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Chapter I 
 
 
 
 
1. Introduction 
 
 The final objective of this study is to develop an alternative criterion for Model Shape 
assurance, as the most currently used one, MAC (classic Modal Assurance Criteria), alongside 
other calculations useful in Modal Assurance techniques, like the linear correlation 
coefficient, still lack a more profound analysis of mode shape similarities. The new method is 
meant to provide a criterion that can detect rotational and translational invariance of these 
mode shapes, as well as furnish a wider set of factors for comparing them. This new method 
will use computational Image Processing and Pattern Recognition features so as to obtain a 
more detailed mode shape description and modelling.    
 
2. Theoretical Background 
 
 
2.1 Modal analysis 
 
 Modal analysis is a process whereby one can describe a structure in terms of its natural 
characteristics which are the frequency, damping and mode shapes – its dynamic properties. 

Consider a certain structure submitted to a determined force. Let us imagine the case 
in which this force possesses a fixed frequency of oscillation. If we change the rate of 
oscillation of the force while the peak force value remains the same, measuring the response 
on the structure (for example, using an accelerometer) we will notice that the displacement 
amplitude changes as we change the rate of oscillation of the input force. This response 
amplifies as we apply a force with a rate of oscillation that gets closer and closer to the 
natural frequency (or resonant frequency) of the system and reaches a maximum when the 
rate of oscillation is at the resonant frequency of the system. [1] 
 

Let us consider a freely supported plate submitted to the test described before. 
Measuring the displacement while increasing the oscillation frequency, we obtain a response 
spectrum like the one below: 

 
Fig.– Response spectrum  

For any structure submitted to an oscillatory force, there will be a specific response 
spectrum. The notable peaks in the response correspond to the natural frequencies.  

The rate of oscillation is increased within a time period, so this is a time based 
displacement response. Applying a Fourier Transform we can see a frequency based response. 



 
Fig.– Frequency spectrum 

 
In the figure above the natural frequencies become very clear: they are represented by 

the peaks in which the response has higher magnitude. The deformation patterns at these 
natural frequencies also take on a variety of different shapes depending on which frequency is 
used for the excitation force. These deformation patterns are referred to as the modeshapes of 
the structure. (From a mathematical standpoint, there are still factors to be considered, but 
from a practical standpoint these deformation patterns are close enough execute modeshape 
analysis)  

These natural frequencies and mode shapes occur in all structures that we design. 
Basically, there are characteristics that depend on the weight and stiffness of my structure 
which determine where these natural frequencies and mode shapes will exist. A design 
engineer needs to identify these frequencies and know how they might affect the response of 
the structure when a force excites it. Understanding the mode shape and how the structure will 
vibrate when excited helps to design better structures.  

So, basically, modal analysis is the study of the natural characteristics of structures. 
Understanding both the natural   frequency and mode shape helps to design my structural 
system for noise and vibration applications. We use modal analysis to help design all types of 
structures including automotive structures, aircraft structures, spacecraft and computers. [1] 

Therefore, the comparison of finite element (FE) modeshape predictions with 
experimental measurements is an essential step in the model validation process for structural 
dynamics. A reliable FE model can represent the modeshape pattern before any experiment 
and make the design more trustworthy.   

 Currently the most widely used method for comparison between the FE modeling and 
experimental data is the modal assurance criterion (MAC), which can be interpreted as the 
cosine of the angle between numerical (FE model) and measured eigenvectors. However, the 
eigenvectors only contain the displacement of discrete coordinates, so that the MAC index 
carries no explicit information on shape features. A single numerical value encapsulates all 
the information contained in the difference between measured and predicted modes, which 
means that an appreciation of subtle changes in shape, either locally or globally, is clearly 
unobtainable from the MAC index in the case of large and complicated industrial systems. [2]   

Alternative techniques for the MAC based on image processing (IP) and pattern 
recognition (PR) are already being considered nowadays. A variety of useful shape 
descriptors (or shape features) may be extracted from mode-shape information. For example, 
curvature and bending-energy descriptors represent the shapes generally. The Fourier 
descriptors (FD) and moment descriptors (MD) are capable of describing the global shape 
efficiently and accurately. Local shape information may be determined by using wavelet 
descriptors (WD). The comparison of mode shapes, one with another, is achieved by shape 
classification, involving the assembly of shape-descriptor terms to form the shape feature 
vector (FV). Distances between different FVs may then be used to assess the similarity of 



different mode shapes. In the case of statistical variability in structures, the modeshape feature 
vector may be considered as a multi-dimensional stochastic variable. Statistical pattern 
recognition techniques including Bayesian decision theory and clustering can also be adopted. 
Results demonstrate the good capability of shape feature vectors to recognise mode shapes 
both deterministically and stochastically. 
 
 
2.2 Modal Assurance Criteria 
 
 Given that our model represents a realistic structure, we may proceed to the first step 
in our research, that is, developing an alternative “quality assurance indicator for experimental 
modal vectors that are estimated from measured frequency response functions” (doc. [14]), 
other than the classical Modal Assurance Criterion (MAC).    
 The primary method that has historically been used to validate an experimental modal 
model is the weighted orthogonality check comparing measured modal vectors and an 
appropriately sized (the size of the square weighting matrix must match the length and spatial 
dimension of the modal vector) analytical mass or stiffness matrix (weighting matrix). 
Variations of this process include using analytical modal vectors together with experimental 
modal vectors and the appropriately sized mass or stiffness matrix. This latter comparison is 
normally referred to as a pseudo-orthogonality check (POC). 
 However, when the orthogonality conditions are not satisfied, this result does not 
indicate where the problem originates. From an experimental point of view, it is important to 
try to develop methods that indicate confidence that the modal vector is, or is not, part of the 
problem. 
 Basically this is the main principle of the modal assurance criterion (MAC). The 
main difference is that the MAC has concern in providing a measure of consistency (degree of 
linearity) between estimates of a modal vector. This provides an additional confidence factor 
in the evaluation of a modal vector from different excitation (reference) locations or different 
modal parameter estimation algorithms. 
 The modal assurance criterion takes on values from zero – representing no consistent 
correspondence, to one – representing a consistent correspondence. In this manner, if the 
modal vectors under consideration truly exhibit a consistent, linear relationship, the modal 
assurance criterion should approach unity and the value of the modal scale factor can be 
considered reasonable. Note that, unlike the orthogonality calculations, the modal assurance 
criterion is normalized by the magnitude of the vectors and, thus, is bounded between zero 
and one. 
 The modal assurance criterion can only indicate consistency, not validity or 
orthogonality. If the same errors, random or bias, exist in all modal vector estimates, this is 
not delineated by the modal assurance criterion. Invalid assumptions are normally the cause of 
this sort of potential error. Even though the modal assurance criterion is unity, the 
assumptions involving the system or the modal parameter estimation techniques are not 
necessarily correct. The assumptions may cause consistent errors in all modal vectors under 
all test conditions verified by the modal assurance criterion. 
 For instance, let us examine the result table for MAC for a given experiment, as 
presented below. It shows that the mode 1 (bottom line), for example, is consistently 
correspondent to the value for mode 1, obtained from the experiment. In the same way, it 
shows the reference value for mode 1 (left column) corresponds consistently only to mode 1. 
Though obvious, this correlation may eventually show startling results, if we notice in the 
same table, for instance, that modes 4 and 5 are also correspondent.  



 MAC notorious flaws reside in not showing exactly how are two or more modes 
correspondent, and not taking into account the validity of one isolated mode. If, let us say, the 
calculation of two different modes present the same aberration or malfunction, those modes 
will probably be shown as correspondent in MAC, although both of them contain no useful 
data. Or else, if two different modes calculation are both incomplete, this will probably lead to 
the mistaken result that they are not correspondent, when they actually can be.          
 

 
Fig.– Results for classic Model Asssurance Criteria (MAC) 

  
Using image processing (IP) and pattern recognition (PR), well developed in other 

disciplines, might enable a more versatile comparison and classification of mode shapes 
[15,16], which cannot be achieved by the conventional Modal Assurance Criterion (MAC) 
[17]. A set of shape features with good discriminative capability may be extracted by IP and 
PR methods to form a feature vector – shape descriptor (SD). Now the similarity/dissimilarity 
of the shapes can be revealed by the ‘distance’ of their corresponding SDs in the shape feature 
space according to appropriate criteria. 

The Zernike moment descriptor (ZMD), Fourier descriptor (FD), and wavelet 
descriptor (WD) are the most popular shape descriptors, having properties that include 
efficiency of expression, robustness to noise, invariance to geometric transformation and 
rotation, separation of local and global shape features and computational efficiency. Each one 
has its own advantages depending on the kind of image being analysed, therefore a perfect, 
accurate SD would be constituted by these multiple methods sensible combination.  

The comparison of mode shapes is readily achieved by assembling the shape features 
of each mode shape into multi-dimensional shape feature vectors (SFVs) and determining the 
distances separating them. A shape feature vector (SFV) can be formed by assembling the 
different SDs. The comparison of mode shapes is then transformed to the similarity 
measurement between the SFVs in the feature space. Dimensionless normalisation for the 
SFV is necessary before commencing the comparison to avoid the scaling effect. 
 
 
2.3 Linear Correlation Coefficient 
 

This is the statistical definition of the Pearson product-moment correlation coefficient 
between two random variables, giving a value between +1 and −1 inclusive. It is widely used 
in the statistical studies as a measure of the strength of linear dependence between two 
variables. Pearson's correlation coefficient between two variables is defined as the covariance 



of the two variables divided by the product of their standard deviations [19]. For a pair of 2-
dimension matrices, the Pearson’s coefficient, also commonly denoted by r, will be given by: 

 

 
 
Where  and  are respectively the means of the values in A and B, and can be 

automatically calculated by Matlab functions mean2(A) and mean2(B). 

Matlab function corr2 calculates this coefficient, a 2-dimension correlation between 
two matrices or vectors of the same size. The use of command r = corr2(A,B) results in a 
scalar, which can be calculated for every mode shape pair (A,B).  The correlation coefficient 
ranges from −1 to 1. A value of 1 means that a linear equation describes the relationship 
between A and B perfectly, with all data points lying on a line for which B increases as A 
increases; a value of −1 implies that all data points lie on a line for which B decreases as A 
increases; value of 0 implies that there is no linear correlation between the variables. 

It is important to notice that the calculation of this coefficient itself constitutes a better 
comparison than the MAC, whose calculation is merely based in vector multiplication. The 
Pearson’s correlation coefficient, or, more exactly, the method using function corr2 as a 
comparison standard, already takes into account, for instance, the mode shapes whose 
displacements are in inverse linear correlation. For values equal to -1, we can observe that the 
displacement are inverse, giving the idea that the mode shapes may be symmetric.  

However, like MAC, it is still a purely mathematic operation that does not take into 
account the distribution and the quality of data given as input, nor the nature of the correlation 
between two mode shapes. 
 
 
2.4 Example of a New Mode shape Assurance Criterion using ZMD of a Circular Plate 
 

As shown in [7], the free vibration of a circular plate can be modelled by finite 
elements. Since the circular plate is a perfectly axisymmetric structure double modes are 
obtained. Observing the modes 1 and 2, it is possible to visualize a correlation between them: 

 
Modeshapes 1 and 2 from experiment  

 
The conventional MAC indicates that they do not correspond totally to one another, 

but a simple visualization can point out they differ by simple rotation. As the Zernike moment 
description is invariant to rotation, those two modes have the same ZMD pattern, hence the 
correlation between them can be mathematically shown. In [7], the Zernike descriptors for 
each mode and the assurance criterion using them are exemplified: 

  



 
Zernike moment descriptors for 20 experimental modeshapes 

 
The conventional mode-shape comparison method, MAC, shows nothing about the 

double modes. The ZMD is applied to the first 20 modes, as only a small number of the lower 
order ZMDs are needed to represent all the modes. Correlation of mode shapes based on the 
ZMD amplitudes is shown where the double modes can be clearly recognised. 

 

 
Zernike-descriptor-based assurance criteria 

 
Slight differences can be noticed between the descriptors for modes 1 and 2, but the 

main descriptors are practically the same, therefore justifying the correlation indicated in the 
new criterion. As the circular plate has a simple geometry, the necessary number of used 
descriptors can be low. For more complicated geometry, more descriptors might be needed 
and the slight differences may appear more often, as the modeshape also becomes more 
complex.   

 
 This is an example for the case of a singular simple structure, analysed purely by only 
one of the mentioned methods. It is very important to point out that the Zernike moment 
description is based in the Zernike moment function, which is defined within the unit circle. 



Therefore, the ZMD descriptors can be sharply applied on circular geometries, or geometries 
that can be reshaped easily into a circle.  
 This is why the utilisation of multiple methods is very handy when dealing with 
pattern recognition. Specifically, the ZMD is powerful in discriminating circular and spherical 
images; the FD is more general and very effective at extracting mode-shape features by virtue 
of its sinusoidal kernel; the WD shows the capability of distinguishing between local and 
global features, to cite the most common few methods.          
 
2.5 Image Processing  
 
 Image processing (IP) is a set of computational techniques for analyzing, enhancing 
and reconstructing images. Its main components are: importing, in which an image is captured 
through scanning or digital photography; analysis and manipulation of the image, accomplish-
ed using various specialized software applications; and output (e.g., to a printer). [3] 
 
2.6 Pattern Recognition 
 

A typical pattern recognition (PR) approach involves the estimation of a series of 
shape attributes or features with good discriminative capability. The mapping from the space 
of shapes to the space of shape descriptors should determine the distance between descriptors 
of two models as a meaningful measure of the underlying similarity of their shapes. 
 
2.7 Fourier Descriptors 
 
 Fourier Descriptors (FDs) were originally proposed in 1960 by Cosgriff [4], and 
thereafter became popular among the pattern recognition community through the papers of 
Zahn [5], Persoon and Fu [6] and are among the most popular shape representation methods 
for vision and pattern recognition applications. The basic idea underlying this approach 
consists in representing the shape of interest in terms of a 1D, 2D or even 3D signal. The 
Fourier transform of this signal is determined and the FDs are calculated for this Fourier 
representation. As there are plenty of possible Fourier representation definitions for a single 
signal, FDs might be understood as a class of methods, not a single method. Some properties 
of the FDs directly follow from the underlying theory of the Fourier transforms and series, for 
instance, the invariance to geometric transformations.  

The FD is based on the frequency components from Fourier transform (FT) of the 
images. According to the well-known theory of the FT, the kernel function of the SD is the 
complex valued sinusoid, 

  
Df(u,v) is a continuous function having the same cardinality as I(x,y), and for real 

applications, this needs to be reduced whilst retaining as much information as possible. 
Generally the low frequency and higher energy components are sufficient to describe the 
shape. Thus, for instance, elliptical descriptors based on the FD spectrum are feasible to 
indicate the distribution of the frequency energy. [7] 

In reference [8] are listed some Matlab routines that can be used for simple 
implementation of 1D Fourier descriptors, based in the angular functions and in the elliptic 
function, respectively. The routine used in the development of a Fourier descriptor in Matlab 
was the 2D elliptic descriptor, which is stated below: 

 
%Elliptic Fourier Descriptors 
function EllipticDescrp(curve,n,scale) 



%n=num coefficients 
%if n=0 then n=m/2 
%Scale amplitud output 
%Function from image 
X=curve(1,:); 
Y=curve(2,:); 
m=size(X,2); 
%Graph of the curve 
subplot(3,3,1); 
plot(X,Y); 
mx=max(max(X),max(Y))+10; 
axis([0,mx,0,mx]); %Axis of the graph pf the curve 
axis square; %Aspect ratio 
%Graph of X 
p=0:2*pi/m:2*pi-pi/m; %Parameter 
subplot(3,3,2); 
plot(p,X); 
axis([0,2*pi,0,mx]); %Axis of the graph pf the curve 
%Graph of Y 
subplot(3,3,3); 
plot(p,Y); 
axis([0,2*pi,0,mx]); %Axis of the graph pf the curve 
 
%Elliptic Fourier Descriptors 
if(n==0) n=floor(m/2); end; %number of coefficients 
 
%Fourier Coefficients 
ax=zeros(1,n); bx=zeros(1,n); 
ay=zeros(1,n); by=zeros(1,n); 
t=2*pi/m; 
%Graph coefficient ax 
subplot(3,3,4); 
bar(ax); 
axis([0,n,-scale,scale]); 
%Graph coefficient ay 
subplot(3,3,5); 
bar(ay); 
axis([0,n,-scale,scale]); 
%Graph coefficient bx 
subplot(3,3,6); 
bar(bx); 
axis([0,n,-scale,scale]); 
%Graph coefficient by 
subplot(3,3,7); 
bar(by); 
axis([0,n,-scale,scale]); 
%Invariant 
CE=zeros(1,n); 
for k=1:n 
CE(k)=sqrt((ax(k)^2+ay(k)^2)/(ax(1)^2+ay(1)^2)) 

+sqrt((bx(k)^2+by(k)^2)/(bx(1)^2+by(1)^2)); 
end 
 

Image reconstruction is straight forward by applying the inverse Fourier transform. 
Good approximation may be obtained by retaining a sufficient number of higher energy 
terms.  

 
%Graph of Elliptic descriptors 
subplot(3,3,8); 
bar(CE); 
axis([0,n,0,2.2]); 
for k=1:n 
for i=1:m 
ax(k)=ax(k)+X(i)*cos(k*t*(i-1)); 
bx(k)=bx(k)+X(i)*sin(k*t*(i-1)); 
ay(k)=ay(k)+Y(i)*cos(k*t*(i-1)); 
end 
by(k)=by(k)+Y(i)*sin(k*t*(i-1); 



ax(k)=ax(k)*(2/m); 
bx(k)=bx(k)*(2/m); 
ay(k)=ay(k)*(2/m); 
by(k)=by(k)*(2/m); 
end 
%...................................................... 

  
In order to show the importance of the lower and higher energy terms, it is interesting 

that a step-by-step image reconstruction is shown, which will also be considered in this work.  
 
2.8 Moment Descriptors 
 

One of the simplest and most intuitive shape descriptors is the geometric moment. 
Given a two-dimensional continuous image I(x,y) the geometric moments mp,q of order (p+q) 
are defined as [2] 

                     (1) 
For an Nx X Ny digital image the integral is replaced by summation: 

                                                 (2) 
As a given image will have a unique geometric moment sequence, a sequence can be 

considered as a set of shape descriptors to distinguish different shapes.  
However, the basis of geometric moments is not orthogonal, hence the moment 

sequence includes redundant information to a high degree and the high-order moments are 
very sensitive to noise. It also makes the original shape generally more difficult to recover 
from a truncated set of moment descriptors. This argument justifies the use of bases that are 
less intuitive than the geometric moment, but have much superior properties for 
discrimination of images (or shapes), for reconstruction and for comparison between one 
image and another. One such descriptor is the Zernike moment descriptor (ZMD). 
 
2.9 Zernike Moment descriptor 

 
The Zernike moment (ZM) is based on a complete set of orthogonal polynomials, 

rather than the traditional algebraic polynomials used in the geometric moments, defined over 
a circle of unit radius – known as the Zernike polynomials. The Zernike moment is one of the 
most important region-based shape descriptors because of its outstanding properties resulting 
from the orthogonality of the Zernike polynomials. These properties incluse: 

- Minimum information redundancy, obtained while expressing an image as a 
set of mutually independent descriptors; 

- Contribution of each order of moment to the image reconstruction can be 
separated, so that the process of regaining the original image is much easier 
than by geometric moment descriptors [9].  

- Rotational invariance [10, 11], i.e., rotating an image does not change the 
magnitudes of its Zernike moments.  

- Robustness to noise [9] and effectiveness, hence a small number of Zernike 
moments are usually sufficient for shape reconstruction.  

 
The complete set of orthogonal complex polynomials over a circle of unit radius 

introduced by Zernike [16] can be expressed as  



                                     (3)  
Where i = 1− ,n non-negative integer, representing the order of the radial polynomial, 

m positive and negative integers subject to constraints n- m  even, m ≤  n, representing the 
repetition of the azimuthal angle, ρ length of vector from the origin to (x,y), θ the azimuthal 
angle between vector ρ and the x-axis in the counter clockwise direction, Rn,m radial 
polynomial defined as: 

                    (4) 
 These polynomials are orthogonal within the unit circle, so, if necessary, the analysed 
shape (the area of interest) has to be remapped to be of this size before calculation of its 
moments. There resides the ZMD biggest flaw: it implies difficulty in mapping a unit circle to 
a Cartesian grid. Some approaches can be done with the purpose of reshaping the original 
image, and make it fit for ZMD utilisation. As illustrated below, the image can be reshaped so 
that circle can be within the area of interest, losing some rarely-used corner information (a), or 
around the area of interest, which then covers areas where there is no information, but ensures 
that all the information within the area of interest is included (b). [8] 

 
Frequency spectrum 

 
 For simpler geometries there is also the possibility to a reshaping method that can 
transform a convex polygon into a unit circle, described in [2].  
 Although very useful, the utilisation of ZMDs is restricted to the structure capability of 
fitting into the unit circle, after adequate mathematical manipulation. If the process of 
reshaping is too complex, the method effectiveness, minimal redundancy and reconstruction 
ease, its main advantages, can be damaged.    
 
2.10 Wavelet Descriptors 

 
Wavelet transformation represents an image in terms of the superposition of wavelet with 

different scale levels and positions. The wavelet, having better time-frequency resolution than a 
Fourier transform [12], can be expressed as 

                                         (5) 



Where a +ℜ∈ !is the dilating scale parameter, (bx,by)!
2ℜ∈ are the translation parameters and 

abybx ,,ψ  is the translated and dilated version of the mother wavelet ψ (x,y). The normalisation factor 

1/a!is included so that ψψ =abybx ,,  . Depending on the applications, these parameters can be chosen 

as either continuous or discrete values. The definition of CWT can be expressed as an inner product of 
the wavelet and the image, [7] 

(6) 
 
 
 
For the wavelet to be oscillatory with a null DC component, the mother wavelet must 

satisfy, 

                                            (7) 
Considering in a simple approach the wavelet decomposition of a two-dimensional 

mode shape, the two-dimensional discrete wavelet transform for an image can be obtained by 
implementing the one-dimensional algorithm horizontally and then vertically. The outputs 
from each step of decomposition are the sub-images of one approximation at coarser 
resolution and three sub-images of detail in horizontal, vertical and diagonal directions as 
illustrated below. Thus, the comparison between images can now be carried out between the 
sub-images at different resolutions. In additional, these coefficients can be used as the WDs 
and the average energy of each sub-image may be used to form the SFV. [7]  

 
Frequency spectrum 

   
 
 
 
 
 
 
 
 
 
 



3. Development of Fourier reconstruction Matlab routine 
 
  
 At a first moment, the main efforts were concentrated in building a Matlab routine for 
image processing and pattern recognition using the Fourier Descriptor method. If possible, try 
to develop a routine to use two or more methods alongside, or reunite two different routines. 

After completing this first task, the main concern was implementing the developed 
routine using simply supported plate data as input. Subsequently the routine may be 
implemented in a damaged plate data and in the finite element turbine blade model.  

It was possible to obtain 15 mode shape images from the plate data set. The results 
obtained and the Matlab functions development stages are presented as follows. 

  
3.1 Testing of Fourier Descriptor with Single Plate Data 
 
3.1.1 Nodal line detection 
 
 

- How to use function nodal_line_identification.m : 
The function nodal_line_identification.m was developed with the intention to 
display the 18 plate mode shapes available, showing, at first, the 18 mode shapes 
altogether, and then each one with its own nodal region presented.  The data were 
extracted from .rpt files, each file named mode#.rpt (where # represents the respective 
mode shape number) and containing the data due to one only mode shape. The 
organisation of each file is explained as comments in the function commands. The 
function code is as stated as follows: 
 



 

%function for nodal line identification 
clear all; close all; 
  
%in each file mode.rpt there are 3 columns : 
% column 1 : n°nodes 
% column 2 : U magnitude 
% column 3 : U3 (dep vertical) 
% plat dimensions : 236 * 291 mm 
% material : density =1550kg/m3 
% E1=110.3GPa, E2=E3=7.69GPa, G12=G13=4.75GPa, G23=2.746GPa 
  
for ii=1:18 
RPT=sprintf('mode%d.rpt',ii) ; 
mode=dlmread(RPT);   
if (ii==1),data(:,ii)=mode(:,1); end 
data(:,2*ii:2*ii+1)=mode(:,2:3); 
if mod(ii,6)==0, tab=6; else tab=mod(ii,6);end 
if (mod(ii,6)==1), figure;end 
  
subplot(2,3,tab) 
  
imagesc((reshape(data(:,2*ii),59,[]))') 
title(sprintf('Mode Shape %d',ii)) 
  
if (tab==6), pause;end 
  
end 
  
%frequencies for each mode 
%mode1: f=201.34 Hz %mode2: f=268.93 Hz 
%mode3: f=502.92 Hz %mode4: f=554.49 Hz 
%mode5: f=652.11 Hz %mode6: f=932.23 Hz 
%mode7: f=975.54 Hz %mode8: f=1085.4 Hz 
%mode9: f=1192 Hz %mode10: f=1419.4 Hz 
% mode 11 : f=1544.7 Hz; %mode 12 : f=1662.7 Hz 
% mode 13 : f=1787.5 Hz;  %mode 14 : f=1895.2 Hz % mode 15 : f=2030.5 Hz 
  
  
% dispose all values on a «data » table, simpler to manipulate later 
%data(:,1)=mode1(:,1); 
%data(:,2:3)=mode1(:,2:3); ... data(:,30:31)=mode15(:,2:3); 
  
%mode1, Umagnitude 
%Umag_mode1=(reshape(data(:,2),59,[]))'; 
%mode2, Umagnitude 
%Umag_mode2=(reshape(data(:,4),59,[]))'; 
%... 
%mode 15, Umagnitude 
%Umag_mode15=(reshape(data(:,30),59,[]))'; 
  
for jj=1:18 
      

n_line((reshape(data(:,2*jj),59,[]))',jj); 
end 
 
 



Other comments regarding to the frequencies obtained from each mode shape and way 
each mode shape had to be reshaped to fit the image format were also left in the 
function. The first command sequence reads the data available in the files and displays 
the image extracted from each mode shape, displaying all 18 mode shapes together.     
After you execute, the program will automatically generate a picture representation 
from the 18 data sets available in the directory (the eighteen .rpt files that have to be 
seen in the current directory). Three windows are going to be created, each one 
containing five modes and being shown in the screen by pressing any key in the 
keyboard. They will be presented as follows:  
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The final command lines will set the execution of function n_line. This function 
detects the region in the image closest to the nodal line. It is possible to set a threshold 
to define this nodal line width, which is made by setting the values of mean value 
“average” and interval range “epsilon” (here set to 0.5 and 0.1, respectively) to values 
of interest. 



 

   
As the program represents all fifteen mode shapes and its nodal lines, it will lead to 
fifteen more graphics. As before, each graphic is shown after pressing any key to make 
the program exit the pause command. A representation of the plotting for mode 1 is 
shown below, as an example for the kind of result generated for each mode:  
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function n_line(imagemode,mode) 
  

nomsave=sprintf('mode%d.bmp',mode) ; 
          
        gimg=imagemode; 
         
        %create nodal line by thresholding epsilon 
        epsilon=0.1;average=0.5; 
    nodalline=(gimg<epsilon+average)&(gimg>-epsilon+average); 
   
%add complement 
imwrite(imcomplement(nodalline),nomsave); 
% level = graythresh(abs(gimg)); 
% nodalline = im2bw(abs(gimg),level); 
           
figure; 
subplot(211);imagesc(gimg); title(sprintf('Mode Shape %d',mode));  
subplot(212);imagesc(nodalline);title(sprintf('Mode Shape %d Nodal Line',mode)); 
pause; 
  
 

  Define nodal 
line range 



Function also saves each nodal line image (shown in red) as a bitmap file, there can be 
used later for image description. They are all named 'mode%d.bmp' (where %d 
represents the respective mode shape number).   

3.1.2 Image description 
 
The nodal lines extracted from the mode shapes using the previous Matlab functions 
will be submitted to the Fourier description method. The image description of the 
nodal line, extracted from mode shape 1 data, is done by function demoFDplate.m. 
The function code is as stated below: 
 

 
 
 
 
Executing this code will provide a Fourier description from the mode shape given by 
the bitmap file name given in position 1. The number in position 2 allow you alter the 
resolution of the given image, if necessary (a resolution of 5 is already greatly 
acceptable), also knowing that a bigger resolution will improve the obtained image 
quality, but will take more computation time. Finally, you can choose the quantity of 
descriptors to be used in position 3. A number of descriptors equal to 50 leads to a 
very good reconstruction, but also takes computation time to be developed. The 
usually adopted number is 25, for reasonable results. 
 
Notice that the function EllipticDescrp.m is used. This function is based in the 
function given by ref. [8]. The results obtained from this function and CompleteFD.m 
are distinct and interdependent.   
 
 
The function CompleteFD.m commands were divided for better explanation as 
follows: 
 

 
 
  
 
 
 
 

clear all;close all; 
%inputimage=im2bw(imread('test4.bmp')); 
inputimage=imread('mode1.bmp'); imagesc(inputimage); 
s=size(inputimage); 
%add 2 lines and columns to avoid boundary effects  
imageC=ones(s(1)+4,s(2)+4); 
 imageC(3:end-2,3:end-2)=inputimage; 
%imageC= IIR(imageC,2); 
%enhance image resolution coef res 
res=5; 
imageC = im2bw(interp2(imageC,res)); 
imagesc(imageC); title('Original image'); 
  
curve=CompleteFD(imageC); 
EllipticDescrp(curve,50); 
 

1 Change here the mode 
you want to analyse 

2 Choose the resolution 
you want in the shown 
image  

3 Choose how many 
descriptors you want to use    

%Gradual elliptic Fourier Descriptor+Contour 
function curve=CompleteFD(Input) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Function from image 
  
global inputimage 
inputimage=Input; 
curve=[]; 



 
 
 

 This first data set is destined to ensure that all curves in the image will be analyzed. 
While the subfunction checkimg indicates that there are still curves in the original image 
whose Fourier transforms were not taken into account in the obtained analyzed image, the 
function continues to search for curve contours in the input data set, which is erased after the 
contour total extraction. 
  The function Contour2 extracts the contour from each curve present in the input data 
set at a time. For each curve, the obtained contour is stored in extractcontour and the 
remaining image (the input image without the already extracted contours) is stored in 
extractimage. The entirety of obtained contours is stored in curve, and the condition for 
exiting the loop is simple: when there is no non-analyzed pixel remaining in the original 
image inputimage, and all contours of interest are in already stored in curve, then the while 
-loop ends. The final commands are simply to display the original image and the obtained 
contours.     

while(checkimg(inputimage)) 
[extractcontour,extractimage]=Contour2(inputimage); 
curve=[curve extractcontour]; 
   
  X=curve(1,:); 
  Y=curve(2,:); 
  if (size(X,2)~=0) 
      for index=1:size(X,2) 
          inputimage(Y(index),X(index))=1; 
      end 
  end 
inputimage=extractimage; 
  
end 
  
% Graph of the curve  
  X=curve(1,:); 
  Y=curve(2,:); 
  
    figure; 
    plot(X,Y);    
    mx=max(max(X),max(Y))+10;                 
    axis([0,mx,0,mx]); % Axis of the graph pf the curve 
    axis square;                     % Aspect ratio 
    title('Obtained Image'); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 function f=checkimg(inputimage) 
  
[rows,columns]=size(inputimage); 
f=0; 
for x=2:columns-1 
   for y=2:rows-1 
       if (inputimage(y,x)==0),f=1;end 
   end 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 



 The subfunction checkimg merely checks if there is any non-analyzed pixel in the 
image to be analyzed. If this is true, i.e., there is any non-analyzed pixel, the subfunction 
returns the value 1, if not, it returns the value 0.   
  

  
     

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Contour extraction form a binary image 
  
function [outputcontour,outputimage] = Contour2(inputimage) 
  
global border   
    %Image size 
    [rows,columns]=size(inputimage); 
    outputimage=inputimage; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    
%Image border identification  
%the counter b indicates the number of neighbor pixels that also belong  
%to the image. 
  
    % num neighbours #Black~=8 
    border=zeros(rows,columns); 
                                                                     
    for x=2:columns-1 
      for y=2:rows-1 
        if inputimage(y,x)==0 
           b=0; 
           for Nx=x-1:x+1 
             for Ny=y-1:y+1 
                 if(x~=Nx || y~=Ny) 
                   if inputimage(Ny,Nx)==0 
                      b=b+1; 
                   end 
                 end 
             end 
           end      
           if(b~=8),border(y,x)=1;end 
        end 
      end 
    end   
     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    
%Erase pixels that do not belong to border.  
for x=2:columns-1 
      for y=2:rows-1 
          if (border(y,x)~=1) 
              outputimage(y,x)=1; 
          end 
      end 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% follow 
outputcontour=[]; 



This section is used for the image contour detection. Once one curve is detected, every 

   % Condition: Do the following calculation only for closed curves  
  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
    %The following lines are developed to make the image borders 
    %thinner (thickness=1 pixel).  
    %Hence, it is not necessary for open curves, i.e., curves 
    %that are already 1-pixel-thick. 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Thin borders 
% 
%      delete pixel if does not break a chain 
%              N8: neighbours !=0 
% 
%      (x,y): 
%               N=Card(N8(x,y)) 
%                               B=Sum(Card(N8(P))  for P in N8(x,y) 
% 
%              if((n-1)*2==B) not break a chain 
% 
  
    for x=2:columns-1 
      for y=2:rows-1 
          N=0; B=0;  % num neighbours 
         if border(y,x)>0             
             for Nx=x-1:x+1  % 8 Neigbour 
                for Ny=y-1:y+1 
                    if ((Nx~=x || Ny~=y) && border(Ny,Nx)>0) 
                      N=N+1;                     
                        for NNx=x-1:x+1  % 8 Neigbour 
                            for NNy=y-1:y+1 
                                if ((NNx~=x || NNy~=y)&& 
border(NNy,NNx)>0) 
                                if ((NNx~=Nx || NNy~=Ny)) 
                                  if( abs(NNx-Nx)<2 && abs(NNy-Ny)<2) 
                                    B=B+1;           
                                  end  
                                end 
                              end    
                          end 
                        end 
                     
                    end 
                end  
             end 
             
          if((N-1)*2==B) 
                border(y,x)=0; 
            end              
         end 
      end 
  end            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for x=2:columns-1 
      for y=2:rows-1 
          if border(y,x)~=1,outputimage(y,x)=1;end 
      end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    



pixel inside it is erased. Then, the curves contours are extracted. A final verification is made 
to ensure that the contours are one-pixel-thick. 

 

 

%Search starting point 
    dmin=rows+columns;d=0; 
    strtx=1; strty=1;  
    for x=2:columns-1 
      for y=2:rows-1       
  
            if (outputimage(y,x)==0 && border(y,x)==1) 
   
  
                d=y+x; 
   
  
                if(d<dmin) 
       
  
                dmin=d; 
   
  
                strtx=x; strty=y; 
                %ContX=x;ContY=y;  
  
                end 
       
  
            end 
      end 
    end   
   
if d~=0 
     %insert initial point 
      sx=strtx; sy=strty; 
      outputcontour=[outputcontour [sx;sy]]; 
      border(sy,sx)=0; %point in the output contour 
   
     % next point 
     cx=0;cy=0; 
     for x=sx-1:sx+1; 
        for y=sy-1:sy+1 
            if(border(y,x)~=0) 
                cx=x; cy=y; 
            end 
        end 
     end 
     
    % border following 
    while( (cx~=strtx || cy~=strty) ) 
         if (cx~=0 && cy~=0),outputcontour=[outputcontour [cx;cy]]; 
%store current point  
         sx=cx; sy=cy; 
         border(sy,sx)=0; %point in the output contour 
         else 
         border(sy,sx)=0; 
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 This final section is destined to ordinate the pixels obtained in the extracted 
contour. After choosing a starting pixel (in this case, the pixel with the smallest 
coordinates), the function searches for a pixel next to it that belongs to the contour, 
proceeding to finding the pixel next to this second, and so on. When the function 
returns to the first pixel, the loop is ended. Therefore, the function is useful for 
multiple closed curved analyses.  
 The results obtained are shown as follows. The description of an image with 
multiple curves has reasonable quality, no matter how many curves it has.   
 
 
 
 
 
 
     

   end 
      
        % next point 
        n=size(outputcontour,2); % num pts 
        stp=0; 
        for x=sx-1:sx+1 
            for y=sy-1:sy+1   
                if( (x~=sx || y~=sy) && ~stp)  
                    if(n>3 && x==strtx && y==strty) % arrive to the end 
                    cx=x; cy=y; 
                    stp=1;             % stop cicle 
                    elseif(border(y,x)~=0) 
                    cx=x; cy=y; 
                    end 
                end  
            end  
        end     
        
     end %while ( (cx~=strtx || cy~=strty) ) 
   
end 
     
  X=outputcontour(1,:); 
  Y=outputcontour(2,:); 
  if (size(X,2)~=0) 
      for index=1:size(X,2) 
          outputimage(Y(index),X(index))=1; 
          border(Y(index),X(index))=0; 
      end 
  end  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
% End of calculation for closed curves 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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A representation from the black and white picture to be analysed. 
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A representation from the previous picture’s contour. 

 
These are the results generated by CompleteFD.m. They will be used to generate the 

results of function EllipticDescrp.m,which calculates the Elliptic Fourier function 
descriptors. The commands will also be divided in 4 sets, for better explanation.  
 
 



 
 
 

This first command set is for calculation of the Fourier transform from the obtained 
contour. The original contour and normalized Fourier transform are also displayed, for better 
visualization of the results. 

 

% Elliptic Fourier Descriptors 
function  EllipticDescrp(Curve,n)  % n= num coefficients 
                                        % if n=0 then n=m/2  
                                        % Scale amplitud output 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Function from image 
  
curve=double(Curve); 
X=curve(1,:); 
Y=curve(2,:); 
m=size(X,2); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Graph of the curve  
figure;  
    subplot(3,2,1);                              % The plot 
    plot(X,Y);    
    mx=max(max(X),max(Y))+10;  
    axis([0,mx,0,mx]); % Axis of the graph pf the curve 
    axis square;                     % Aspect ratio 
    title('Original Image') 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Graph of X 
  p=0:2*pi/m:2*pi-pi/m;             % Parameter 
    subplot(3,2,2);                              % The plot 
    plot(p,X);                  
    axis([0,2*pi,0,mx]); % Axis of the graph pf the curve     
    title('Fourier Transform') 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Graph of Y 
    subplot(3,2,3);                              % The plot 
    plot(p,Y);                  
    axis([0,2*pi,0,mx]); % Axis of the graph pf the curve 
    title('Normalized Fourier Transform') 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
 



 
   
   
 

This second command set is for calculation of the descriptors. Each descriptor is 
calculated using the Elliptic function definition [8], and the fifty calculated descriptors are 
displayed in absolute value (all positive).    
 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%      
% Elliptic Fourier Descriptors 
  
  if(n==0), n=floor(m/2); end; % num coefficients 
  
    ax=zeros(1,n);              % Fourier Coefficients 
    bx=zeros(1,n); 
    ay=zeros(1,n); 
    by=zeros(1,n); 
         
    t=2*pi/m; 
  
    for k=1:n 
    for i=1:m 
        ax(k)=ax(k)+X(i)*cos(k*t*(i-1)); 
        bx(k)=bx(k)+X(i)*sin(k*t*(i-1)); 
        ay(k)=ay(k)+Y(i)*cos(k*t*(i-1)); 
        by(k)=by(k)+Y(i)*sin(k*t*(i-1));     
      end 
    ax(k)=ax(k)*(2/m); 
    bx(k)=bx(k)*(2/m); 
    ay(k)=ay(k)*(2/m); 
    by(k)=by(k)*(2/m);       
    end 
     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%      
% Invariant (the final descriptors) 
 CE=zeros(1,n); 
  
 for k=1:n 
    CE(k)=sqrt((ax(k)^2+ay(k)^2)/(ax(1)^2+ay(1)^2))+ 

sqrt((bx(k)^2+by(k)^2)/(bx(1)^2+by(1)^2)); 
    end 
 
subplot(3,2,4);                          
  bar(CE); 
  axis([0,n,0,.6]);   
  title('Fourier Descriptors'); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
 



   
The third command set is destined to the reconstruction using the fifty calculated 

descriptors. By calculating the curve values for X and Y, using as starting point only the 
obtained descriptors, a new curve is obtained, that is very similar to the original one. The 
descriptors magnitude and the reconstruction accuracy, for the use of 50 descriptors, can be 
observed by displaying the results calculated so far: 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Reconstruction (total, for the input number of descriptors) 
  
    ax0=0; 
    ay0=0; 
    for i=1:m    
        ax0=ax0+X(i); 
        ay0=ay0+Y(i); 
  end 
  ax0=double(ax0/m); 
  ay0=double(ay0/m); 
  
 RX=ones(1,m)*ax0; 
 RY=ones(1,m)*ay0; 
  
 for i=1:m 
    for k=1:n 
        RX(i)=RX(i)+ax(k)*cos(k*t*(i-1))+bx(k)*sin(k*t*(i-1)); 
        RY(i)=RY(i)+ay(k)*cos(k*t*(i-1))+by(k)*sin(k*t*(i-1)); 
      end    
    end 
     
 subplot(3,2,5);         
 plot(RX,RY);    
 mx=max(max(RX),max(RY))+10;  
 axis([0,mx,0,mx]);            % Axis of the graph pf the curve 
 axis square;                  % Aspect ratio 
 title('Reconstructed Image'); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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 The reconstructed image already gives a good idea of the original image. For better 
accuracy, we can use a greater descriptor quantity, always keeping in mind that the time to 
calculate the reconstructed image will also be greater.   
 The final command set is the one that generates a visualization of the image being 
gradually reconstructed. It is also the one that takes the greatest computational effort, which 
spends more time in calculation and displaying. If more improvement in speed is wanted from 
the routine, this is the section to work on, while it is the one in which computational time is 
most critical.  

         
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%      
% Elliptic Fourier Descriptors calculation for gradual reconstruction  
figure; 
for R=1:8 
  
  %if(n==0), n=floor(m/2); end; % num coefficients 
   
     switch R 
        case 1 
            coeff=1; 
        case 2 
            coeff=2; 
        case 3  
            coeff=4; 
        case 4 
            coeff=6; 
        case 5 
            coeff=8; 
        case 6 
            coeff=12; 



  

 case 7 
            coeff=25; 
        case 8 
            coeff=50; 
             
    end          
    ax=zeros(1,coeff);              % Fourier Coefficients 
    bx=zeros(1,coeff); 
    ay=zeros(1,coeff); 
    by=zeros(1,coeff); 
         
    t=2*pi/m; 
  
    for k=1:coeff 
    for i=1:m 
        ax(k)=ax(k)+X(i)*cos(k*t*(i-1)); 
        bx(k)=bx(k)+X(i)*sin(k*t*(i-1)); 
        ay(k)=ay(k)+Y(i)*cos(k*t*(i-1)); 
        by(k)=by(k)+Y(i)*sin(k*t*(i-1));     
      end 
    ax(k)=ax(k)*(2/m); 
    bx(k)=bx(k)*(2/m); 
    ay(k)=ay(k)*(2/m); 
    by(k)=by(k)*(2/m);       
    end    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%      
   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%      
% Gradual Reconstruction 
  
    ax0=0; 
    ay0=0; 
    for i=1:m    
        ax0=ax0+X(i); 
        ay0=ay0+Y(i); 
  end 
  ax0=double(ax0/m); 
  ay0=double(ay0/m); 
  
 RX=ones(1,m)*ax0; 
 RY=ones(1,m)*ay0; 
  
 resborder=[]; 
 for i=1:m 
    for k=1:coeff 
        RX(i)=RX(i)+ax(k)*cos(k*t*(i-1))+bx(k)*sin(k*t*(i-1)); 
        RY(i)=RY(i)+ay(k)*cos(k*t*(i-1))+by(k)*sin(k*t*(i-1)); 
    end 
      if (round(RY(i))>0 && 
round(RX(i))>0),resborder(round(RY(i)),round(RX(i)))=1;end 
    end 
     
 subplot(2,4,R);         
 plot(RX,RY);   
 mx=max(max(RX),max(RY))+10;  
 axis([0,mx,0,mx]);            % Axis of the graph pf the curve 
 axis square;                  % Aspect ratio 
 title(sprintf('%d Descriptors',coeff)); 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 



The function is designed so that the reconstruction is gradually shown for 1, 2, 4, 6, 8, 
12, 25 and 50 descriptors respectively. The results obtained are:  
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The results prove that the bigger the number of descriptors used in the reconstruction, 
the bigger the accuracy from the reconstruction. And, depending on the research 
purpose, a convenient number of descriptors may be more suitable. For our purpose, 
the visualization and verification of the reconstruction accuracy and detail levels, fifty 
descriptors is a reasonable amount.  
 
 

The results obtained satisfy the research primary objective: to establish detailed and accurate 
description and reconstruction from a given data set.   
 
4. Conclusion 
 

The developed functions showed acceptable results, adding mathematical accuracy, 
visualization simplicity and manipulation ease to the curve description process. The main 
concerns regarding the functions are the restriction due to working only with closed curves. 
For this work purpose, the closed contours description was satisfactory, as it allowed 
visualization of the description process and accurate reconstruction.      
 
 
 
 
 
 
 
 



Chapter II 
 
 
 
 
1. Introduction  
 

This chapter presents a simple test made with simple data, in order to give experi-
mental support to the mathematical approach we intend to apply. It consists of a comparison 
between two mode shape sets from the same carbon-fibre-plate. One was provided by a modal 
analysis, done with several plate border constraints. The other was provided by a modal 
analysis obeying the same border constraints and experimental conditions, only differing from 
the first one by a damaged inflicted in a determined plate portion.    
 
2. Our Approach 
 
2.1 Example for Rectangular Plate  
 
 A simple example for the case of a rectangular plate with border constraints (Clamped-
Simply Supported-Clamped-Simply Supported) using the Fourier descriptor was developed, 
in order to present the method effectiveness. Two sets of data, one for a damaged plate and 
another for an undamaged plate, each one containing 18 mode shape data, were submitted to a 
Fourier Descriptor - a Matlab command list used to calculate and display the descriptors used 
to characterize each mode shape – showing several mode shape differences that were taken 
into account for establishing a more reliable assurance criterion.     
 The damage inflicted to the second plate is shown in the following picture. The 
carbon-fibre-plate was delaminated in a specific area, i.e., the carbon fibre was irregularly 
posed in a particular plate area, as shown in the picture. Visualizing the mode shapes, it is 
possible to infer that the damage is located in a plate corner, however they do not suffice to 
determine the damage location exactly.   
 

 
 

Delamination 



2.1.1 Undamaged Plate Data  
 The following 18 mode shapes were extracted from the undamaged plate data. 
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Using the developed Matlab function reordonne_noeud_lineaire, described below, 
18 files in format .rpt containing the mode shape data were read and that data was transformed 
into the 18 mode shape images seen above. This function also calls Matlab function 
n_line.m, which displays the nodal line for each mode shape, as exemplified in sequence for 
mode 1. The process of development of the fuuntions used is described in chapter 5.  
 

 
 

function reordonne_noeud_lineaire 
 
clear all 
for index=1:18 
RPT=sprintf('mode%d.rpt',index) ; 
mode=dlmread(RPT);   
if (index==1),data(:,index)=mode(:,1); end 
data(:,2*index:2*index+1)=mode(:,2:3); 
if mod(index,6)==0, tab=6; else tab=mod(index,6);end 
if (mod(index,6)==1), figure;end 
  
subplot(2,3,tab) 
imagesc((reshape(data(:,2*index),59,[]))') 
  
if (tab==6), pause;end 
  
end 
 
clear mo* in* no* 
  
for index=1:18 
n_line((reshape(data(:,2*index),59,[]))',index); 
end 
 



Function reordonne_noeud_lineaire.m reads the data stored in the .rpt files, reshaping 
this data into a matrix format. This format is required in order to transform each .rpt file in a 
image format (in our programs the bitmap format will be used).       
 As a combination from both of these functions, the new function 
reordonne_noeud_lineaire.m uses the subfunction n_line: 
 

 
The function automatically extracts the data from .rpt files from modeshapes 1 up to 

15, reshaping them into the array named data. These reshaped data are displayed altogether. 
After that, the nodal line for each image format is drawn by the function n_line, which also 
saves the obtained nodal line in a bitmap file. The nodal line is determined by an interval of 
values detected from the matrix-shaped data. This interval is specified by the variables 
average and epsilon in function n_line. After each graphic shown, the program comes to a 
halt, allowing the user to visualize the plotting calmly and move on by pressing any key. 
  

function n_line(imagemode,mode) 
  
nomsave=sprintf('mode%d.bmp',mode) ; 
          
        gimg=imagemode; 
         
        %create nodal line by thresholding epsilon 
        epsilon=0.1;average=0.5; 
 nodalline=(gimg<epsilon+average)&(gimg>-epsilon+average); 
  
  
  
%add complement 
imwrite(imcomplement(nodalline),nomsave); 
% level = graythresh(abs(gimg)); 
% nodalline = im2bw(abs(gimg),level); 
           
figure; 
subplot(211);imagesc(gimg); 
subplot(212);imagesc(nodalline);pause; 
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Function n_line.m also saves the nodal line information in a bitmap file, for the 

purpose of using it for further analysis.  
 
 

 
2.1.2 Damaged Plate Data  
 
 The following 18 mode shapes were extracted from the damaged plate data. 
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 They were obtained using the same procedure as before: reading each .rpt file and 
producing a mode shape image. The nodal lines were also saved, but in differently named 
bitmap files. For instance, the nodal line for mode 1 is shown below: 
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 The difference between mode 1 data from the damaged and the undamaged plate is 
very slight. Bigger differences can be seen when for mode 5 and higher modes. The detection 
and quantification of these differences is the main purpose of the research, the difference 
between the damaged and undamaged.  
 For example, the differences between mode shape 6 for both plates is almost 
unperceivable by naked eye. One can only notice the slight change in the border of the formed 
shapes. However, a computer can easily quantify these differences, and that is what we will 
use in the development of a new assurance criteria.  
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2.2 New Assurance Criteria  
  
 Using the definition of MAC, it is possible to create a new criterion, in which 
multiplying the image vectors from the damaged and undamaged plates will lead to results 
very similar to the ones given by MAC. Extracting the norm from the product matrix will lead 
to factors between zero and one, the number one meaning that the maximum assurance is 
obtained, and the zero meaning the minimal assurance is obtained.  
 
 
 
 
 
 
 
 
 
 
 
 



2.2.1 Damaged Plate MAC  
 

Damaged Plate Mode shapes

Da
m

ag
ed

 P
la

te
 M

od
e 

sh
ap

es
Damaged Plate MAC

 

 

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18
0.4

0.5

0.6

0.7

0.8

0.9

1

 
 
 
2.2.2 Undamaged Plate MAC  

Undamaged Plate Mode shapes
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By simple observation it is possible to notice that the obtained criterion presents a 
higher accuracy, as it shows better differentiation between the various mode shapes. Although 
it does not show inverse proportionality as the Pearson coefficient calculation (corr2.m), it 
results in a much more embracing comparison between and wider interpretation of the mode 
shapes. As an assurance criterion, is has proposed better results than classic MAC itself.     

However, in naked eye, it may seem that both results for damaged and undamaged 
plates are equal. In fact, paying attention being extremely strict to the details, it is possible to 
notice slight differences between the two obtained matrices. Calculating the difference 
between them, we obtain the following results:    
 

Difference (MAC Damaged Plate - MAC Undamaged plate)
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Absolute  Difference between MACs
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 The greatest differences are noticed when comparing the following mode shapes 
correlation pairs: (7, 5), (8,15), (9,15) and (17,18) . Keeping in mind that the plate 
delamination, i.e., the damage inflicted to the plate, it is possible to verify that the MAC result 
comparison is useful to determine if there is a structural injure, but its precise location is still 
hard to apprehend using just that (although it can be seen inferred from the mode shapes 
visualization). A more elaborated comparison method might be needed to fit this purpose. 
 
 3. Conclusion 
 

As assurance criteria, the use of mode shape image format presented wider and deeper 
results than the classic Modal Assurance Criteria. It was possible to detect greater range of 
differences between the mode shapes. And the results for damaged and undamaged bodies 
have shown a measurable difference, which can contribute to the identification of damaged 
bodies.  

Nonetheless, the comparison methods used (simple difference) are not sufficient to 
determine with accuracy the damage location. Further efforts must then be done in the 
development of more sophisticated comparison methods.  

 
 
 
 
 
 
   

 
 
 



Chapter III 
 
1. CATIA Model 
 
 The modelling in Catia was guided by the test results in document [XX]. Although the 
model shown in [XX], presented below, gives some geometric information about the tested 
structure, like its length and existence of a tip shroud, it does not make clear a whole group of 
other interesting data, essential to build a reliable model which can lead to the same results. 
Despite of this, it does not mean our model is unrealistic, it just means that the data obtained 
from the experiment report is only to be used as advisory guide, as long as the remaining 
geometric features are not obtained.   

 
Turbine blade representation  

 
The Catia model was initially designed in order to obtain a representation for the 

turbine blade studied in article [13], knowing the blade geometry features used in the 
experiment there described were unavailable at the moment. So, based in a schematic picture 
shown in document [13], in previous knowledge from turbine blade design and in the modal 
frequency values obtained in a finite-element test, the Catia model was shaped as an attempt 
to reach the mentioned frequencies and respect the schematics shown in the previous figure. 



Although it is known that this approach may not result in this geometry accurate 
representation, the initial objectives in this research are to establish if the applied method is 
reasonable for a possible, realistic turbine blade model.  
 The model was basically constructed building a wing-like profile mounted in a static 
base. In our displacement test, this base is will be the clamped part and the profile will be the 
displacement surface. As ordinarily adopted in turbine blade construction, the profile clamped 
in the base (thicker) is different from the one above (narrower).       
 

 
Partial model in Catia 

 
 
 Finally a final top structure is added, for it allows assembling various blades side by 
side. It is expected that the blades might be assembled to form a circular turbine, but for the 
purpose of this modelling, the curvature from the blade structure itself (curvature in plane XZ) 
was not considered. 

      



  
Complete model in Catia 

 
 As it was built, there are many factors that can influence deeply in the obtained modal 
frequency values. For example: the choice of each profile (top, base); the relative torsion 
between them; the profiles thickness; the top structure thickness; the top structure curvature 
(if necessary). Therefore, we may only adopt a qualitative approach towards the available set 
of data.  
 The turbine blade deformation data will be divided in two distinct sets. We will study 
the deformation obtained from the tip surface, and the deformation obtained from the lateral 
surface. Like represented in below, we will work with a top view from the tip (number 1) and 
a lateral view from the side (number 2).    
 



 
CATIA data sets 

 
       
 
2. Frequencies 
 
 The finite element test was made for several different mesh unit sizes. From a 5mm 
mesh unit size up to an 18mm size, the obtained results for the first six mode shapes were: 

Table 1 – Catia model frequencies  

Mode shape 5 mm mesh 6 mm mesh 7 mm mesh 8 mm mesh 9 mm mesh 10 mm mesh 11 mm mesh 12 mm mesh
1 241,43 244,61 248,28 252,15 256,01 260,38 265,64 267,23
2 447,90 465,37 490,84 509,94 531,87 556,04 575,86 585,13
3 731,36 743,43 763,87 772,56 784,91 800,11 812,87 812,14
4 980,21 1001,52 1036,00 1053,11 1074,06 1102,58 1119,70 1121,37
5 1343,82 1388,15 1457,71 1487,65 1527,87 1590,96 1616,45 1627,10
6 1671,25 1778,14 1887,37 1957,99 2028,80 2119,28 2193,61 2245,33

Mode Shape Frequencies in Hz
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 Table 1 (cont.) – Catia model frequencies  
 

Mode shape 13 mm mesh 14 mm mesh 15 mm mesh 16 mm mesh 17 mm mesh 18 mm mesh
1 274,04 279,87 275,76 279,66 288,60 288,24
2 611,13 624,65 631,28 649,10 665,65 666,18
3 833,18 845,94 844,36 860,39 882,83 874,07
4 1157,38 1179,86 1181,21 1197,19 1222,74 1226,20
5 1690,10 1700,75 1710,59 1741,65 1766,38 1756,40
6 2341,61 2389,80 2427,84 2460,37 2513,62 2549,41

Mode Shape Frequencies in Hz

 
 
 This interval was chosen given that for a mesh unit size lower than 5mm the storage 
computer capacity needed exceeds the available capacity of the computer used for the tests, 
and a size of 18mm already leads to results that greatly disagree with the experimental ones. 
These frequencies give an idea of how the frequencies change when we simply change the 
type of mesh used in finite element testing. For a better pattern observation, we can display 
them in a more direct graphic: 
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 This shows that for the first modes, very little numerical discrepancy is noticed when 
changing the mesh unit size. But for the later modes, it is expected that this discrepancy rises 
as high as the mode order is. A further evaluation of the method effectiveness can be done 
taking into account that discrepancy. 
 
 
   
 
 
 



When comparing with the results from the experience [12]: 
Table 2 – Experimental frequencies 

 
 
 The chosen mesh for our research will be the one with 10mm unit size. For the four 
first modes, it presents an acceptable percentage discrepancy from the experimental data, plus 
it is a mesh that is most easily transformed into a square matrix image, which will reduce our 
efforts in reshaping the finite element data into a bitmap image representation. 

Table 3 – Experiment-model percentage frequency difference 
10 mm mesh 

Mode Shape Difference (%) 
1 3,74 
2 22,48 
3 5,81 
4 18,63 
5 61,03 
6 76,21 

  
 It is essential to also remember the finite element test is not susceptible to 
experimental errors that may occur. So, considering the original data and the final results, the 
model can be characterized as realistic, and will fit the primary purposes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3. Creating Image file  
 
3.1 Using CATIA Export Data 

 
The data extracted from the CATIA model are a mesh of nodes created according to 

the software capability of finite element calculation. The unit cell geometry for this model is 
defined based in the available tools for finite element calculation (in our model the unit cell is 
tetrahedron-shaped). This geometry follows the body geometry, which is irregular. It is 
important to convert the available data into a matrix, so that it can be more easily 
mathematically manipulated. For this purpose, the development of Matlab functions using 
Radial Basis Functions concepts for interpolation and reshaping of the original data was 
necessary. 

So, basically, the reshaping process will proceed in several steps: 
- First, we select from the entire model mesh, which represents the entire 

turbine blade geometry, the nodes that we want to analyze. This is merely a 
selection of which turbine blade part is going to be observed; 

- Then, we create a surface that represents these selected nodes. This can be 
done by simply establishing an interval and creating the surface with the 
default Matlab command  mesh; 

- At this moment, the RBF takes place. The surface obtained from the previous 
step will not likely be rectangular. The RBF approximation will provide a 
rectangular new shape, equivalent to the previous surface. 

- Finally, the rectangular resulting surface is already the desired matrix, which 
means it can be already stored as an image format (in our work the bitmap 
format will be used). This image is ready to further mathematical 
manipulations.  

Assuming the CATIA model is ready, when we export its modal analysis data, a .xls 
file is generated. For each modal analysis, therefore each mode shape, the .xls file 
organization is: 

 

 
 
The first column data represents the x-coordinate for one given node; the second 

column represents the y-coordinate; and the third column the z-coordinate. The fourth 
column, named C1, represents the displacement in X direction; the fifth column, named C2, 
represents the displacement in Y direction; the sixth column, named C3, represents the 
displacement in Z direction. We use these coordinate for choosing the geometric region that 
we want to analyze.   



After choosing the area of interest, and eliminating the non-interesting area, the total 
displacement is calculated by the square root of the sum of the square of each displacement. 
In order to work with the total displacement, a seventh column must be created: 

 
 
When developing the Matlab function that will read each set of data, we must keep in 

mind that the coordinates and total displacement are located in the first three columns and in 
the seventh one, respectively.  

For more direct utilization, all 15 mode shapes where reunited in one single .xls file. 
The .xls file was called Aube_ExportData_Translation_Maillage10 (“Turbine blade export 
displacement data for a mesh unit size of 10mm”). This file contains 15 pages, each one 
named Mode #, where # corresponds to the mode shape order (1, 2, 3…15), and each page has 
the explained column organization.   
 
3.2 Interpolation using Radial Basis Function (RBF) 
 
   
  A radial basis function (RBF) is a real-valued function whose value depends only on 
the distance from the origin, so that )()( xx Φ=Φ ; or alternatively on the distance from some 

other point C, called a center, so that )()( CxCx −Φ=−Φ . Any function Φ  that satisfies 

the property )()( xx Φ=Φ  is a radial function. The norm is usually Euclidean distance, 
although other distance functions are also possible. [18]  
 Radial basis functions can be used to build up function approximations of the form: 

∑
=

−Φ=
N

i
ii Cxwxy

1
)()(  

Where the approximating function y(x) is represented as a sum of N radial basis 
functions, each associated with a different center Ci, and weighted by an appropriate 
coefficient wi. The weights wi can be estimated using the matrix methods of linear least 
squares, because the approximating function is linear in the weights. 

       
The Matlab function developed for that purpose is shown below: 



   
 The Matlab function shown reads the .xls file called 
Aube_ExportData_Translation_Maillage10 and extracts the working data from one of its 
pages, the one named “Mode #”, where # is the number of the mode shape defined by the 
variable mode. After creating vectors y1lin and y3lin, which store, respectively, the x and z 
regular interval between the minimum and maximum x and z coordinate values, the program 
eliminates any singularity that may occur in data using the function (isnan).  Then it generates 
a mesh that represents the data using RBF interpolation, using the functions rbfcreate, 
rbfcheck and rbfinterp, which are shown in Appendix.     
 
4. MAC 
 
 In order to execute the Radial Basis Function interpolation for every mode shape, the 
function above is modified. The following function is the one created for calculating and 
displaying all 15 mode shapes. After that, the function uses the created image format to 
calculate the modal assurance criteria, using function macD.m, as stated in Appendix. It 
basically reproduces the classic MAC, using the mode shape image as the input data matrix 
for each mode shape.  
 
   

clear all; close all; 
  
mode=1; 
  
modename=sprintf('Mode %d',mode) ; 
y=xlsread('Aube_ExportData_Translation_Maillage10',modename); 
%big NaN value from mac ? 
y=y(4:end,:); 
 
y1lin=linspace(min(y(:,1)),max(y(:,1)),33); 
y3lin=linspace(min(y(:,3)),max(y(:,3)),33); 
figure; 
[X,Z]=meshgrid(y1lin,y3lin);  
 
y(any(isnan(y),2),:) = []; 
  
 W=griddata(y(:,1),y(:,3),y(:,7),X,Z); 
 
%RBF interpolation  
op=rbfcreate([y(:,1)'; y(:,3)'], y(:,7)','RBFFunction', 'multiquadric',                     
'RBFConstant', 2); 
 
rbfcheck(op); 
%rbf=rbfcreate([y(:,1)'; y(:,3)'], y(:,7)',op);  
WI = rbfinterp([X(:)'; Z(:)'], op);  
WI = reshape(WI, size(X)); 
 
 mesh(X,Z,W); % interpolated 
  
plot3(y(:,1),y(:,3),y(:,7),'.','MarkerSize',15) 
view(2) 
figure; 
 mesh(X,Z,WI); view(2) 
 



 
  

clear all; close all; 
  
for mode=1:15 
     
modename=sprintf('Mode %d',mode) ; 
y=xlsread('Aube_ExportData_Translation_Maillage10_Top',modename); 
%big NaN value from mac ? 
y=y(4:end,:); 
  
y1lin=linspace(min(y(:,1)),max(y(:,1)),33); 
y2lin=linspace(min(y(:,2)),max(y(:,2)),33); 
figure(1);subplot(3,5,mode); 
[X,Z]=meshgrid(y1lin,y2lin); 
 
y(any(isnan(y),2),:) = []; 
  
 W=griddata(y(:,1),y(:,2),y(:,7),X,Z);  
  
%RBF interpolation  
op=rbfcreate([y(:,1)'; y(:,2)'], y(:,7)','RBFFunction', 'multiquadric', 
'RBFConstant', 2); 
rbfcheck(op); 
%rbf=rbfcreate([y(:,1)'; y(:,3)'], y(:,7)',op);  
WI = rbfinterp([X(:)'; Z(:)'], op);  
WI = reshape(WI, size(X)); 
  
 mesh(X,Z,W); % interpolated 
 hold on; 
  
plot3(y(:,1),y(:,2),y(:,7),'.','MarkerSize',15) 
view(2) 
title(sprintf('Mode Shape %d',mode)); 
  
figure(2);subplot(3,5,mode); 
 mesh(X,Z,WI); view(2);title(sprintf('Mode Shape %d',mode));  
  
modesave=sprintf('aubemode_top%d.bmp',mode) ; 
         
%add complement 
imwrite(imcomplement(WI),modesave); 
% level = graythresh(abs(gimg)); 
% nodalline = im2bw(abs(gimg),level);           
  
figure(3);subplot(3,5,mode); 
imagesc(WI);title(sprintf('Mode Shape %d',mode)); 
LWm(:,mode)=reshape(WI,1,[]); 
hold on; 
  
end 
  
figure; 
  
vmac=macD(LWm,LWm); 
imagesc(vmac);colorbar 
xlabel('Turbine Blade Mode Shapes') 
ylabel('Turbine Blade Mode Shapes') 



 
The function test.m, as stated above, creates mesh, RBF interpolation and image 

format for each mode shape, and, when this is done for every mode shape, calculates the 
MAC using as data input the image format of the 15 mode shapes. The obtained results are: 
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 The first one is a superposition between the real data extracted from the .xls file, for 
mode shape 1, from the lateral data set (region 2) and the interpolation surface created using 
Matlab command mesh. We can notice that the surface boundaries are not rectangular shaped.  
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 The second plot is RBF interpolation that reshapes the original surface into one with 
rectangular boundaries, in order to store it as a matrix afterwards. For instance, if we plotted 
the results side by side in isometric view, we would obtain: 
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     The last step is saving the obtained surface in image format, which can be done by the 
command sequence: 
 
 Resulting, for the Mode 1 example, in: 

Mode shape 1 Image
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Finally, it was possible to apply the MAC in both data sets, top (number 1) and lateral 

(number 2), obtaining the following results: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4.1 Results for Data Set 1 (Top) 
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 4.2 Results for Data Set 2 (Lateral) 
 
  
 If we repeat the previous sequence for the 15 mode shapes available, we can obtain the 
desired 15 mode shape images. They can be presented as the resulting data mesh, for each 
mode shape: 
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 Or as the image format obtained for each mode shape: 
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 Using them, keeping in mind that each one of these image formats is a real matrix, we 
can use them as vectors to be fed as input for the modal assurance criteria. That will result in: 
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 The obtained results give a general idea of the correlation level between two different 
mode shapes, showing, for example, the pair of modes (1, 15) as the worst correlation, which 
can be intuitively inferred from the mode shape images. It also shows a much deeper 
correlation between a greater quantity of mode pairs when compared to the classic method.       
 
5. Conclusion   
 

The developed assurance criterion enables a much deeper level of comparison between 
the mode shapes, as it shows various correlation degrees between the different mode shapes. 
It is possible then to have a more realistic idea of how interconnected the mode shapes are, 
added to a visualization that provides a common user of realizing this interconnection.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Conclusion 
 

The mains conclusions that were apprehended from the three developed projects were:  
• The curve description using the Fourier Transform method ensures reasonable 

results and ease to its user, therefore becoming a powerful tool to image 
reconstruction, when working with image processing. Further improvement 
might be done concerning methods for reconstruction of more general curves  
(open curves, for instance). This may need utilization of other image 
recognition methods, applying, for example, the methods which were 
mentioned in Chapter I, such as: Zernike Moment description, Wavelet 
Description. Using the developed method in mode shape recognition, it was 
simple to detect and reconstruct nodal lines, a useful feature to more detailed 
mode shape analyses. 

•    The developed function used in the plate experiment was very useful to 
determine the more wide and detailed approach that consists in using each 
mode shape extracted image format as input data for comparison in modal 
assurance criterion. This image based criterion shows mush more subtle 
differences between the mode shapes, ensuring a detailed correlation between 
them. Despite not showing the exact differences between a given mode shape 
pair, which can be done by visualization, this method also points towards a 
more direct way to mathematically establish an intimate correlation between 
two given images. 

• When applying the method to turbine blade mode shapes, it was possible to see 
a result set that was very much alike the results obtained for the plate 
experiment. We may also infer from these results that a damaged turbine blade 
will also present a measurable mode shape correlation variation, as pointed by 
the results for the sane/damaged plate experiment. This can be used, for 
instance, in detecting damaged turbine blades, and also in establishing levels 
for tolerated damage. Further improvement may have to be done in specifying 
damage location methods.      
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Appendix 
 

A1 - Function rbfcheck.m 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

A2 - Function rbfcreate.m 
 

 

function maxdiff = rbfcheck(options)  
tic; 
  
nodes     = options.('x'); 
    y     = options.('y'); 
  
s = rbfinterp(nodes, options); 
  
fprintf('RBF Check\n'); 
fprintf('max|y - yi| = %e \n', max(abs(s-y)) ); 
  
if (strcmp(options.('Stats'),'on')) 
    fprintf('%d points were checked in %e sec\n', length(y), toc);     
end; 
fprintf('\n'); 

function options = rbfcreate(x, y, varargin) 
%RBFCREATE Creates an RBF interpolation 
%   OPTIONS = RBFSET(X, Y, 'NAME1',VALUE1,'NAME2',VALUE2,...) creates an    
%   radial base function interpolation  
%    
%   RBFCREATE with no input arguments displays all property names and their possible 
%values. 
%    
%RBFCREATE PROPERTIES  
% 
% Alex Chirokov, alex.chirokov@gmail.com 
% 16 Feb 2006 
tic; 
% Print out possible values of properties. 

 
if (nargin == 0) & (nargout == 0) 
  fprintf('               x: [ dim by n matrix of coordinates for the nodes ]\n'); 
  fprintf('               y: [   1 by n vector of values at nodes ]\n'); 
  fprintf('     RBFFunction: [ gaussian  | thinplate | cubic | multiquadrics | 
{linear} ]\n'); 
  fprintf('     RBFConstant: [ positive scalar     ]\n'); 
  fprintf('       RBFSmooth: [ positive scalar {0} ]\n'); 
  fprintf('           Stats: [ on | {off} ]\n'); 
  fprintf('\n'); 
  return; 
end 
Names = [ 
    'RBFFunction      ' 
    'RBFConstant      ' 
    'RBFSmooth        ' 
    'Stats            ' 
]; 



 

[m,n] = size(Names); 
names = lower(Names); 
  
options = []; 
for j = 1:m 
  options.(deblank(Names(j,:))) = []; 
end 
  
%************************************************************************** 
%Check input arrays  
%************************************************************************** 
[nXDim nXCount]=size(x); 
[nYDim nYCount]=size(y); 
  
if (nXCount~=nYCount) 
  error(sprintf('x and y should have the same number of rows')); 
end; 
  
if (nYDim~=1) 
  error(sprintf('y should be n by 1 vector')); 
end; 

 
options.('x')           = x; 
options.('y')           = y; 
%************************************************************************** 
%Default values  
%************************************************************************** 
options.('RBFFunction') = 'linear'; 
options.('RBFConstant') = (prod(max(x')-min(x'))/nXCount)^(1/nXDim); 
%approx. average distance between the nodes  
options.('RBFSmooth')   = 0; 
options.('Stats')       = 'off'; 
  
%************************************************************************** 
% Argument parsing code: similar to ODESET.m 
%************************************************************************** 
  
i = 1; 
% A finite state machine to parse name-value pairs. 
if rem(nargin-2,2) ~= 0 
  error('Arguments must occur in name-value pairs.'); 
end 
expectval = 0;                          % start expecting a name, not a 
value 
while i <= nargin-2 
  arg = varargin{i}; 
     
  if ~expectval 
    if ~isstr(arg) 
   error(sprintf('Expected argument %d to be a string property name.', i)); 
    end 
     
    lowArg = lower(arg); 
    j = strmatch(lowArg,names); 
    if isempty(j)                       % if no matches 
      error(sprintf('Unrecognized property name ''%s''.', arg)); 
    elseif length(j) > 1                % if more than one match 



       
 
  

% Check for any exact matches (in case any names are subsets of others) 
      k = strmatch(lowArg,names,'exact'); 
      if length(k) == 1 
        j = k; 
      else 
        msg = sprintf('Ambiguous property name ''%s'' ', arg); 
        msg = [msg '(' deblank(Names(j(1),:))]; 
        for k = j(2:length(j))' 
          msg = [msg ', ' deblank(Names(k,:))]; 
        end 
        msg = sprintf('%s).', msg); 
        error(msg); 
      end 
    end 
    expectval = 1;                      % we expect a value next 
     
  else 
    options.(deblank(Names(j,:))) = arg; 
    expectval = 0;       
  end 
  i = i + 1; 
end 
 
if expectval 
  error(sprintf('Expected value for property ''%s''.', arg)); 
end 
  
     
%************************************************************************ 
% Creating RBF Interpolation 
%************************************************************************ 
  
switch lower(options.('RBFFunction')) 
      case 'linear'           
        options.('rbfphi')   = @rbfphi_linear; 
      case 'cubic' 
        options.('rbfphi')   = @rbfphi_cubic; 
      case 'multiquadric' 
        options.('rbfphi')   = @rbfphi_multiquadrics; 
      case 'thinplate' 
        options.('rbfphi')   = @rbfphi_thinplate; 
      case 'gaussian' 
        options.('rbfphi')   = @rbfphi_gaussian; 
    otherwise 
        options.('rbfphi')   = @rbfphi_linear; 
end 
  
phi       = options.('rbfphi'); 
  
A=rbfAssemble(x, phi, options.('RBFConstant'), options.('RBFSmooth')); 
  
b=[y'; zeros(nXDim+1, 1)];                        
 
 %inverse 
rbfcoeff=A\b; 
 



 
 

 
 
 

%SVD 
% [U,S,V] = svd(A); 
%  
% for i=1:1:nXCount+1 
%     if (S(i,i)>0) S(i,i)=1/S(i,i); end;    
% end;     
% rbfcoeff = V*S'*U*b; 
  
options.('rbfcoeff') = rbfcoeff; 
  
  
if (strcmp(options.('Stats'),'on')) 
    fprintf('%d point RBF interpolation was created in %e sec\n', length(y), 
toc);   
    fprintf('\n'); 
end; 
  
function [A]=rbfAssemble(x, phi, const, smooth) 
[dim n]=size(x); 
A=zeros(n,n); 
for i=1:n 
    for j=1:i 
        r=norm(x(:,i)-x(:,j)); 
        temp=feval(phi,r, const); 
        A(i,j)=temp; 
        A(j,i)=temp; 
    end 
    A(i,i) = A(i,i) - smooth; 
end 
% Polynomial part 
P=[ones(n,1) x']; 
A = [ A      P 
      P' zeros(dim+1,dim+1)]; 
  
%************************************************************************** 
% Radial Base Functions 
%**************************************************************************  
function u=rbfphi_linear(r, const) 
u=r; 
  
function u=rbfphi_cubic(r, const) 
u=r.*r.*r; 
  
function u=rbfphi_gaussian(r, const) 
u=exp(-0.5*r.*r/(const*const)); 
  
function u=rbfphi_multiquadrics(r, const) 
u=sqrt(1+r.*r/(const*const)); 
  
function u=rbfphi_thinplate(r, const) 
u=r.*r.*log(r+1); 
 



A3 - Function rbfinterp.m 

 
 
 
 
 
 
 
 
 
 
 
 
 

function [f] = rbfinterp(x, options) 
tic; 
phi       = options.('rbfphi'); 
rbfconst  = options.('RBFConstant'); 
nodes     = options.('x'); 
rbfcoeff  = (options.('rbfcoeff'))'; 
  
  
[dim              n] = size(nodes); 
[dimPoints  nPoints] = size(x); 
  
if (dim~=dimPoints) 
  error(sprintf('x should have the same number of rows as an array used 
to create RBF interpolation')); 
end; 
  
f = zeros(1, nPoints); 
r = zeros(1, n); 
  
for i=1:1:nPoints 
    s=0; 
    r =  (x(:,i)*ones(1,n)) - nodes; 
    r = sqrt(sum(r.*r, 1)); 
%     for j=1:n 
%          r(j) =  norm(x(:,i) - nodes(:,j)); 
%     end 
     
     s = rbfcoeff(n+1) + sum(rbfcoeff(1:n).*feval(phi, r, rbfconst)); 
  
    for k=1:dim 
       s=s+rbfcoeff(k+n+1)*x(k,i);     % linear part 
    end 
    f(i) = s; 
end; 
  
if (strcmp(options.('Stats'),'on')) 
    fprintf('Interpolation at %d points was computed in %e sec\n', 
length(f), toc);     
end; 



A4 - Function macD.m 

 
 

function mc=macD(t1,t2,Q) 
% 
%   mac 
% 
%   Computes modal assurance criteria  
% 
% 
%   mc=mac(phi1,phi2) 
% 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This matlab source code was originally     % 
% developed as part of "DIAMOND" at          % 
% Los Alamos National Laboratory. It may     % 
% be copied, modified, and distributed in    % 
% any form, provided:                        % 
%  a) This notice accompanies the files and  % 
%     appears near the top of all source     % 
%     code files.                            % 
%  b) No payment or commercial services are  % 
%     received in exchange for the code.     % 
%                                            % 
% Original copyright is reserved by the      % 
% Regents of the University of California,   % 
% in addition to Scott W. Doebling, Phillip  % 
% J. Cornwell, Erik G. Straser, and Charles  % 
% R. Farrar.                                 % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
[ns,n]=size(t1);[ns1,n1]=size(t2); 
ns=min([ns,ns1]); 
if nargin < 3, Q=eye(ns,ns); end 
t1=t1(1:ns,:);t2=t2(1:ns,:);mc=zeros(n,n1); 
for i=1:n, 
  for j=1:n1, 
    
mc(i,j)=(t1(:,i)'*Q*t2(:,j))^2/(t1(:,i)'*Q*t1(:,i)*t2(:,j)'*Q*t2(:,j)); 
  end 
end 
return 


