle between numerical (FE model) and measured eigenvectors. However, the
eigenvectors only contain the displacement of discrete coordinates, so that the MAC index
carries no explicit information on shape features. A single numerical value encapsulates all
the information contained in the difference between measured and predicted modes, which
means that an appreciation of subtle changes in shape, either locally or globally, is clearly
unobtainable from the MAC index in the case of large and complicated industrial systems. [2]

Alternative techniques for the MAC based on image processing (IP) and pattern
recognition (PR) are already being considered nowadays. A variety of useful shape
descriptors (or shape features) may be extracted from mode-shape information. For example,
curvature and bending-energy descriptors represent the shapes generally. The Fourier
descriptors (FD) and moment descriptors (MD) are capable of describing the global shape
efficiently and accurately. Local shape information may be determined by using wavelet
descriptors (WD). The comparison of mode shapes, one with another, is achieved by shape
classification, involving the assembly of shape-descriptor terms to form the shape feature
vector (FV). Distances between different FVs may then be used to assess the similarity of

different mode shapes. In the case of statistical variability in structures, the modeshape feature
vector may be considered as a multi-dimensional stochastic variable. Statistical pattern
recognition techniques including Bayesian decision theory and clustering can also be adopted.
Results demonstrate the good capability of shape feature vectors to recognise mode shapes
both deterministically and stochastically.

2.2 Modal Assurance Criteria

 Given that our model represents a realistic structure, we may proceed to the first step
in our research, that is, developing an alternative “quality assurance indicator for experimental
modal vectors that are estimated from measured frequency response functions” (doc. [14]),
other than the classical Modal Assurance Criterion (MAC).
 The primary method that has historically been used to validate an experimental modal
model is the weighted orthogonality check comparing measured modal vectors and an
appropriately sized (the size of the square weighting matrix must match the length and spatial
dimension of the modal vector) analytical mass or stiffness matrix (weighting matrix).
Variations of this process include using analytical modal vectors together with experimental
modal vectors and the appropriately sized mass or stiffness matrix. This latter comparison is
normally referred to as a pseudo-orthogonality check (POC).
 However, when the orthogonality conditions are not satisfied, this result does not
indicate where the problem originates. From an experimental point of view, it is important to
try to develop methods that indicate confidence that the modal vector is, or is not, part of the
problem.
 Basically this is the main principle of the modal assurance criterion (MAC). The
main difference is that the MAC has concern in providing a measure of consistency (degree of
linearity) between estimates of a modal vector. This provides an additional confidence factor
in the evaluation of a modal vector from different excitation (reference) locations or different
modal parameter estimation algorithms.
 The modal assurance criterion takes on values from zero – representing no consistent
correspondence, to one – representing a consistent correspondence. In this manner, if the
modal vectors under consideration truly exhibit a consistent, linear relationship, the modal
assurance criterion should approach unity and the value of the modal scale factor can be
considered reasonable. Note that, unlike the orthogonality calculations, the modal assurance
criterion is normalized by the magnitude of the vectors and, thus, is bounded between zero
and one.
 The modal assurance criterion can only indicate consistency, not validity or
orthogonality. If the same errors, random or bias, exist in all modal vector estimates, this is
not delineated by the modal assurance criterion. Invalid assumptions are normally the cause of
this sort of potential error. Even though the modal assurance criterion is unity, the
assumptions involving the system or the modal parameter estimation techniques are not
necessarily correct. The assumptions may cause consistent errors in all modal vectors under
all test conditions verified by the modal assurance criterion.
 For instance, let us examine the result table for MAC for a given experiment, as
presented below. It shows that the mode 1 (bottom line), for example, is consistently
correspondent to the value for mode 1, obtained from the experiment. In the same way, it
shows the reference value for mode 1 (left column) corresponds consistently only to mode 1.
Though obvious, this correlation may eventually show startling results, if we notice in the
same table, for instance, that modes 4 and 5 are also correspondent.

 MAC notorious flaws reside in not showing exactly how are two or more modes
correspondent, and not taking into account the validity of one isolated mode. If, let us say, the
calculation of two different modes present the same aberration or malfunction, those modes
will probably be shown as correspondent in MAC, although both of them contain no useful
data. Or else, if two different modes calculation are both incomplete, this will probably lead to
the mistaken result that they are not correspondent, when they actually can be.

Fig.– Results for classic Model Asssurance Criteria (MAC)

Using image processing (IP) and pattern recognition (PR), well developed in other

disciplines, might enable a more versatile comparison and classification of mode shapes
[15,16], which cannot be achieved by the conventional Modal Assurance Criterion (MAC)
[17]. A set of shape features with good discriminative capability may be extracted by IP and
PR methods to form a feature vector – shape descriptor (SD). Now the similarity/dissimilarity
of the shapes can be revealed by the ‘distance’ of their corresponding SDs in the shape feature
space according to appropriate criteria.

The Zernike moment descriptor (ZMD), Fourier descriptor (FD), and wavelet
descriptor (WD) are the most popular shape descriptors, having properties that include
efficiency of expression, robustness to noise, invariance to geometric transformation and
rotation, separation of local and global shape features and computational efficiency. Each one
has its own advantages depending on the kind of image being analysed, therefore a perfect,
accurate SD would be constituted by these multiple methods sensible combination.

The comparison of mode shapes is readily achieved by assembling the shape features
of each mode shape into multi-dimensional shape feature vectors (SFVs) and determining the
distances separating them. A shape feature vector (SFV) can be formed by assembling the
different SDs. The comparison of mode shapes is then transformed to the similarity
measurement between the SFVs in the feature space. Dimensionless normalisation for the
SFV is necessary before commencing the comparison to avoid the scaling effect.

2.3 Linear Correlation Coefficient

This is the statistical definition of the Pearson product-moment correlation coefficient
between two random variables, giving a value between +1 and −1 inclusive. It is widely used
in the statistical studies as a measure of the strength of linear dependence between two
variables. Pearson's correlation coefficient between two variables is defined as the covariance

of the two variables divided by the product of their standard deviations [19]. For a pair of 2-
dimension matrices, the Pearson’s coefficient, also commonly denoted by r, will be given by:

Where and are respectively the means of the values in A and B, and can be

automatically calculated by Matlab functions mean2(A) and mean2(B).

Matlab function corr2 calculates this coefficient, a 2-dimension correlation between
two matrices or vectors of the same size. The use of command r = corr2(A,B) results in a
scalar, which can be calculated for every mode shape pair (A,B). The correlation coefficient
ranges from −1 to 1. A value of 1 means that a linear equation describes the relationship
between A and B perfectly, with all data points lying on a line for which B increases as A
increases; a value of −1 implies that all data points lie on a line for which B decreases as A
increases; value of 0 implies that there is no linear correlation between the variables.

It is important to notice that the calculation of this coefficient itself constitutes a better
comparison than the MAC, whose calculation is merely based in vector multiplication. The
Pearson’s correlation coefficient, or, more exactly, the method using function corr2 as a
comparison standard, already takes into account, for instance, the mode shapes whose
displacements are in inverse linear correlation. For values equal to -1, we can observe that the
displacement are inverse, giving the idea that the mode shapes may be symmetric.

However, like MAC, it is still a purely mathematic operation that does not take into
account the distribution and the quality of data given as input, nor the nature of the correlation
between two mode shapes.

2.4 Example of a New Mode shape Assurance Criterion using ZMD of a Circular Plate

As shown in [7], the free vibration of a circular plate can be modelled by finite
elements. Since the circular plate is a perfectly axisymmetric structure double modes are
obtained. Observing the modes 1 and 2, it is possible to visualize a correlation between them:

Modeshapes 1 and 2 from experiment

The conventional MAC indicates that they do not correspond totally to one another,

but a simple visualization can point out they differ by simple rotation. As the Zernike moment
description is invariant to rotation, those two modes have the same ZMD pattern, hence the
correlation between them can be mathematically shown. In [7], the Zernike descriptors for
each mode and the assurance criterion using them are exemplified:

Zernike moment descriptors for 20 experimental modeshapes

The conventional mode-shape comparison method, MAC, shows nothing about the

double modes. The ZMD is applied to the first 20 modes, as only a small number of the lower
order ZMDs are needed to represent all the modes. Correlation of mode shapes based on the
ZMD amplitudes is shown where the double modes can be clearly recognised.

Zernike-descriptor-based assurance criteria

Slight differences can be noticed between the descriptors for modes 1 and 2, but the

main descriptors are practically the same, therefore justifying the correlation indicated in the
new criterion. As the circular plate has a simple geometry, the necessary number of used
descriptors can be low. For more complicated geometry, more descriptors might be needed
and the slight differences may appear more often, as the modeshape also becomes more
complex.

 This is an example for the case of a singular simple structure, analysed purely by only
one of the mentioned methods. It is very important to point out that the Zernike moment
description is based in the Zernike moment function, which is defined within the unit circle.

Therefore, the ZMD descriptors can be sharply applied on circular geometries, or geometries
that can be reshaped easily into a circle.
 This is why the utilisation of multiple methods is very handy when dealing with
pattern recognition. Specifically, the ZMD is powerful in discriminating circular and spherical
images; the FD is more general and very effective at extracting mode-shape features by virtue
of its sinusoidal kernel; the WD shows the capability of distinguishing between local and
global features, to cite the most common few methods.

2.5 Image Processing

 Image processing (IP) is a set of computational techniques for analyzing, enhancing
and reconstructing images. Its main components are: importing, in which an image is captured
through scanning or digital photography; analysis and manipulation of the image, accomplish-
ed using various specialized software applications; and output (e.g., to a printer). [3]

2.6 Pattern Recognition

A typical pattern recognition (PR) approach involves the estimation of a series of
shape attributes or features with good discriminative capability. The mapping from the space
of shapes to the space of shape descriptors should determine the distance between descriptors
of two models as a meaningful measure of the underlying similarity of their shapes.

2.7 Fourier Descriptors

 Fourier Descriptors (FDs) were originally proposed in 1960 by Cosgriff [4], and
thereafter became popular among the pattern recognition community through the papers of
Zahn [5], Persoon and Fu [6] and are among the most popular shape representation methods
for vision and pattern recognition applications. The basic idea underlying this approach
consists in representing the shape of interest in terms of a 1D, 2D or even 3D signal. The
Fourier transform of this signal is determined and the FDs are calculated for this Fourier
representation. As there are plenty of possible Fourier representation definitions for a single
signal, FDs might be understood as a class of methods, not a single method. Some properties
of the FDs directly follow from the underlying theory of the Fourier transforms and series, for
instance, the invariance to geometric transformations.

The FD is based on the frequency components from Fourier transform (FT) of the
images. According to the well-known theory of the FT, the kernel function of the SD is the
complex valued sinusoid,

Df(u,v) is a continuous function having the same cardinality as I(x,y), and for real

applications, this needs to be reduced whilst retaining as much information as possible.
Generally the low frequency and higher energy components are sufficient to describe the
shape. Thus, for instance, elliptical descriptors based on the FD spectrum are feasible to
indicate the distribution of the frequency energy. [7]

In reference [8] are listed some Matlab routines that can be used for simple
implementation of 1D Fourier descriptors, based in the angular functions and in the elliptic
function, respectively. The routine used in the development of a Fourier descriptor in Matlab
was the 2D elliptic descriptor, which is stated below:

%Elliptic Fourier Descriptors
function EllipticDescrp(curve,n,scale)

%n=num coefficients
%if n=0 then n=m/2
%Scale amplitud output
%Function from image
X=curve(1,:);
Y=curve(2,:);
m=size(X,2);
%Graph of the curve
subplot(3,3,1);
plot(X,Y);
mx=max(max(X),max(Y))+10;
axis([0,mx,0,mx]); %Axis of the graph pf the curve
axis square; %Aspect ratio
%Graph of X
p=0:2*pi/m:2*pi-pi/m; %Parameter
subplot(3,3,2);
plot(p,X);
axis([0,2*pi,0,mx]); %Axis of the graph pf the curve
%Graph of Y
subplot(3,3,3);
plot(p,Y);
axis([0,2*pi,0,mx]); %Axis of the graph pf the curve

%Elliptic Fourier Descriptors
if(n==0) n=floor(m/2); end; %number of coefficients

%Fourier Coefficients
ax=zeros(1,n); bx=zeros(1,n);
ay=zeros(1,n); by=zeros(1,n);
t=2*pi/m;
%Graph coefficient ax
subplot(3,3,4);
bar(ax);
axis([0,n,-scale,scale]);
%Graph coefficient ay
subplot(3,3,5);
bar(ay);
axis([0,n,-scale,scale]);
%Graph coefficient bx
subplot(3,3,6);
bar(bx);
axis([0,n,-scale,scale]);
%Graph coefficient by
subplot(3,3,7);
bar(by);
axis([0,n,-scale,scale]);
%Invariant
CE=zeros(1,n);
for k=1:n
CE(k)=sqrt((ax(k)^2+ay(k)^2)/(ax(1)^2+ay(1)^2))

+sqrt((bx(k)^2+by(k)^2)/(bx(1)^2+by(1)^2));
end

Image reconstruction is straight forward by applying the inverse Fourier transform.
Good approximation may be obtained by retaining a sufficient number of higher energy
terms.

%Graph of Elliptic descriptors
subplot(3,3,8);
bar(CE);
axis([0,n,0,2.2]);
for k=1:n
for i=1:m
ax(k)=ax(k)+X(i)*cos(k*t*(i-1));
bx(k)=bx(k)+X(i)*sin(k*t*(i-1));
ay(k)=ay(k)+Y(i)*cos(k*t*(i-1));
end
by(k)=by(k)+Y(i)*sin(k*t*(i-1);

ax(k)=ax(k)*(2/m);
bx(k)=bx(k)*(2/m);
ay(k)=ay(k)*(2/m);
by(k)=by(k)*(2/m);
end
%..

In order to show the importance of the lower and higher energy terms, it is interesting

that a step-by-step image reconstruction is shown, which will also be considered in this work.

2.8 Moment Descriptors

One of the simplest and most intuitive shape descriptors is the geometric moment.
Given a two-dimensional continuous image I(x,y) the geometric moments mp,q of order (p+q)
are defined as [2]

 (1)
For an Nx X Ny digital image the integral is replaced by summation:

 (2)
As a given image will have a unique geometric moment sequence, a sequence can be

considered as a set of shape descriptors to distinguish different shapes.
However, the basis of geometric moments is not orthogonal, hence the moment

sequence includes redundant information to a high degree and the high-order moments are
very sensitive to noise. It also makes the original shape generally more difficult to recover
from a truncated set of moment descriptors. This argument justifies the use of bases that are
less intuitive than the geometric moment, but have much superior properties for
discrimination of images (or shapes), for reconstruction and for comparison between one
image and another. One such descriptor is the Zernike moment descriptor (ZMD).

2.9 Zernike Moment descriptor

The Zernike moment (ZM) is based on a complete set of orthogonal polynomials,

rather than the traditional algebraic polynomials used in the geometric moments, defined over
a circle of unit radius – known as the Zernike polynomials. The Zernike moment is one of the
most important region-based shape descriptors because of its outstanding properties resulting
from the orthogonality of the Zernike polynomials. These properties incluse:

- Minimum information redundancy, obtained while expressing an image as a
set of mutually independent descriptors;

- Contribution of each order of moment to the image reconstruction can be
separated, so that the process of regaining the original image is much easier
than by geometric moment descriptors [9].

- Rotational invariance [10, 11], i.e., rotating an image does not change the
magnitudes of its Zernike moments.

- Robustness to noise [9] and effectiveness, hence a small number of Zernike
moments are usually sufficient for shape reconstruction.

The complete set of orthogonal complex polynomials over a circle of unit radius

introduced by Zernike [16] can be expressed as

 (3)
Where i = 1− ,n non-negative integer, representing the order of the radial polynomial,

m positive and negative integers subject to constraints n- m even, m ≤ n, representing the
repetition of the azimuthal angle, ρ length of vector from the origin to (x,y), θ the azimuthal
angle between vector ρ and the x-axis in the counter clockwise direction, Rn,m radial
polynomial defined as:

 (4)
 These polynomials are orthogonal within the unit circle, so, if necessary, the analysed
shape (the area of interest) has to be remapped to be of this size before calculation of its
moments. There resides the ZMD biggest flaw: it implies difficulty in mapping a unit circle to
a Cartesian grid. Some approaches can be done with the purpose of reshaping the original
image, and make it fit for ZMD utilisation. As illustrated below, the image can be reshaped so
that circle can be within the area of interest, losing some rarely-used corner information (a), or
around the area of interest, which then covers areas where there is no information, but ensures
that all the information within the area of interest is included (b). [8]

Frequency spectrum

 For simpler geometries there is also the possibility to a reshaping method that can
transform a convex polygon into a unit circle, described in [2].
 Although very useful, the utilisation of ZMDs is restricted to the structure capability of
fitting into the unit circle, after adequate mathematical manipulation. If the process of
reshaping is too complex, the method effectiveness, minimal redundancy and reconstruction
ease, its main advantages, can be damaged.

2.10 Wavelet Descriptors

Wavelet transformation represents an image in terms of the superposition of wavelet with

different scale levels and positions. The wavelet, having better time-frequency resolution than a
Fourier transform [12], can be expressed as

 (5)

Where a +ℜ∈ !is the dilating scale parameter, (bx,by)!
2ℜ∈ are the translation parameters and

abybx ,,ψ is the translated and dilated version of the mother wavelet ψ (x,y). The normalisation factor

1/a!is included so that ψψ =abybx ,, . Depending on the applications, these parameters can be chosen

as either continuous or discrete values. The definition of CWT can be expressed as an inner product of
the wavelet and the image, [7]

(6)

For the wavelet to be oscillatory with a null DC component, the mother wavelet must

satisfy,

 (7)
Considering in a simple approach the wavelet decomposition of a two-dimensional

mode shape, the two-dimensional discrete wavelet transform for an image can be obtained by
implementing the one-dimensional algorithm horizontally and then vertically. The outputs
from each step of decomposition are the sub-images of one approximation at coarser
resolution and three sub-images of detail in horizontal, vertical and diagonal directions as
illustrated below. Thus, the comparison between images can now be carried out between the
sub-images at different resolutions. In additional, these coefficients can be used as the WDs
and the average energy of each sub-image may be used to form the SFV. [7]

Frequency spectrum

3. Development of Fourier reconstruction Matlab routine

 At a first moment, the main efforts were concentrated in building a Matlab routine for
image processing and pattern recognition using the Fourier Descriptor method. If possible, try
to develop a routine to use two or more methods alongside, or reunite two different routines.

After completing this first task, the main concern was implementing the developed
routine using simply supported plate data as input. Subsequently the routine may be
implemented in a damaged plate data and in the finite element turbine blade model.

It was possible to obtain 15 mode shape images from the plate data set. The results
obtained and the Matlab functions development stages are presented as follows.

3.1 Testing of Fourier Descriptor with Single Plate Data

3.1.1 Nodal line detection

- How to use function nodal_line_identification.m :
The function nodal_line_identification.m was developed with the intention to
display the 18 plate mode shapes available, showing, at first, the 18 mode shapes
altogether, and then each one with its own nodal region presented. The data were
extracted from .rpt files, each file named mode#.rpt (where # represents the respective
mode shape number) and containing the data due to one only mode shape. The
organisation of each file is explained as comments in the function commands. The
function code is as stated as follows:

%function for nodal line identification
clear all; close all;

%in each file mode.rpt there are 3 columns :
% column 1 : n°nodes
% column 2 : U magnitude
% column 3 : U3 (dep vertical)
% plat dimensions : 236 * 291 mm
% material : density =1550kg/m3
% E1=110.3GPa, E2=E3=7.69GPa, G12=G13=4.75GPa, G23=2.746GPa

for ii=1:18
RPT=sprintf('mode%d.rpt',ii) ;
mode=dlmread(RPT);
if (ii==1),data(:,ii)=mode(:,1); end
data(:,2*ii:2*ii+1)=mode(:,2:3);
if mod(ii,6)==0, tab=6; else tab=mod(ii,6);end
if (mod(ii,6)==1), figure;end

subplot(2,3,tab)

imagesc((reshape(data(:,2*ii),59,[]))')
title(sprintf('Mode Shape %d',ii))

if (tab==6), pause;end

end

%frequencies for each mode
%mode1: f=201.34 Hz %mode2: f=268.93 Hz
%mode3: f=502.92 Hz %mode4: f=554.49 Hz
%mode5: f=652.11 Hz %mode6: f=932.23 Hz
%mode7: f=975.54 Hz %mode8: f=1085.4 Hz
%mode9: f=1192 Hz %mode10: f=1419.4 Hz
% mode 11 : f=1544.7 Hz; %mode 12 : f=1662.7 Hz
% mode 13 : f=1787.5 Hz; %mode 14 : f=1895.2 Hz % mode 15 : f=2030.5 Hz

% dispose all values on a «data » table, simpler to manipulate later
%data(:,1)=mode1(:,1);
%data(:,2:3)=mode1(:,2:3); ... data(:,30:31)=mode15(:,2:3);

%mode1, Umagnitude
%Umag_mode1=(reshape(data(:,2),59,[]))';
%mode2, Umagnitude
%Umag_mode2=(reshape(data(:,4),59,[]))';
%...
%mode 15, Umagnitude
%Umag_mode15=(reshape(data(:,30),59,[]))';

for jj=1:18

n_line((reshape(data(:,2*jj),59,[]))',jj);
end

Other comments regarding to the frequencies obtained from each mode shape and way
each mode shape had to be reshaped to fit the image format were also left in the
function. The first command sequence reads the data available in the files and displays
the image extracted from each mode shape, displaying all 18 mode shapes together.
After you execute, the program will automatically generate a picture representation
from the 18 data sets available in the directory (the eighteen .rpt files that have to be
seen in the current directory). Three windows are going to be created, each one
containing five modes and being shown in the screen by pressing any key in the
keyboard. They will be presented as follows:

Mode Shape 1

10 20 30 40 50

10

20

30

40

Mode Shape 2

10 20 30 40 50

10

20

30

40

Mode Shape 3

10 20 30 40 50

10

20

30

40

Mode Shape 4

10 20 30 40 50

10

20

30

40

Mode Shape 5

10 20 30 40 50

10

20

30

40

Mode Shape 6

10 20 30 40 50

10

20

30

40

Mode Shape 7

10 20 30 40 50

10

20

30

40

Mode Shape 8

10 20 30 40 50

10

20

30

40

Mode Shape 9

10 20 30 40 50

10

20

30

40

Mode Shape 10

10 20 30 40 50

10

20

30

40

Mode Shape 11

10 20 30 40 50

10

20

30

40

Mode Shape 12

10 20 30 40 50

10

20

30

40

Mode Shape 13

10 20 30 40 50

10

20

30

40

Mode Shape 14

10 20 30 40 50

10

20

30

40

Mode Shape 15

10 20 30 40 50

10

20

30

40

Mode Shape 16

10 20 30 40 50

10

20

30

40

Mode Shape 17

10 20 30 40 50

10

20

30

40

Mode Shape 18

10 20 30 40 50

10

20

30

40

The final command lines will set the execution of function n_line. This function
detects the region in the image closest to the nodal line. It is possible to set a threshold
to define this nodal line width, which is made by setting the values of mean value
“average” and interval range “epsilon” (here set to 0.5 and 0.1, respectively) to values
of interest.

As the program represents all fifteen mode shapes and its nodal lines, it will lead to
fifteen more graphics. As before, each graphic is shown after pressing any key to make
the program exit the pause command. A representation of the plotting for mode 1 is
shown below, as an example for the kind of result generated for each mode:

Mode Shape 1

5 10 15 20 25 30 35 40 45 50 55

10

20

30

40

Mode Shape 1 Nodal Line

5 10 15 20 25 30 35 40 45 50 55

10

20

30

40

function n_line(imagemode,mode)

nomsave=sprintf('mode%d.bmp',mode) ;

 gimg=imagemode;

 %create nodal line by thresholding epsilon
 epsilon=0.1;average=0.5;
 nodalline=(gimg<epsilon+average)&(gimg>-epsilon+average);

%add complement
imwrite(imcomplement(nodalline),nomsave);
% level = graythresh(abs(gimg));
% nodalline = im2bw(abs(gimg),level);

figure;
subplot(211);imagesc(gimg); title(sprintf('Mode Shape %d',mode));
subplot(212);imagesc(nodalline);title(sprintf('Mode Shape %d Nodal Line',mode));
pause;

 Define nodal
line range

Function also saves each nodal line image (shown in red) as a bitmap file, there can be
used later for image description. They are all named 'mode%d.bmp' (where %d
represents the respective mode shape number).

3.1.2 Image description

The nodal lines extracted from the mode shapes using the previous Matlab functions
will be submitted to the Fourier description method. The image description of the
nodal line, extracted from mode shape 1 data, is done by function demoFDplate.m.
The function code is as stated below:

Executing this code will provide a Fourier description from the mode shape given by
the bitmap file name given in position 1. The number in position 2 allow you alter the
resolution of the given image, if necessary (a resolution of 5 is already greatly
acceptable), also knowing that a bigger resolution will improve the obtained image
quality, but will take more computation time. Finally, you can choose the quantity of
descriptors to be used in position 3. A number of descriptors equal to 50 leads to a
very good reconstruction, but also takes computation time to be developed. The
usually adopted number is 25, for reasonable results.

Notice that the function EllipticDescrp.m is used. This function is based in the
function given by ref. [8]. The results obtained from this function and CompleteFD.m
are distinct and interdependent.

The function CompleteFD.m commands were divided for better explanation as
follows:

clear all;close all;
%inputimage=im2bw(imread('test4.bmp'));
inputimage=imread('mode1.bmp'); imagesc(inputimage);
s=size(inputimage);
%add 2 lines and columns to avoid boundary effects
imageC=ones(s(1)+4,s(2)+4);
 imageC(3:end-2,3:end-2)=inputimage;
%imageC= IIR(imageC,2);
%enhance image resolution coef res
res=5;
imageC = im2bw(interp2(imageC,res));
imagesc(imageC); title('Original image');

curve=CompleteFD(imageC);
EllipticDescrp(curve,50);

1 Change here the mode
you want to analyse

2 Choose the resolution
you want in the shown
image

3 Choose how many
descriptors you want to use

%Gradual elliptic Fourier Descriptor+Contour
function curve=CompleteFD(Input)
%%%
% Function from image

global inputimage
inputimage=Input;
curve=[];

 This first data set is destined to ensure that all curves in the image will be analyzed.
While the subfunction checkimg indicates that there are still curves in the original image
whose Fourier transforms were not taken into account in the obtained analyzed image, the
function continues to search for curve contours in the input data set, which is erased after the
contour total extraction.
 The function Contour2 extracts the contour from each curve present in the input data
set at a time. For each curve, the obtained contour is stored in extractcontour and the
remaining image (the input image without the already extracted contours) is stored in
extractimage. The entirety of obtained contours is stored in curve, and the condition for
exiting the loop is simple: when there is no non-analyzed pixel remaining in the original
image inputimage, and all contours of interest are in already stored in curve, then the while
-loop ends. The final commands are simply to display the original image and the obtained
contours.

while(checkimg(inputimage))
[extractcontour,extractimage]=Contour2(inputimage);
curve=[curve extractcontour];

 X=curve(1,:);
 Y=curve(2,:);
 if (size(X,2)~=0)
 for index=1:size(X,2)
 inputimage(Y(index),X(index))=1;
 end
 end
inputimage=extractimage;

end

% Graph of the curve
 X=curve(1,:);
 Y=curve(2,:);

 figure;
 plot(X,Y);
 mx=max(max(X),max(Y))+10;
 axis([0,mx,0,mx]); % Axis of the graph pf the curve
 axis square; % Aspect ratio
 title('Obtained Image');
%%%

%%%
 function f=checkimg(inputimage)

[rows,columns]=size(inputimage);
f=0;
for x=2:columns-1
 for y=2:rows-1
 if (inputimage(y,x)==0),f=1;end
 end
end

%%%

 The subfunction checkimg merely checks if there is any non-analyzed pixel in the
image to be analyzed. If this is true, i.e., there is any non-analyzed pixel, the subfunction
returns the value 1, if not, it returns the value 0.

%%%
% Contour extraction form a binary image

function [outputcontour,outputimage] = Contour2(inputimage)

global border
 %Image size
 [rows,columns]=size(inputimage);
 outputimage=inputimage;

%%%
%Image border identification
%the counter b indicates the number of neighbor pixels that also belong
%to the image.

 % num neighbours #Black~=8
 border=zeros(rows,columns);

 for x=2:columns-1
 for y=2:rows-1
 if inputimage(y,x)==0
 b=0;
 for Nx=x-1:x+1
 for Ny=y-1:y+1
 if(x~=Nx || y~=Ny)
 if inputimage(Ny,Nx)==0
 b=b+1;
 end
 end
 end
 end
 if(b~=8),border(y,x)=1;end
 end
 end
 end

%%%
%Erase pixels that do not belong to border.
for x=2:columns-1
 for y=2:rows-1
 if (border(y,x)~=1)
 outputimage(y,x)=1;
 end
 end
end

%%%

%%%
% follow
outputcontour=[];

This section is used for the image contour detection. Once one curve is detected, every

 % Condition: Do the following calculation only for closed curves

 %%%
 %The following lines are developed to make the image borders
 %thinner (thickness=1 pixel).
 %Hence, it is not necessary for open curves, i.e., curves
 %that are already 1-pixel-thick.
 %%%
%Thin borders
%
% delete pixel if does not break a chain
% N8: neighbours !=0
%
% (x,y):
% N=Card(N8(x,y))
% B=Sum(Card(N8(P)) for P in N8(x,y)
%
% if((n-1)*2==B) not break a chain
%

 for x=2:columns-1
 for y=2:rows-1
 N=0; B=0; % num neighbours
 if border(y,x)>0
 for Nx=x-1:x+1 % 8 Neigbour
 for Ny=y-1:y+1
 if ((Nx~=x || Ny~=y) && border(Ny,Nx)>0)
 N=N+1;
 for NNx=x-1:x+1 % 8 Neigbour
 for NNy=y-1:y+1
 if ((NNx~=x || NNy~=y)&&
border(NNy,NNx)>0)
 if ((NNx~=Nx || NNy~=Ny))
 if(abs(NNx-Nx)<2 && abs(NNy-Ny)<2)
 B=B+1;
 end
 end
 end
 end
 end

 end
 end
 end

 if((N-1)*2==B)
 border(y,x)=0;
 end
 end
 end
 end
%%%

%%%
for x=2:columns-1
 for y=2:rows-1
 if border(y,x)~=1,outputimage(y,x)=1;end
 end
end
%%%

pixel inside it is erased. Then, the curves contours are extracted. A final verification is made
to ensure that the contours are one-pixel-thick.

%Search starting point
 dmin=rows+columns;d=0;
 strtx=1; strty=1;
 for x=2:columns-1
 for y=2:rows-1

 if (outputimage(y,x)==0 && border(y,x)==1)

 d=y+x;

 if(d<dmin)

 dmin=d;

 strtx=x; strty=y;
 %ContX=x;ContY=y;

 end

 end
 end
 end

if d~=0
 %insert initial point
 sx=strtx; sy=strty;
 outputcontour=[outputcontour [sx;sy]];
 border(sy,sx)=0; %point in the output contour

 % next point
 cx=0;cy=0;
 for x=sx-1:sx+1;
 for y=sy-1:sy+1
 if(border(y,x)~=0)
 cx=x; cy=y;
 end
 end
 end

 % border following
 while((cx~=strtx || cy~=strty))
 if (cx~=0 && cy~=0),outputcontour=[outputcontour [cx;cy]];
%store current point
 sx=cx; sy=cy;
 border(sy,sx)=0; %point in the output contour
 else
 border(sy,sx)=0;

o
u
t
p
u
t
s

w
i
l
l

b
e

 This final section is destined to ordinate the pixels obtained in the extracted
contour. After choosing a starting pixel (in this case, the pixel with the smallest
coordinates), the function searches for a pixel next to it that belongs to the contour,
proceeding to finding the pixel next to this second, and so on. When the function
returns to the first pixel, the loop is ended. Therefore, the function is useful for
multiple closed curved analyses.
 The results obtained are shown as follows. The description of an image with
multiple curves has reasonable quality, no matter how many curves it has.

 end

 % next point
 n=size(outputcontour,2); % num pts
 stp=0;
 for x=sx-1:sx+1
 for y=sy-1:sy+1
 if((x~=sx || y~=sy) && ~stp)
 if(n>3 && x==strtx && y==strty) % arrive to the end
 cx=x; cy=y;
 stp=1; % stop cicle
 elseif(border(y,x)~=0)
 cx=x; cy=y;
 end
 end
 end
 end

 end %while ((cx~=strtx || cy~=strty))

end

 X=outputcontour(1,:);
 Y=outputcontour(2,:);
 if (size(X,2)~=0)
 for index=1:size(X,2)
 outputimage(Y(index),X(index))=1;
 border(Y(index),X(index))=0;
 end
 end

%%%
% End of calculation for closed curves
%%%

Original image

200 400 600 800 1000 1200 1400 1600 1800

200

400

600

800

1000

1200

1400

A representation from the black and white picture to be analysed.

0 500 1000 1500
0

500

1000

1500

Obtained Image

A representation from the previous picture’s contour.

These are the results generated by CompleteFD.m. They will be used to generate the

results of function EllipticDescrp.m,which calculates the Elliptic Fourier function
descriptors. The commands will also be divided in 4 sets, for better explanation.

This first command set is for calculation of the Fourier transform from the obtained
contour. The original contour and normalized Fourier transform are also displayed, for better
visualization of the results.

% Elliptic Fourier Descriptors
function EllipticDescrp(Curve,n) % n= num coefficients
 % if n=0 then n=m/2
 % Scale amplitud output
%%%
% Function from image

curve=double(Curve);
X=curve(1,:);
Y=curve(2,:);
m=size(X,2);
%%%

%%%
% Graph of the curve
figure;
 subplot(3,2,1); % The plot
 plot(X,Y);
 mx=max(max(X),max(Y))+10;
 axis([0,mx,0,mx]); % Axis of the graph pf the curve
 axis square; % Aspect ratio
 title('Original Image')
%%
%%%
% Graph of X
 p=0:2*pi/m:2*pi-pi/m; % Parameter
 subplot(3,2,2); % The plot
 plot(p,X);
 axis([0,2*pi,0,mx]); % Axis of the graph pf the curve
 title('Fourier Transform')
%%

%%%
% Graph of Y
 subplot(3,2,3); % The plot
 plot(p,Y);
 axis([0,2*pi,0,mx]); % Axis of the graph pf the curve
 title('Normalized Fourier Transform')
%%

This second command set is for calculation of the descriptors. Each descriptor is
calculated using the Elliptic function definition [8], and the fifty calculated descriptors are
displayed in absolute value (all positive).

%%%
% Elliptic Fourier Descriptors

 if(n==0), n=floor(m/2); end; % num coefficients

 ax=zeros(1,n); % Fourier Coefficients
 bx=zeros(1,n);
 ay=zeros(1,n);
 by=zeros(1,n);

 t=2*pi/m;

 for k=1:n
 for i=1:m
 ax(k)=ax(k)+X(i)*cos(k*t*(i-1));
 bx(k)=bx(k)+X(i)*sin(k*t*(i-1));
 ay(k)=ay(k)+Y(i)*cos(k*t*(i-1));
 by(k)=by(k)+Y(i)*sin(k*t*(i-1));
 end
 ax(k)=ax(k)*(2/m);
 bx(k)=bx(k)*(2/m);
 ay(k)=ay(k)*(2/m);
 by(k)=by(k)*(2/m);
 end

%%%

%%%
% Invariant (the final descriptors)
 CE=zeros(1,n);

 for k=1:n
 CE(k)=sqrt((ax(k)^2+ay(k)^2)/(ax(1)^2+ay(1)^2))+

sqrt((bx(k)^2+by(k)^2)/(bx(1)^2+by(1)^2));
 end

subplot(3,2,4);
 bar(CE);
 axis([0,n,0,.6]);
 title('Fourier Descriptors');
%%%

The third command set is destined to the reconstruction using the fifty calculated

descriptors. By calculating the curve values for X and Y, using as starting point only the
obtained descriptors, a new curve is obtained, that is very similar to the original one. The
descriptors magnitude and the reconstruction accuracy, for the use of 50 descriptors, can be
observed by displaying the results calculated so far:

%%
Reconstruction (total, for the input number of descriptors)

 ax0=0;
 ay0=0;
 for i=1:m
 ax0=ax0+X(i);
 ay0=ay0+Y(i);
 end
 ax0=double(ax0/m);
 ay0=double(ay0/m);

 RX=ones(1,m)*ax0;
 RY=ones(1,m)*ay0;

 for i=1:m
 for k=1:n
 RX(i)=RX(i)+ax(k)*cos(k*t*(i-1))+bx(k)*sin(k*t*(i-1));
 RY(i)=RY(i)+ay(k)*cos(k*t*(i-1))+by(k)*sin(k*t*(i-1));
 end
 end

 subplot(3,2,5);
 plot(RX,RY);
 mx=max(max(RX),max(RY))+10;
 axis([0,mx,0,mx]); % Axis of the graph pf the curve
 axis square; % Aspect ratio
 title('Reconstructed Image');
%%%

0 1000
0

1000

Original Image

0 2 4 6
0

1000

Fourier Transform

0 2 4 6
0

1000

Normalized Fourier Transform

0 10 20 30 40 50
0

0.5

Fourier Descriptors

0 1000
0

1000

Reconstructed Image

 The reconstructed image already gives a good idea of the original image. For better
accuracy, we can use a greater descriptor quantity, always keeping in mind that the time to
calculate the reconstructed image will also be greater.
 The final command set is the one that generates a visualization of the image being
gradually reconstructed. It is also the one that takes the greatest computational effort, which
spends more time in calculation and displaying. If more improvement in speed is wanted from
the routine, this is the section to work on, while it is the one in which computational time is
most critical.

%%%
% Elliptic Fourier Descriptors calculation for gradual reconstruction
figure;
for R=1:8

 %if(n==0), n=floor(m/2); end; % num coefficients

 switch R
 case 1
 coeff=1;
 case 2
 coeff=2;
 case 3
 coeff=4;
 case 4
 coeff=6;
 case 5
 coeff=8;
 case 6
 coeff=12;

 case 7
 coeff=25;
 case 8
 coeff=50;

 end
 ax=zeros(1,coeff); % Fourier Coefficients
 bx=zeros(1,coeff);
 ay=zeros(1,coeff);
 by=zeros(1,coeff);

 t=2*pi/m;

 for k=1:coeff
 for i=1:m
 ax(k)=ax(k)+X(i)*cos(k*t*(i-1));
 bx(k)=bx(k)+X(i)*sin(k*t*(i-1));
 ay(k)=ay(k)+Y(i)*cos(k*t*(i-1));
 by(k)=by(k)+Y(i)*sin(k*t*(i-1));
 end
 ax(k)=ax(k)*(2/m);
 bx(k)=bx(k)*(2/m);
 ay(k)=ay(k)*(2/m);
 by(k)=by(k)*(2/m);
 end
%%%

%%%
% Gradual Reconstruction

 ax0=0;
 ay0=0;
 for i=1:m
 ax0=ax0+X(i);
 ay0=ay0+Y(i);
 end
 ax0=double(ax0/m);
 ay0=double(ay0/m);

 RX=ones(1,m)*ax0;
 RY=ones(1,m)*ay0;

 resborder=[];
 for i=1:m
 for k=1:coeff
 RX(i)=RX(i)+ax(k)*cos(k*t*(i-1))+bx(k)*sin(k*t*(i-1));
 RY(i)=RY(i)+ay(k)*cos(k*t*(i-1))+by(k)*sin(k*t*(i-1));
 end
 if (round(RY(i))>0 &&
round(RX(i))>0),resborder(round(RY(i)),round(RX(i)))=1;end
 end

 subplot(2,4,R);
 plot(RX,RY);
 mx=max(max(RX),max(RY))+10;
 axis([0,mx,0,mx]); % Axis of the graph pf the curve
 axis square; % Aspect ratio
 title(sprintf('%d Descriptors',coeff));
end
%%%

The function is designed so that the reconstruction is gradually shown for 1, 2, 4, 6, 8,
12, 25 and 50 descriptors respectively. The results obtained are:

0 1000
0

1000

1 Descriptors

0 1000
0

1000

2 Descriptors

0 1000
0

1000

4 Descriptors

0 1000
0

1000

6 Descriptors

0 1000
0

1000

8 Descriptors

0 1000
0

1000

12 Descriptors

0 1000
0

1000

25 Descriptors

0 1000
0

1000

50 Descriptors

The results prove that the bigger the number of descriptors used in the reconstruction,
the bigger the accuracy from the reconstruction. And, depending on the research
purpose, a convenient number of descriptors may be more suitable. For our purpose,
the visualization and verification of the reconstruction accuracy and detail levels, fifty
descriptors is a reasonable amount.

The results obtained satisfy the research primary objective: to establish detailed and accurate
description and reconstruction from a given data set.

4. Conclusion

The developed functions showed acceptable results, adding mathematical accuracy,
visualization simplicity and manipulation ease to the curve description process. The main
concerns regarding the functions are the restriction due to working only with closed curves.
For this work purpose, the closed contours description was satisfactory, as it allowed
visualization of the description process and accurate reconstruction.

Chapter II

1. Introduction

This chapter presents a simple test made with simple data, in order to give experi-
mental support to the mathematical approach we intend to apply. It consists of a comparison
between two mode shape sets from the same carbon-fibre-plate. One was provided by a modal
analysis, done with several plate border constraints. The other was provided by a modal
analysis obeying the same border constraints and experimental conditions, only differing from
the first one by a damaged inflicted in a determined plate portion.

2. Our Approach

2.1 Example for Rectangular Plate

 A simple example for the case of a rectangular plate with border constraints (Clamped-
Simply Supported-Clamped-Simply Supported) using the Fourier descriptor was developed,
in order to present the method effectiveness. Two sets of data, one for a damaged plate and
another for an undamaged plate, each one containing 18 mode shape data, were submitted to a
Fourier Descriptor - a Matlab command list used to calculate and display the descriptors used
to characterize each mode shape – showing several mode shape differences that were taken
into account for establishing a more reliable assurance criterion.
 The damage inflicted to the second plate is shown in the following picture. The
carbon-fibre-plate was delaminated in a specific area, i.e., the carbon fibre was irregularly
posed in a particular plate area, as shown in the picture. Visualizing the mode shapes, it is
possible to infer that the damage is located in a plate corner, however they do not suffice to
determine the damage location exactly.

Delamination

2.1.1 Undamaged Plate Data
 The following 18 mode shapes were extracted from the undamaged plate data.

Mode 1
10 20 30 40 50

10

20

30

40

Mode 2
10 20 30 40 50

10

20

30

40

Mode 3
10 20 30 40 50

10

20

30

40

Mode 4
10 20 30 40 50

10

20

30

40

Mode 5
10 20 30 40 50

10

20

30

40

Mode 6
10 20 30 40 50

10

20

30

40

Mode 7
10 20 30 40 50

10

20

30

40

Mode 8
10 20 30 40 50

10

20

30

40

Mode 9
10 20 30 40 50

10

20

30

40

Mode 10
10 20 30 40 50

10

20

30

40

Mode 11
10 20 30 40 50

10

20

30

40

Mode 12
10 20 30 40 50

10

20

30

40

Mode 13
10 20 30 40 50

10

20

30

40

Mode 14
10 20 30 40 50

10

20

30

40

Mode 15
10 20 30 40 50

10

20

30

40

Mode 16
10 20 30 40 50

10

20

30

40

Mode 17
10 20 30 40 50

10

20

30

40

Mode 18
10 20 30 40 50

10

20

30

40

Using the developed Matlab function reordonne_noeud_lineaire, described below,
18 files in format .rpt containing the mode shape data were read and that data was transformed
into the 18 mode shape images seen above. This function also calls Matlab function
n_line.m, which displays the nodal line for each mode shape, as exemplified in sequence for
mode 1. The process of development of the fuuntions used is described in chapter 5.

function reordonne_noeud_lineaire

clear all
for index=1:18
RPT=sprintf('mode%d.rpt',index) ;
mode=dlmread(RPT);
if (index==1),data(:,index)=mode(:,1); end
data(:,2*index:2*index+1)=mode(:,2:3);
if mod(index,6)==0, tab=6; else tab=mod(index,6);end
if (mod(index,6)==1), figure;end

subplot(2,3,tab)
imagesc((reshape(data(:,2*index),59,[]))')

if (tab==6), pause;end

end

clear mo* in* no*

for index=1:18
n_line((reshape(data(:,2*index),59,[]))',index);
end

Function reordonne_noeud_lineaire.m reads the data stored in the .rpt files, reshaping
this data into a matrix format. This format is required in order to transform each .rpt file in a
image format (in our programs the bitmap format will be used).
 As a combination from both of these functions, the new function
reordonne_noeud_lineaire.m uses the subfunction n_line:

The function automatically extracts the data from .rpt files from modeshapes 1 up to

15, reshaping them into the array named data. These reshaped data are displayed altogether.
After that, the nodal line for each image format is drawn by the function n_line, which also
saves the obtained nodal line in a bitmap file. The nodal line is determined by an interval of
values detected from the matrix-shaped data. This interval is specified by the variables
average and epsilon in function n_line. After each graphic shown, the program comes to a
halt, allowing the user to visualize the plotting calmly and move on by pressing any key.

function n_line(imagemode,mode)

nomsave=sprintf('mode%d.bmp',mode) ;

 gimg=imagemode;

 %create nodal line by thresholding epsilon
 epsilon=0.1;average=0.5;
 nodalline=(gimg<epsilon+average)&(gimg>-epsilon+average);

%add complement
imwrite(imcomplement(nodalline),nomsave);
% level = graythresh(abs(gimg));
% nodalline = im2bw(abs(gimg),level);

figure;
subplot(211);imagesc(gimg);
subplot(212);imagesc(nodalline);pause;

Mode Shape 1

5 10 15 20 25 30 35 40 45 50 55

10

20

30

40

Mode Shape 1 Nodal Line

5 10 15 20 25 30 35 40 45 50 55

10

20

30

40

Function n_line.m also saves the nodal line information in a bitmap file, for the

purpose of using it for further analysis.

2.1.2 Damaged Plate Data

 The following 18 mode shapes were extracted from the damaged plate data.

Mode 1
10 20 30 40 50

10

20

30

40

Mode 2
10 20 30 40 50

10

20

30

40

Mode 3
10 20 30 40 50

10

20

30

40

Mode 4
10 20 30 40 50

10

20

30

40

Mode 5
10 20 30 40 50

10

20

30

40

Mode 6
10 20 30 40 50

10

20

30

40

Mode 7
10 20 30 40 50

10

20

30

40

Mode 8
10 20 30 40 50

10

20

30

40

Mode 9
10 20 30 40 50

10

20

30

40

Mode 10
10 20 30 40 50

10

20

30

40

Mode 11
10 20 30 40 50

10

20

30

40

Mode 12
10 20 30 40 50

10

20

30

40

Mode 13
10 20 30 40 50

10

20

30

40

Mode 14
10 20 30 40 50

10

20

30

40

Mode 15
10 20 30 40 50

10

20

30

40

Mode 16
10 20 30 40 50

10

20

30

40

Mode 17
10 20 30 40 50

10

20

30

40

Mode 18
10 20 30 40 50

10

20

30

40

 They were obtained using the same procedure as before: reading each .rpt file and
producing a mode shape image. The nodal lines were also saved, but in differently named
bitmap files. For instance, the nodal line for mode 1 is shown below:

Mode 1 (damaged) image
5 10 15 20 25 30 35 40 45 50 55

10

20

30

40

Mode 1 (damaged) nodal line
5 10 15 20 25 30 35 40 45 50 55

10

20

30

40

 The difference between mode 1 data from the damaged and the undamaged plate is
very slight. Bigger differences can be seen when for mode 5 and higher modes. The detection
and quantification of these differences is the main purpose of the research, the difference
between the damaged and undamaged.
 For example, the differences between mode shape 6 for both plates is almost
unperceivable by naked eye. One can only notice the slight change in the border of the formed
shapes. However, a computer can easily quantify these differences, and that is what we will
use in the development of a new assurance criteria.

Mode 6 for undamaged plate
5 10 15 20 25 30 35 40 45 50 55

10

20

30

40

Mode 6 for damaged plate
5 10 15 20 25 30 35 40 45 50 55

10

20

30

40

2.2 New Assurance Criteria

 Using the definition of MAC, it is possible to create a new criterion, in which
multiplying the image vectors from the damaged and undamaged plates will lead to results
very similar to the ones given by MAC. Extracting the norm from the product matrix will lead
to factors between zero and one, the number one meaning that the maximum assurance is
obtained, and the zero meaning the minimal assurance is obtained.

2.2.1 Damaged Plate MAC

Damaged Plate Mode shapes

Da
m

ag
ed

 P
la

te
 M

od
e

sh
ap

es
Damaged Plate MAC

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18
0.4

0.5

0.6

0.7

0.8

0.9

1

2.2.2 Undamaged Plate MAC

Undamaged Plate Mode shapes

Un
da

m
ag

ed
 P

la
te

 M
od

e
sh

ap
es

Undamaged Plate MAC

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18
0.4

0.5

0.6

0.7

0.8

0.9

1

By simple observation it is possible to notice that the obtained criterion presents a
higher accuracy, as it shows better differentiation between the various mode shapes. Although
it does not show inverse proportionality as the Pearson coefficient calculation (corr2.m), it
results in a much more embracing comparison between and wider interpretation of the mode
shapes. As an assurance criterion, is has proposed better results than classic MAC itself.

However, in naked eye, it may seem that both results for damaged and undamaged
plates are equal. In fact, paying attention being extremely strict to the details, it is possible to
notice slight differences between the two obtained matrices. Calculating the difference
between them, we obtain the following results:

Difference (MAC Damaged Plate - MAC Undamaged plate)

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

-0.01

-0.005

0

0.005

0.01

0.015

0.02

Absolute Difference between MACs

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18
0

0.005

0.01

0.015

0.02

 The greatest differences are noticed when comparing the following mode shapes
correlation pairs: (7, 5), (8,15), (9,15) and (17,18) . Keeping in mind that the plate
delamination, i.e., the damage inflicted to the plate, it is possible to verify that the MAC result
comparison is useful to determine if there is a structural injure, but its precise location is still
hard to apprehend using just that (although it can be seen inferred from the mode shapes
visualization). A more elaborated comparison method might be needed to fit this purpose.

 3. Conclusion

As assurance criteria, the use of mode shape image format presented wider and deeper
results than the classic Modal Assurance Criteria. It was possible to detect greater range of
differences between the mode shapes. And the results for damaged and undamaged bodies
have shown a measurable difference, which can contribute to the identification of damaged
bodies.

Nonetheless, the comparison methods used (simple difference) are not sufficient to
determine with accuracy the damage location. Further efforts must then be done in the
development of more sophisticated comparison methods.

Chapter III

1. CATIA Model

 The modelling in Catia was guided by the test results in document [XX]. Although the
model shown in [XX], presented below, gives some geometric information about the tested
structure, like its length and existence of a tip shroud, it does not make clear a whole group of
other interesting data, essential to build a reliable model which can lead to the same results.
Despite of this, it does not mean our model is unrealistic, it just means that the data obtained
from the experiment report is only to be used as advisory guide, as long as the remaining
geometric features are not obtained.

Turbine blade representation

The Catia model was initially designed in order to obtain a representation for the

turbine blade studied in article [13], knowing the blade geometry features used in the
experiment there described were unavailable at the moment. So, based in a schematic picture
shown in document [13], in previous knowledge from turbine blade design and in the modal
frequency values obtained in a finite-element test, the Catia model was shaped as an attempt
to reach the mentioned frequencies and respect the schematics shown in the previous figure.

Although it is known that this approach may not result in this geometry accurate
representation, the initial objectives in this research are to establish if the applied method is
reasonable for a possible, realistic turbine blade model.
 The model was basically constructed building a wing-like profile mounted in a static
base. In our displacement test, this base is will be the clamped part and the profile will be the
displacement surface. As ordinarily adopted in turbine blade construction, the profile clamped
in the base (thicker) is different from the one above (narrower).

Partial model in Catia

 Finally a final top structure is added, for it allows assembling various blades side by
side. It is expected that the blades might be assembled to form a circular turbine, but for the
purpose of this modelling, the curvature from the blade structure itself (curvature in plane XZ)
was not considered.

Complete model in Catia

 As it was built, there are many factors that can influence deeply in the obtained modal
frequency values. For example: the choice of each profile (top, base); the relative torsion
between them; the profiles thickness; the top structure thickness; the top structure curvature
(if necessary). Therefore, we may only adopt a qualitative approach towards the available set
of data.
 The turbine blade deformation data will be divided in two distinct sets. We will study
the deformation obtained from the tip surface, and the deformation obtained from the lateral
surface. Like represented in below, we will work with a top view from the tip (number 1) and
a lateral view from the side (number 2).

CATIA data sets

2. Frequencies

 The finite element test was made for several different mesh unit sizes. From a 5mm
mesh unit size up to an 18mm size, the obtained results for the first six mode shapes were:

Table 1 – Catia model frequencies

Mode shape 5 mm mesh 6 mm mesh 7 mm mesh 8 mm mesh 9 mm mesh 10 mm mesh 11 mm mesh 12 mm mesh
1 241,43 244,61 248,28 252,15 256,01 260,38 265,64 267,23
2 447,90 465,37 490,84 509,94 531,87 556,04 575,86 585,13
3 731,36 743,43 763,87 772,56 784,91 800,11 812,87 812,14
4 980,21 1001,52 1036,00 1053,11 1074,06 1102,58 1119,70 1121,37
5 1343,82 1388,15 1457,71 1487,65 1527,87 1590,96 1616,45 1627,10
6 1671,25 1778,14 1887,37 1957,99 2028,80 2119,28 2193,61 2245,33

Mode Shape Frequencies in Hz

2

1

 Table 1 (cont.) – Catia model frequencies

Mode shape 13 mm mesh 14 mm mesh 15 mm mesh 16 mm mesh 17 mm mesh 18 mm mesh
1 274,04 279,87 275,76 279,66 288,60 288,24
2 611,13 624,65 631,28 649,10 665,65 666,18
3 833,18 845,94 844,36 860,39 882,83 874,07
4 1157,38 1179,86 1181,21 1197,19 1222,74 1226,20
5 1690,10 1700,75 1710,59 1741,65 1766,38 1756,40
6 2341,61 2389,80 2427,84 2460,37 2513,62 2549,41

Mode Shape Frequencies in Hz

 This interval was chosen given that for a mesh unit size lower than 5mm the storage
computer capacity needed exceeds the available capacity of the computer used for the tests,
and a size of 18mm already leads to results that greatly disagree with the experimental ones.
These frequencies give an idea of how the frequencies change when we simply change the
type of mesh used in finite element testing. For a better pattern observation, we can display
them in a more direct graphic:

Frequency x Mesh Unit Size

0,00

500,00

1000,00

1500,00

2000,00

2500,00

3000,00

0 5 10 15 20

Mesh Unit Size

Fr
eq

ue
nc

y

Mode shape 1

Mode shape 2

Mode shape 3

Mode shape 4

Mode shape 5

Mode shape 6

 This shows that for the first modes, very little numerical discrepancy is noticed when
changing the mesh unit size. But for the later modes, it is expected that this discrepancy rises
as high as the mode order is. A further evaluation of the method effectiveness can be done
taking into account that discrepancy.

When comparing with the results from the experience [12]:
Table 2 – Experimental frequencies

 The chosen mesh for our research will be the one with 10mm unit size. For the four
first modes, it presents an acceptable percentage discrepancy from the experimental data, plus
it is a mesh that is most easily transformed into a square matrix image, which will reduce our
efforts in reshaping the finite element data into a bitmap image representation.

Table 3 – Experiment-model percentage frequency difference
10 mm mesh

Mode Shape Difference (%)
1 3,74
2 22,48
3 5,81
4 18,63
5 61,03
6 76,21

 It is essential to also remember the finite element test is not susceptible to
experimental errors that may occur. So, considering the original data and the final results, the
model can be characterized as realistic, and will fit the primary purposes.

3. Creating Image file

3.1 Using CATIA Export Data

The data extracted from the CATIA model are a mesh of nodes created according to

the software capability of finite element calculation. The unit cell geometry for this model is
defined based in the available tools for finite element calculation (in our model the unit cell is
tetrahedron-shaped). This geometry follows the body geometry, which is irregular. It is
important to convert the available data into a matrix, so that it can be more easily
mathematically manipulated. For this purpose, the development of Matlab functions using
Radial Basis Functions concepts for interpolation and reshaping of the original data was
necessary.

So, basically, the reshaping process will proceed in several steps:
- First, we select from the entire model mesh, which represents the entire

turbine blade geometry, the nodes that we want to analyze. This is merely a
selection of which turbine blade part is going to be observed;

- Then, we create a surface that represents these selected nodes. This can be
done by simply establishing an interval and creating the surface with the
default Matlab command mesh;

- At this moment, the RBF takes place. The surface obtained from the previous
step will not likely be rectangular. The RBF approximation will provide a
rectangular new shape, equivalent to the previous surface.

- Finally, the rectangular resulting surface is already the desired matrix, which
means it can be already stored as an image format (in our work the bitmap
format will be used). This image is ready to further mathematical
manipulations.

Assuming the CATIA model is ready, when we export its modal analysis data, a .xls
file is generated. For each modal analysis, therefore each mode shape, the .xls file
organization is:

The first column data represents the x-coordinate for one given node; the second

column represents the y-coordinate; and the third column the z-coordinate. The fourth
column, named C1, represents the displacement in X direction; the fifth column, named C2,
represents the displacement in Y direction; the sixth column, named C3, represents the
displacement in Z direction. We use these coordinate for choosing the geometric region that
we want to analyze.

After choosing the area of interest, and eliminating the non-interesting area, the total
displacement is calculated by the square root of the sum of the square of each displacement.
In order to work with the total displacement, a seventh column must be created:

When developing the Matlab function that will read each set of data, we must keep in

mind that the coordinates and total displacement are located in the first three columns and in
the seventh one, respectively.

For more direct utilization, all 15 mode shapes where reunited in one single .xls file.
The .xls file was called Aube_ExportData_Translation_Maillage10 (“Turbine blade export
displacement data for a mesh unit size of 10mm”). This file contains 15 pages, each one
named Mode #, where # corresponds to the mode shape order (1, 2, 3…15), and each page has
the explained column organization.

3.2 Interpolation using Radial Basis Function (RBF)

 A radial basis function (RBF) is a real-valued function whose value depends only on
the distance from the origin, so that)()(xx Φ=Φ ; or alternatively on the distance from some

other point C, called a center, so that)()(CxCx −Φ=−Φ . Any function Φ that satisfies

the property)()(xx Φ=Φ is a radial function. The norm is usually Euclidean distance,
although other distance functions are also possible. [18]
 Radial basis functions can be used to build up function approximations of the form:

∑
=

−Φ=
N

i
ii Cxwxy

1
)()(

Where the approximating function y(x) is represented as a sum of N radial basis
functions, each associated with a different center Ci, and weighted by an appropriate
coefficient wi. The weights wi can be estimated using the matrix methods of linear least
squares, because the approximating function is linear in the weights.

The Matlab function developed for that purpose is shown below:

 The Matlab function shown reads the .xls file called
Aube_ExportData_Translation_Maillage10 and extracts the working data from one of its
pages, the one named “Mode #”, where # is the number of the mode shape defined by the
variable mode. After creating vectors y1lin and y3lin, which store, respectively, the x and z
regular interval between the minimum and maximum x and z coordinate values, the program
eliminates any singularity that may occur in data using the function (isnan). Then it generates
a mesh that represents the data using RBF interpolation, using the functions rbfcreate,
rbfcheck and rbfinterp, which are shown in Appendix.

4. MAC

 In order to execute the Radial Basis Function interpolation for every mode shape, the
function above is modified. The following function is the one created for calculating and
displaying all 15 mode shapes. After that, the function uses the created image format to
calculate the modal assurance criteria, using function macD.m, as stated in Appendix. It
basically reproduces the classic MAC, using the mode shape image as the input data matrix
for each mode shape.

clear all; close all;

mode=1;

modename=sprintf('Mode %d',mode) ;
y=xlsread('Aube_ExportData_Translation_Maillage10',modename);
%big NaN value from mac ?
y=y(4:end,:);

y1lin=linspace(min(y(:,1)),max(y(:,1)),33);
y3lin=linspace(min(y(:,3)),max(y(:,3)),33);
figure;
[X,Z]=meshgrid(y1lin,y3lin);

y(any(isnan(y),2),:) = [];

 W=griddata(y(:,1),y(:,3),y(:,7),X,Z);

%RBF interpolation
op=rbfcreate([y(:,1)'; y(:,3)'], y(:,7)','RBFFunction', 'multiquadric',
'RBFConstant', 2);

rbfcheck(op);
%rbf=rbfcreate([y(:,1)'; y(:,3)'], y(:,7)',op);
WI = rbfinterp([X(:)'; Z(:)'], op);
WI = reshape(WI, size(X));

 mesh(X,Z,W); % interpolated

plot3(y(:,1),y(:,3),y(:,7),'.','MarkerSize',15)
view(2)
figure;
 mesh(X,Z,WI); view(2)

clear all; close all;

for mode=1:15

modename=sprintf('Mode %d',mode) ;
y=xlsread('Aube_ExportData_Translation_Maillage10_Top',modename);
%big NaN value from mac ?
y=y(4:end,:);

y1lin=linspace(min(y(:,1)),max(y(:,1)),33);
y2lin=linspace(min(y(:,2)),max(y(:,2)),33);
figure(1);subplot(3,5,mode);
[X,Z]=meshgrid(y1lin,y2lin);

y(any(isnan(y),2),:) = [];

 W=griddata(y(:,1),y(:,2),y(:,7),X,Z);

%RBF interpolation
op=rbfcreate([y(:,1)'; y(:,2)'], y(:,7)','RBFFunction', 'multiquadric',
'RBFConstant', 2);
rbfcheck(op);
%rbf=rbfcreate([y(:,1)'; y(:,3)'], y(:,7)',op);
WI = rbfinterp([X(:)'; Z(:)'], op);
WI = reshape(WI, size(X));

 mesh(X,Z,W); % interpolated
 hold on;

plot3(y(:,1),y(:,2),y(:,7),'.','MarkerSize',15)
view(2)
title(sprintf('Mode Shape %d',mode));

figure(2);subplot(3,5,mode);
 mesh(X,Z,WI); view(2);title(sprintf('Mode Shape %d',mode));

modesave=sprintf('aubemode_top%d.bmp',mode) ;

%add complement
imwrite(imcomplement(WI),modesave);
% level = graythresh(abs(gimg));
% nodalline = im2bw(abs(gimg),level);

figure(3);subplot(3,5,mode);
imagesc(WI);title(sprintf('Mode Shape %d',mode));
LWm(:,mode)=reshape(WI,1,[]);
hold on;

end

figure;

vmac=macD(LWm,LWm);
imagesc(vmac);colorbar
xlabel('Turbine Blade Mode Shapes')
ylabel('Turbine Blade Mode Shapes')

The function test.m, as stated above, creates mesh, RBF interpolation and image

format for each mode shape, and, when this is done for every mode shape, calculates the
MAC using as data input the image format of the 15 mode shapes. The obtained results are:

-100 -80 -60 -40 -20 0 20 40 60
0

50

100

150

200

250

300

350
Data Plot and Surface View

Coordinate X

Co
or

di
na

te
 Z

 The first one is a superposition between the real data extracted from the .xls file, for
mode shape 1, from the lateral data set (region 2) and the interpolation surface created using
Matlab command mesh. We can notice that the surface boundaries are not rectangular shaped.

-100 -80 -60 -40 -20 0 20 40 60
0

50

100

150

200

250

300

350
RBF Interpolation

Coordinate X

Co
or

di
na

te
 Z

 The second plot is RBF interpolation that reshapes the original surface into one with
rectangular boundaries, in order to store it as a matrix afterwards. For instance, if we plotted
the results side by side in isometric view, we would obtain:

-100
-80

-60
-40

-20
0

20
40

60

0

50

100

150

200

250

300

350
0

200

400

600

800

1000

1200

1400

Coordinate X

Original Data and Mesh - Isometric View

Coordinate Y

C
oo

rd
in

at
e

Z

-100
-80

-60
-40

-20
0

20
40

60

0

50

100

150

200

250

300

350
-200

0

200

400

600

800

1000

1200

1400

Coordinate X

RBF Interpolation - Isometric View

Coordinate Y

C
oo

rd
in

at
e

Z

 The last step is saving the obtained surface in image format, which can be done by the
command sequence:

 Resulting, for the Mode 1 example, in:

Mode shape 1 Image

Coordinate X

Co
or

di
na

te
 Z

5 10 15 20 25 30

5

10

15

20

25

30

Finally, it was possible to apply the MAC in both data sets, top (number 1) and lateral

(number 2), obtaining the following results:

4.1 Results for Data Set 1 (Top)

-200 0 200
-50

0

50
Mode Shape 1

-200 0 200
-50

0

50
Mode Shape 2

-200 0 200
-50

0

50
Mode Shape 3

-200 0 200
-50

0

50
Mode Shape 4

-200 0 200
-50

0

50
Mode Shape 5

-200 0 200
-50

0

50
Mode Shape 6

-200 0 200
-50

0

50
Mode Shape 7

-200 0 200
-50

0

50
Mode Shape 8

-200 0 200
-50

0

50
Mode Shape 9

-200 0 200
-50

0

50
Mode Shape 10

-200 0 200
-50

0

50
Mode Shape 11

-200 0 200
-50

0

50
Mode Shape 12

-200 0 200
-50

0

50
Mode Shape 13

-200 0 200
-50

0

50
Mode Shape 14

-200 0 200
-50

0

50
Mode Shape 15

Mode Shape 1

10 20 30

10

20

30

Mode Shape 2

10 20 30

10

20

30

Mode Shape 3

10 20 30

10

20

30

Mode Shape 4

10 20 30

10

20

30

Mode Shape 5

10 20 30

10

20

30

Mode Shape 6

10 20 30

10

20

30

Mode Shape 7

10 20 30

10

20

30

Mode Shape 8

10 20 30

10

20

30

Mode Shape 9

10 20 30

10

20

30

Mode Shape 10

10 20 30

10

20

30

Mode Shape 11

10 20 30

10

20

30

Mode Shape 12

10 20 30

10

20

30

Mode Shape 13

10 20 30

10

20

30

Mode Shape 14

10 20 30

10

20

30

Mode Shape 15

10 20 30

10

20

30

Turbine Blade Mode Shapes

Tu
rb

in
e

Bl
ad

e
M

od
e

Sh
ap

es
Image Based Assurance Criteria - Top

2 4 6 8 10 12 14

2

4

6

8

10

12

14
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 4.2 Results for Data Set 2 (Lateral)

 If we repeat the previous sequence for the 15 mode shapes available, we can obtain the
desired 15 mode shape images. They can be presented as the resulting data mesh, for each
mode shape:

-100 0 100
0

200

400
Mode Shape 1

-100 0 100
0

200

400
Mode Shape 2

-100 0 100
0

200

400
Mode Shape 3

-100 0 100
0

200

400
Mode Shape 4

-100 0 100
0

200

400
Mode Shape 5

-100 0 100
0

200

400
Mode Shape 6

-100 0 100
0

200

400
Mode Shape 7

-100 0 100
0

200

400
Mode Shape 8

-100 0 100
0

200

400
Mode Shape 9

-100 0 100
0

200

400
Mode Shape 10

-100 0 100
0

200

400
Mode Shape 11

-100 0 100
0

200

400
Mode Shape 12

-100 0 100
0

200

400
Mode Shape 13

-100 0 100
0

200

400
Mode Shape 14

-100 0 100
0

200

400
Mode Shape 15

 Or as the image format obtained for each mode shape:

Mode Shape 1

10 20 30

10

20

30

Mode Shape 2

10 20 30

10

20

30

Mode Shape 3

10 20 30

10

20

30

Mode Shape 4

10 20 30

10

20

30

Mode Shape 5

10 20 30

10

20

30

Mode Shape 6

10 20 30

10

20

30

Mode Shape 7

10 20 30

10

20

30

Mode Shape 8

10 20 30

10

20

30

Mode Shape 9

10 20 30

10

20

30

Mode Shape 10

10 20 30

10

20

30

Mode Shape 11

10 20 30

10

20

30

Mode Shape 12

10 20 30

10

20

30

Mode Shape 13

10 20 30

10

20

30

Mode Shape 14

10 20 30

10

20

30

Mode Shape 15

10 20 30

10

20

30

 Using them, keeping in mind that each one of these image formats is a real matrix, we
can use them as vectors to be fed as input for the modal assurance criteria. That will result in:

Turbine Blade Mode Shapes

Tu
rb

in
e

Bl
ad

e
M

od
e

Sh
ap

es
Image Based Modal Assurance Criteria - Lateral

2 4 6 8 10 12 14

2

4

6

8

10

12

14

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 The obtained results give a general idea of the correlation level between two different
mode shapes, showing, for example, the pair of modes (1, 15) as the worst correlation, which
can be intuitively inferred from the mode shape images. It also shows a much deeper
correlation between a greater quantity of mode pairs when compared to the classic method.

5. Conclusion

The developed assurance criterion enables a much deeper level of comparison between
the mode shapes, as it shows various correlation degrees between the different mode shapes.
It is possible then to have a more realistic idea of how interconnected the mode shapes are,
added to a visualization that provides a common user of realizing this interconnection.

Conclusion

The mains conclusions that were apprehended from the three developed projects were:
• The curve description using the Fourier Transform method ensures reasonable

results and ease to its user, therefore becoming a powerful tool to image
reconstruction, when working with image processing. Further improvement
might be done concerning methods for reconstruction of more general curves
(open curves, for instance). This may need utilization of other image
recognition methods, applying, for example, the methods which were
mentioned in Chapter I, such as: Zernike Moment description, Wavelet
Description. Using the developed method in mode shape recognition, it was
simple to detect and reconstruct nodal lines, a useful feature to more detailed
mode shape analyses.

• The developed function used in the plate experiment was very useful to
determine the more wide and detailed approach that consists in using each
mode shape extracted image format as input data for comparison in modal
assurance criterion. This image based criterion shows mush more subtle
differences between the mode shapes, ensuring a detailed correlation between
them. Despite not showing the exact differences between a given mode shape
pair, which can be done by visualization, this method also points towards a
more direct way to mathematically establish an intimate correlation between
two given images.

• When applying the method to turbine blade mode shapes, it was possible to see
a result set that was very much alike the results obtained for the plate
experiment. We may also infer from these results that a damaged turbine blade
will also present a measurable mode shape correlation variation, as pointed by
the results for the sane/damaged plate experiment. This can be used, for
instance, in detecting damaged turbine blades, and also in establishing levels
for tolerated damage. Further improvement may have to be done in specifying
damage location methods.

References

[1] Avitabile, Peter “Experimental Modal Analysis, A Simple Non-Mathematical
Presentation”, University of Massachusetts Lowell, Lowell, Massachusetts

[2] Weizhuo Wang, John E Mottershead, and Cristinel Mares, “Mode-shape recognition and
finite element model updating using the Zernike moment descriptor”, Journal of Mechanical
Systems and Signal Processing

[3] Britannica Concise Encyclopedia. 1994-2008 Encyclopædia Britannica, Inc. , accessed in
July 7th, 2010.

[4] R. L. Cosgriff, "Identification of Shape," Report No 820-11 of the Ohio State University
Research Foundation1960.

[5] C. T. Zahn and R. Z. Roskies, "Fourier Descriptors for Plane Closed Curves," IEEE
Transactions on Computers, vol. C21, pp. 269-281, 1972.

[6] E. Persoon and K.-S. Fu, "Shape discrimination Using Fourier Descriptors," IEEE
Transactions on Systems Man and Cybernetics, vol. SMC-7, pp. 170-179, 1977.

[7] Weizhuo Wang, John E Mottershead, and Cristinel Mares, “Shape descriptors for mode-
shape recognition and model updating”.

[8] Mark S. Nixon, Alberto S. Aguado “Feature Extraction and Image Processing Second
edition” Copyright © 2008 Elsevier Ltd.

[9] C. H. Teh and R. T. Chin, "On image analysis by the methods of moments," IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 10, pp. 496-513, 1988.

[10] R. J. Prokop and A. P. Reeves, "A survey of moment-based techniques for unoccluded
object representation and recognition," Graphical Models Image Processing, vol. 54, pp. 438-
460, 1992.

[11] A. Khotanzad and Y. H. Hong, "Invariant image recognition by zernike moments," IEEE
transaction of Pattern Analysis and Machine Intelligence, vol. 12, pp. 489-498, 1990.

[12] I. Daubechies, Ten Lectures on Wavelets: SIAM: Society for Industrial and Applied
Mathematics,1992.

[13] I. Lopez, W. Rooyakkers, & R. Vijgen, “Experimental Modal Analysis Of A Turbine
Blade” , Eindhoven, December, 2004

[14] Allemang, Randall J., The Modal Assurance Criterion – Twenty Years of Use and
Abuse, University of Cincinnati, Cincinnati, Ohio

[15] A. K. Jain, R. P. W. Duin, and J. Mao, "Statistical Pattern Recognition: A Review," IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 22, pp. 4-37, 2000.

[16] L. d. F. Costa and J. R. M. Cesar, Shape Analysis and Classification Theory and
Practice: CRC Press, 2001.

[17] R. J. Allemang and D. L. Brown, "A correlation coefficient for modal vector analysis,"
Proceeding of 1st International Modal Analysis Conference, vol. 1, pp. 110-116, 1982.

[18] Buhmann, Martin D. (2003), Radial Basis Functions: Theory and Implementations,
Cambridge University Press, ISBN 978-0-521-63338-3.

[19] J. L. Rodgers and W. A. Nicewander. Thirteen ways to look at the correlation coefficient.
The American Statistician, 42(1):59–66, February 1988.

Appendix

A1 - Function rbfcheck.m

A2 - Function rbfcreate.m

function maxdiff = rbfcheck(options)
tic;

nodes = options.('x');
 y = options.('y');

s = rbfinterp(nodes, options);

fprintf('RBF Check\n');
fprintf('max|y - yi| = %e \n', max(abs(s-y)));

if (strcmp(options.('Stats'),'on'))
 fprintf('%d points were checked in %e sec\n', length(y), toc);
end;
fprintf('\n');

function options = rbfcreate(x, y, varargin)
%RBFCREATE Creates an RBF interpolation
% OPTIONS = RBFSET(X, Y, 'NAME1',VALUE1,'NAME2',VALUE2,...) creates an
% radial base function interpolation
%
% RBFCREATE with no input arguments displays all property names and their possible
%values.
%
%RBFCREATE PROPERTIES
%
% Alex Chirokov, alex.chirokov@gmail.com
% 16 Feb 2006
tic;
% Print out possible values of properties.

if (nargin == 0) & (nargout == 0)
 fprintf(' x: [dim by n matrix of coordinates for the nodes]\n');
 fprintf(' y: [1 by n vector of values at nodes]\n');
 fprintf(' RBFFunction: [gaussian | thinplate | cubic | multiquadrics |
{linear}]\n');
 fprintf(' RBFConstant: [positive scalar]\n');
 fprintf(' RBFSmooth: [positive scalar {0}]\n');
 fprintf(' Stats: [on | {off}]\n');
 fprintf('\n');
 return;
end
Names = [
 'RBFFunction '
 'RBFConstant '
 'RBFSmooth '
 'Stats '
];

[m,n] = size(Names);
names = lower(Names);

options = [];
for j = 1:m
 options.(deblank(Names(j,:))) = [];
end

%**
%Check input arrays
%**
[nXDim nXCount]=size(x);
[nYDim nYCount]=size(y);

if (nXCount~=nYCount)
 error(sprintf('x and y should have the same number of rows'));
end;

if (nYDim~=1)
 error(sprintf('y should be n by 1 vector'));
end;

options.('x') = x;
options.('y') = y;
%**
%Default values
%**
options.('RBFFunction') = 'linear';
options.('RBFConstant') = (prod(max(x')-min(x'))/nXCount)^(1/nXDim);
%approx. average distance between the nodes
options.('RBFSmooth') = 0;
options.('Stats') = 'off';

%**
% Argument parsing code: similar to ODESET.m
%**

i = 1;
% A finite state machine to parse name-value pairs.
if rem(nargin-2,2) ~= 0
 error('Arguments must occur in name-value pairs.');
end
expectval = 0; % start expecting a name, not a
value
while i <= nargin-2
 arg = varargin{i};

 if ~expectval
 if ~isstr(arg)
 error(sprintf('Expected argument %d to be a string property name.', i));
 end

 lowArg = lower(arg);
 j = strmatch(lowArg,names);
 if isempty(j) % if no matches
 error(sprintf('Unrecognized property name ''%s''.', arg));
 elseif length(j) > 1 % if more than one match

% Check for any exact matches (in case any names are subsets of others)
 k = strmatch(lowArg,names,'exact');
 if length(k) == 1
 j = k;
 else
 msg = sprintf('Ambiguous property name ''%s'' ', arg);
 msg = [msg '(' deblank(Names(j(1),:))];
 for k = j(2:length(j))'
 msg = [msg ', ' deblank(Names(k,:))];
 end
 msg = sprintf('%s).', msg);
 error(msg);
 end
 end
 expectval = 1; % we expect a value next

 else
 options.(deblank(Names(j,:))) = arg;
 expectval = 0;
 end
 i = i + 1;
end

if expectval
 error(sprintf('Expected value for property ''%s''.', arg));
end

%**
% Creating RBF Interpolation
%**

switch lower(options.('RBFFunction'))
 case 'linear'
 options.('rbfphi') = @rbfphi_linear;
 case 'cubic'
 options.('rbfphi') = @rbfphi_cubic;
 case 'multiquadric'
 options.('rbfphi') = @rbfphi_multiquadrics;
 case 'thinplate'
 options.('rbfphi') = @rbfphi_thinplate;
 case 'gaussian'
 options.('rbfphi') = @rbfphi_gaussian;
 otherwise
 options.('rbfphi') = @rbfphi_linear;
end

phi = options.('rbfphi');

A=rbfAssemble(x, phi, options.('RBFConstant'), options.('RBFSmooth'));

b=[y'; zeros(nXDim+1, 1)];

 %inverse
rbfcoeff=A\b;

%SVD
% [U,S,V] = svd(A);
%
% for i=1:1:nXCount+1
% if (S(i,i)>0) S(i,i)=1/S(i,i); end;
% end;
% rbfcoeff = V*S'*U*b;

options.('rbfcoeff') = rbfcoeff;

if (strcmp(options.('Stats'),'on'))
 fprintf('%d point RBF interpolation was created in %e sec\n', length(y),
toc);
 fprintf('\n');
end;

function [A]=rbfAssemble(x, phi, const, smooth)
[dim n]=size(x);
A=zeros(n,n);
for i=1:n
 for j=1:i
 r=norm(x(:,i)-x(:,j));
 temp=feval(phi,r, const);
 A(i,j)=temp;
 A(j,i)=temp;
 end
 A(i,i) = A(i,i) - smooth;
end
% Polynomial part
P=[ones(n,1) x'];
A = [A P
 P' zeros(dim+1,dim+1)];

%**
% Radial Base Functions
%**
function u=rbfphi_linear(r, const)
u=r;

function u=rbfphi_cubic(r, const)
u=r.*r.*r;

function u=rbfphi_gaussian(r, const)
u=exp(-0.5*r.*r/(const*const));

function u=rbfphi_multiquadrics(r, const)
u=sqrt(1+r.*r/(const*const));

function u=rbfphi_thinplate(r, const)
u=r.*r.*log(r+1);

A3 - Function rbfinterp.m

function [f] = rbfinterp(x, options)
tic;
phi = options.('rbfphi');
rbfconst = options.('RBFConstant');
nodes = options.('x');
rbfcoeff = (options.('rbfcoeff'))';

[dim n] = size(nodes);
[dimPoints nPoints] = size(x);

if (dim~=dimPoints)
 error(sprintf('x should have the same number of rows as an array used
to create RBF interpolation'));
end;

f = zeros(1, nPoints);
r = zeros(1, n);

for i=1:1:nPoints
 s=0;
 r = (x(:,i)*ones(1,n)) - nodes;
 r = sqrt(sum(r.*r, 1));
% for j=1:n
% r(j) = norm(x(:,i) - nodes(:,j));
% end

 s = rbfcoeff(n+1) + sum(rbfcoeff(1:n).*feval(phi, r, rbfconst));

 for k=1:dim
 s=s+rbfcoeff(k+n+1)*x(k,i); % linear part
 end
 f(i) = s;
end;

if (strcmp(options.('Stats'),'on'))
 fprintf('Interpolation at %d points was computed in %e sec\n',
length(f), toc);
end;

A4 - Function macD.m

function mc=macD(t1,t2,Q)
%
% mac
%
% Computes modal assurance criteria
%
%
% mc=mac(phi1,phi2)
%
%
%%
% This matlab source code was originally %
% developed as part of "DIAMOND" at %
% Los Alamos National Laboratory. It may %
% be copied, modified, and distributed in %
% any form, provided: %
% a) This notice accompanies the files and %
% appears near the top of all source %
% code files. %
% b) No payment or commercial services are %
% received in exchange for the code. %
% %
% Original copyright is reserved by the %
% Regents of the University of California, %
% in addition to Scott W. Doebling, Phillip %
% J. Cornwell, Erik G. Straser, and Charles %
% R. Farrar. %
%%

[ns,n]=size(t1);[ns1,n1]=size(t2);
ns=min([ns,ns1]);
if nargin < 3, Q=eye(ns,ns); end
t1=t1(1:ns,:);t2=t2(1:ns,:);mc=zeros(n,n1);
for i=1:n,
 for j=1:n1,

mc(i,j)=(t1(:,i)'*Q*t2(:,j))^2/(t1(:,i)'*Q*t1(:,i)*t2(:,j)'*Q*t2(:,j));
 end
end
return

