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5

Nomenclature

Rb = (O, ~xb, ~yb, ~zb) : Main body (hub B) reference frame. O is a reference point on

the main body. ~xb, ~yb, ~zb are unit vectors.

Ra = (P, ~xa, ~ya, ~za) : Appendage A reference frame. P is the appendage’s anchor-

ing point on the hub. ~xa, ~ya, ~za are unit vectors.

B : Hub’s (B) centre of mass.

A : Appendage’s (A) centre of mass.

G : Overall assembly’s centre of mass B +A.

Tba : Direction cosine matrix of the rotation from frameRb to frame

Ra, that contains the coordinates of vectors ~xa, ~ya, ~za ex-

pressed in frame Rb.−→a B : Inertial acceleration (vector) of body B at point B.
−→a P : Inertial acceleration (vector) of body B at point P .
−→ω : Angular speed (vector) of Rb with respect to the inertial

frame.−→
F ext : External forces (vector) applied to B.−→
T ext,B : External torques (vector) applied to B at point B.−→
F B/A : Force (vector) applied by B on A.−→
T B/A,P : Torque (vector) applied by B on A at point P .

DBB : Hub’s static dynamics model expressed at point B.

mB : Hub’s B mass.

IBB : Inertia tensor 3× 3 of B at point B.

MA
P (s) : Appendage’s dynamics model at point P .

mA : Appendage’s mass.

IAA : Inertia tensor 3× 3 of A at point A.

τPB : Kinematic model between points P and B:

: τPB =

[
I3 (∗

−−→
PB)

03×3 I3

]
.
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6 Nomenclature

(∗
−−→
PB) : Skew symmetric matrix associated with vector

−−→
PB: if

−−→
PB =



x

y

z



Ri

then
[
(∗
−−→
PB)

]
Ri

=




0 −z y

z 0 −x
−y x 0



Ri

.

Na : Number of appendages.

If there is a flexible appendage, we add the following definitions:

N : Number of flexible modes.

η : Modal coordinates’ vector.

ωi : ith flexible mode’s angular frequency.

ξi : ith flexible mode’s damping ratio.

li,P : ith flexible mode’s vector of modal participations (1 × 6), expressed at

point P .

LP : Matrix N × 6 of the modal participation factors expressed at point P :

(LP = [lT1,P , l
T
2,P , · · · , lTN,P ]T ).

If there is an embedded angular momentum, we add the following definitions:

Ω : Angular speed (rad/s) of the spinning top.

~zw : Unit vector along the embedded angular momentum.

Iw : Spinning top’s principal inertia.

Ir : Spinning top’s radial inertia.

If there is a revolute joint between the appendage and the hub, we add the following

definitions:
~ra : Unit vector along the revolute joint axis: ~ra = [xra yra zra ]TRa

.

θ̈ : Revolute joint’s angular acceleration.

Cm : Revolute joint’s torque.

General definitions:
[X]Ri

: X (model, vector or tensor) expressed in frame Ri.
d
−→
X
dt
|Ri

= 0 : Derivative of vector
−→
X with respect to frame Ri.

~u ∧ ~v : Cross product of vector ~u with vector ~v (~u ∧ ~v = (∗~u)~v)

~u.~v : Scalar product of vector ~u with vector ~v (~u.~v = [~u]TRi
[~v]Ri

, ∀Ri)

s : Laplace’s variable.

In : Identity matrix n× n.

0n×m : Zero matrix n×m.

AT : Transpose of A.

diag(ωi) : Diagonal matrix N ×N : diag(ωi)(i, i) = ωi, i = 1, · · · , N .

P (s)(i : j, l : m) : Sub-system of P (s) from inputs l to m to outputs i to j
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Introduction

This document presents the principles and the Matlabr implementation of the

Satellite Dynamics Toolbox (SDT version 1.3) available for download following this

link:

http://personnel.isae.fr/daniel-alazard/matlab-packages/

satellite-dynamics-toolbox.html.

This toolbox allows the user to compute the linear dynamics model of a satellite

fitted with one or more flexible appendage (solar generators, antennas, . . . ) possi-

bly taking into account the joints and actuators (solar generator driving mechanism,

Control Moment Gyro (CMG), external manipulator, . . . ). More generally, it can

model an open kinematic chain of bodies (sub-structures) in a space environment

(gravity efforts are not taken into account). Such a chain or structure can be de-

scribed by a tree (see Figure 1) where:

• each node Ai corresponds to a body (or link or substructure),

• each edge corresponds to a joint between two bodies. 2 types of joint are

considered:

– clamped joint,

– revolute joint (around a given axis).

Classical tree terminology will be used. In the example of Figure 1: A0 is the root,

A3 to A7 are the leaves, A2 is the parent of A5 and the child of A0.

Each body can be either flexible or not (with the restriction that the flexible bodies

must be the last elements or the leaves of the chain). The linear dynamics model is

the 6 by 6 transfer between the external forces and torques applied on the main body

structure at a reference point and the translational and rotational accelerations (at

the same reference point). When the structure includes joints (in this version of the

toolbox, only revolute joints between the sub-structures are considered), the model

is augmented with the transfer between internal torque and acceleration for each

joint.

Chapter 1 is a reminder on Newton-Euler equations applied to a single rigid

body.
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8 Nomenclature

A0

A5 A7

A2A1

A4 A6

A3

Figure 1: Example of a tree (open-chain) structure.

Chapter 2 explains the modelling principles used in the Satellite Dynamics Toolbox.

Chapter 3 presents the Matlabr implementation of the toolbox, and more partic-

ularly:

• the setup of the data files describing the structure to be modeled,

• structure examples:

– Spacecraft1.m is a data file describing a spacecraft composed of a main

body and two cantilevered flexible appendages (see section 3.4),

– Spacecraft2.m is the same as Spacecraft1.m but the first appendage

is connected to the main body through a revolute joint and tilted with a

10 degrees angle (see section 3.5),

– Spacecraft5.m is the same as Spacecraft1.m but includes 3 additionnal

appendages corresponding to angular momentums along to X, Y and Z

axes taken into account to represent spinned RWAs (see section 3.6),

– FOUR_CMGs.m is a data file describing a platform fitted with four iden-

tical CMGs (see section 3.7). The CMG is described by the data file

dataCMG.m. This data correspond roughly to the experimental CMG

platform TETRAGYRE developed by ONERA/DCSD and presented

at: http://www.onera.fr/dcsd/gyrodynes/,

– SpaceRoboticArm.m is a data file describing a platform fitted with a 6

d.o.f. rigid space robotic manipulator (see section 3.8): the 6 links of

the manipulator are described in the files Segment1.m, Segment2.m, ...,

Segment6.m.

All these files and a demo script file (demoSTD.m) are included in the SDT

package.
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Nomenclature 9

Remark: this new version of the toolbox can also manage uncertain parameters

to perform sensitivity analyses. In this case, the outputs of the toolbox main func-

tions are uncertain elements, matrices or models, compatible with the Matlabr

Robust Control Toolbox (see file Spacecraft1u.m as an example, section 3.9)).

The development of this version of the toolbox was done with Matlabr R2013a.
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Chapter 1

Rigid body dynamics based on

Newton-Euler equations

This chapter is a reminder on rigid body dynamics based on Newton-Euler equa-

tions (see also [6]). The interest of Newton-Euler equations is to consider in the

same model the 6 degrees-of-fredom (3 translations and 3 rotations) of the rigid

body. This chapter will also present the linearity assmuptions which will be

adopted in the following chapters.

1.1 Newton-Euler equations at the center of mass

Let us consider a body B with a center of mass B (see Figure 1.1).

B



−→a B−→̇
ω






−→
F ext−→
T ext,B




B

P

O
~xb ~yb

~zb

Figure 1.1: A rigid body.
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12 1. Rigid body dynamics based on Newton-Euler equations

The Newton-Euler equations reads:

[ −→
F ext−→
T ext,B

]
=

[
mBI3 03×3

03×3 IBB

]

︸ ︷︷ ︸
DBB

[ −→a B
−̇→ω

]
+

[
03×1−→ω ∧ IBB
−→ω

]
(1.1)

where:

• −→F ext: total force acting on the body,

• −→T ext,B: total torque acting about the centre of mass,

• mB: mass of the body,

• IBB: Inertia tensor of the body about the centre of mass,

• −→a B: acceleration of the centre of mass,

• −→ω : angular velocity of the body.

Eq. (1.1) is intrinsic and can be projected in any frame. Using the skew matrix

(∗−→ω ) associated with vector −→ω (see nomenclature), Eq. (1.1) can be written:

[ −→
F ext−→
T ext,B

]
=

[
mBI3 03×3

03×3 IBB

]

︸ ︷︷ ︸
DBB

[ −→a B
−̇→ω

]
+

[
03×1

(∗−→ω ) IBB
−→ω

]
(1.2)

1.2 Newton-Euler equations at any reference point

Let us consider another point P on the body B. Since the body is rigid (assumption

[H1]),the velocity of P can be expressed as a function of the velocity of B and the

angular velocity −→ω :

−→v P = −→v B +−→ω ∧ −−→BP = −→v B +
−−→
PB ∧ −→ω . (1.3)

Using the skew matrix (∗
−−→
PB) associated with vector

−−→
BP (see nomenclature), one

can write:
−→v P = −→v B + (∗

−−→
PB)−→ω . (1.4)

Considering the dual velovity vectors (6 components) at point B and P , one can

write: [ −→v P−→ω

]
=

[
I3 (∗

−−→
PB)

03×3 I3

]

︸ ︷︷ ︸
τPB

[ −→v B−→ω

]
. (1.5)
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1.3 Linearized Newton-Euler equations 13

τPB is called the kinematic model (or jacobian) between points P and B.

Property: τ−1
PB = τBP .

Considering the dual force vectors (6 components) at point B and P , one can also

write: [ −→
F ext−→
T ext,B

]
=

[
I3 03×3

−(∗
−−→
PB) I3

]

︸ ︷︷ ︸
τTPB

[ −→
F ext−→
T ext,P

]
. (1.6)

Indeed:
−→
T ext,B =

−→
T ext,P +

−−→
BP ∧ −→F ext︸ ︷︷ ︸

lever arm × force

.

The time-derivation of (1.3) in the inertial frame gives:

−→a P = −→a B +
−−→
PB ∧ −̇→ω +

d
−−→
PB

dt

∣∣∣∣∣
B︸ ︷︷ ︸

=0 ([H1])

∧−→ω +−→ω ∧ (
−−→
PB ∧ −→ω ) , (1.7)

or equivalently:

[ −→a P
−̇→ω

]
=

[
I3 (∗

−−→
PB)

03×3 I3

]

︸ ︷︷ ︸
τPB

[ −→a B
−̇→ω

]
+

[
(∗−→ω )(∗

−−→
PB)−→ω

03×1

]
. (1.8)

Using (1.2), (1.6) and (1.8), one can derive the Newton-Euler equations at point

P :
[ −→

F ext−→
T ext,P

]
=

[
mBI3 mB (∗

−−→
BP )

−mB (∗
−−→
BP ) IBB −mB (∗

−−→
BP )2

]

︸ ︷︷ ︸
τTBPD

B
BτBP

[ −→a P
−̇→ω

]
+

[
mB(∗−→ω )(∗

−−→
BP )−→ω

(∗−→ω )
(
IBB −mB (∗

−−→
BP )2

)−→ω

]

(1.9)

1.3 Linearized Newton-Euler equations

Assuming that−→ω is small (linearity assumption [H2]), quadratic terms in (∗−→ω )X3×3
−→ω

can be neglected. Then equations (1.2) and (1.9) becomes:

•
[ −→

F ext−→
T ext,B

]
=

[
mBI3 03×3

03×3 IBB

]

︸ ︷︷ ︸
DBB

[ −→a B
−̇→ω

]

DBB is the direct dynamics model of the body B about the centre of mass B.
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14 1. Rigid body dynamics based on Newton-Euler equations

•
[ −→

F ext−→
T ext,P

]
=

[
mBI3 mB (∗

−−→
BP )

−mB (∗
−−→
BP ) IBB −mB (∗

−−→
BP )2

]

︸ ︷︷ ︸
DBP =τTBPD

B
BτBP

[ −→a P
−̇→ω

]

DBP = τTBP D
B
B τBP (1.10)

is the direct dynamics model of the body B about the point P .

Equations (1.10) is very convenient to transport the direct dynamics model from

one point to another: considering a third point R, one can also write:

DBR = τTBRD
B
B τBR = τTBR τ

T
PBD

B
P τPB τBR (1.11)

DBR = τTPRD
B
P τPR . (1.12)

Without loss of generality, one can write the linear dynamics model of a mechanical

system at its center of mass B and then transport it to any other point R (where

the external force is applied for instance).

The development of (1.10) is:

DBP = τTBP D
B
B τBP =




mBI3 mB (∗
−−→
BP )

−mB (∗
−−→
BP ) IBB −mB (∗

−−→
BP )2

︸ ︷︷ ︸
IBP




One can recognize in the bottom-right-hand term, the Huygens theorem between

the inertia tensor IBB of B at point B and the inertia tensor IBP of B at point P :

IBP = IBB −mB (∗
−−→
BP )2 (1.13)

or in projection in the frame Rb = (0, ~xb, ~yb, ~zb) attached to the body B, with

−−→
BP =



x

y

z



Rb

:

[
IBP
]
Rb

=
[
IBB
]
Rb

+mB



y2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2



Rb

(1.14)

Note that the equation (1.12) works on the 6×6 direct dynamics model and is valid

for any points (P and R) on the body B while Huygens theorem (equation (1.13))

works on the 3× 3 tensor of inertia and is valid only if B coincides with the centre

of mass of the body B. In the general case:

IBR 6= IBP −mB (∗
−→
PR)2 .
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1.3 Linearized Newton-Euler equations 15

Nevertheless Huygens theorem (equation (1.13)) can be used to find IBB from IBO,

in the case where the data of the tensor of inertia are provided w.r.t. the body

reference frame Rb:

IBB = IBO +mB (∗
−−→
OB)2 . (1.15)

Indeed, in the Matlabr implementation of the SDT (detailled in chapter 3), the

tensor of inertia of each body must be defined w.r.t. to its centre of mass by the

user. In some applications, data are provided at a reference point O different from

the centre of mass B, then equation (1.15) can then be used and can be easily

implemented in the SDT (see section 3.2.2 as a tutorial).
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Chapter 2

Satellite Dynamics Toolbox:

principles

We consider a satellite as a main body B (the hub) and one appendageA cantilevered

to the hub at point P , as shown on Figure 2.1. The appendage is considered as a

dynamic sub-structure either because of its flexibility or because of an embedded

angular momentum (reaction wheels or CMG). The objective is two-fold: first, com-

puting the direct dynamics model MA+B
B (s), i.e. the 6 by 6 transfer between the

dual vector of the translational and rotational accelerations

[ −→a B−→̇
ω

]
of the hub seen

from the hub centre of mass B and the dual vector of the external forces and torques[ −→
F ext−→
T ext,B

]
applied to the hub at point B :

[ −→
F ext−→
T ext,B

]
= MA+B

B (s)

[ −→a B−→̇
ω

]
.

Second, computing the inverse dynamics model [MA+B
B (s)]−1.

Considering the result of the previous chapter (equation (1.10)), one can then com-

pute the direct and inverse dynamics models about any arbitrary reference point

R, that is: the models between dual vectors of accelerations

[ −→a R−→̇
ω

]
and forces

[ −→
F ext−→
T ext,R

]
seen from the reference point R:

MA+B
R (s) = τTBR M

A+B
B (s) τBR (2.1)

[
MA+B

R (s)
]−1

= τRB
[
MA+B

B (s)
]−1

τTRB . (2.2)
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18 2. Satellite Dynamics Toolbox: principles



−→
F B/A−→
T B/A,P


B



−→a B−→̇
ω






−→
F ext−→
T ext,B




B

A

A

P

~xa

~ya

~za

O
~xb ~yb

~zb
G

Figure 2.1: The system hub B + appendage A.

2.1 Assumptions

[H1 ] The hub is rigid: d
−−→
BP
dt
|Rb

= 0.

[H2 ] Non-linear terms (in −→ω ∧X3×3
−→ω ) of second or higher order are disregarded.

[H3 ] The only external force (resp. torque) applied to the appendage A is the

force
−→
F B/A (resp. torque

−→
T B/A,P ) applied by the hub B at the appendage’s

anchorage point P .

2.2 Direct dynamics model

The direct dynamics model of the assembly MA+B
B (s) at the hub B centre of mass

is the sum ([2], [4]):

• of the hub’s direct dynamics model at point B: DBB:

DBB =

[
mBI3 03×3

03×3 IBB

]
which can be projected in frame Rb as follows:

[
DBB
]
Rb

=

[
mBI3 03×3

03×3

[
IBB
]
Rb

]

Rb

,

• and of the appendage’s direct dynamics model at point P : MA
P (s) moved

to point B thanks to the kinematic model τPB (see nomenclature) and the

transport equation (1.10), that leads to:

MA
B (s) = τTPBM

A
P (s)τPB . (2.3)

ISAE/DMIA/ADIS Page 18/58



2.3 Appendage dynamics model MA
P (s) 19

When summing, we can write that:

MA+B
B (s) = DBB + τTPBM

A
P (s)τPB . (2.4)

In projection in the hub’s frame Rb, the assembly’s direct dynamics model is the

following:

[
MA+B

B

]
Rb

(s) =
[
DBB
]
Rb

+
[
τTPB
]
Rb

[
Tba 03×3

03×3 Tba

] [
MA

P (s)
]
Ra

[
Tba 03×3

03×3 Tba

]T
[τPB]Rb

where Tba is the direction cosine matrix of the rotation from frame Rb to frame Ra

(see nomenclature). Figure 2.2 represents this model’s block diagram and matching

physical signals.

+
+



−→a P−→̇
ω



Ra



−→a B−→̇
ω



Rb



−→
F B/A−→
T B/A,B




Rb



−→
F B/A−→
T B/A,P




Ra


 Tba 03×3
03×3 Tba





 Tba 03×3
03×3 Tba



T



−→
F ext−→
T ext,B




Rb[
DBB

]
Rb

[
MA

P

]
Ra

(s)

[τPB]Rb

[
τTPB

]
Rb

Figure 2.2: Direct dynamics model block diagram MA+B
B (s) expressed in frame Rb.

The following operation allows for the transport of the direct dynamics model to

point G, the global assembly’s centre of mass:

MA+B
G (s) = τTBGM

A+B
B (s)τBG .

2.3 Appendage dynamics model MA
P (s)

There are 3 different cases to consider in order to write the appendage’s dynamics

model MA
P (s), at anchoring point P between A and B (see [2]).
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20 2. Satellite Dynamics Toolbox: principles

2.3.1 Case of a rigid appendage

MA
P (s) = DAP = τTAP

[
mAI3 03×3

03×3 IAA

]
τAP . (2.5)

This is a static model.

2.3.2 Case of a flexible appendage

MA
P (s) = DAP −

N∑

i=1

lTi,P li,P
s2

s2 + 2ξiωis + ω2
i

, (2.6)

in which DAP comes from (2.5) and the various parameters ωi, ξi et li,P (see nomen-

clature) can be provided by finite element software used to model the appendage

(see [2] or [3] for more explanations). Other representations can be used for MA
P (s):

• the hybrid-cantilevered model:


−→
F B/A
−→
T B/A,P


 = DA

P

[ −→a P

−̇→ω

]
+ LTP η̈

η̈ + diag(2ξiωi)η̇ + diag(ω2
i )η = −LP

[ −→a P

−̇→ω

]

• the second order generic model:
[
DA
P LTP

LP IN

] [
q̈r
η̈

]
+

[
06×6 06×N
0N×6 diag(2ξiωi)

] [
q̇r
η̇

]
+

[
06×6 06×N
0N×6 diag(ω2

i )

] [
qr
η

]
=

[
Fext
0N×1

]

where q̈r =

[ −→a P

−̇→ω

]
and Fext =



−→
F B/A
−→
T B/A,P


.

• the state-space representation with a feedforward matrix DA
P0

, which is the

residual mass of the appendage A rigidly cantilevered to the hub B at point

P : [
η̇

η̈

]
=

[
0N×N IN

−diag(ω2
i ) −diag(2ξiωi)

][
η

η̇

]
+

[
0N×6

−LP

][ −→a P

−̇→ω

]



−→
F B/A
−→
T B/A,P


 =

[
−LTP diag(ω2

i ) −LTP diag(2ξiωi)
]
[
η

η̇

]
+(DA

P − LTPLP )︸ ︷︷ ︸
DA

P0

[ −→a P

−̇→ω

]

• or the block diagram on Figure 2.3. This diagram easily allows for the intro-

duction of parametric uncertainties on ωi, ξi, Lp and DA
P0

because they appear

with a minimum number of occurences.
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1

s

1

s

[LP ]
T
Ra

[
DAP0

]
Ra

+

+

−

−

+

−



−→a P−→̇
ω



Ra



−→
F B/A−→
T B/A,P




Ra

η̈η̇η

[
MA

P

]
Ra

(s)

diag(ωi) diag(ωi)

diag(2ξi)
[LP ]Ra

Figure 2.3: Direct dynamics model block diagram of the appendageMA
P (s) expressed

in frame Ra.

2.3.3 Case of an embedded angular momentum

MA
P (s) = DAP +

[
03×3 03×3

03×3 −1
s
IwΩ (∗~zw)

]
, (2.7)

where DAP comes from (2.5), where Iw (Kgm2) is the appendage’s inertia about its

spin axis (spinning top) defined by unit vector ~zw and where Ω is the spinning top’s

speed (rad/s).

Complementary assumptions

When the appendage is an embedded angular momentum, we will further suppose

that:

[H4 ] Ω and ~zw (the angular speed and the spin axis of the spinning top) are

constants in frame Ra,

[H5 ] the spinning top is balanced,

[H6 ] (non-restrictive) the spin axis is along the z axis of the appendage body frame

Ra (i.e. ~zw = ~za).
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22 2. Satellite Dynamics Toolbox: principles

Under assumptions [H5] and [H6], one can write:

[
IAA
]
Ra

=



Ir 0 0

0 Ir 0

0 0 Iw



Ra

where Iw is the spinning top’s principal inertia (about ~zw) and Ir its radial inertia.

When expressed in frame Ra, equation (2.7) becomes:

[
MA

P

]
Ra

(s) =
[
τTAP
]
Ra

[
mAI3 03×3

03×3

[
IAA
]
Ra

]

Ra

[τAP ]Ra
+




03×3 03×3

03×3 IwΩ




0 1/s 0

−1/s 0 0

0 0 0






Ra

.

(2.8)

Proof of the model (2.7)

At point A, the appendage’s centre of mass, one can write:

−→
F B/A = mA−→a A (2.9)

−→
T B/A,A =

d
−→
HA

dt
|Rb

+−→ω ∧ −→HA =
d
−→
HA

dt
|Ra +−→ω ∧ −→HA (from [H1]) (2.10)

where
−→
HA = IAA

−→ω + IwΩ~zw is the total angular momentum of the appendage.

−→
T B/A,A = IAA

−̇→ω + Iw
d(Ω~zw)

dt
|Ra

︸ ︷︷ ︸
=0 ([H4])

+−→ω ∧ IAA
−→ω︸ ︷︷ ︸

=0 ([H2])

+−→ω ∧ IwΩ~zw

= IAA
−̇→ω − IwΩ(∗~zw)−→ω

=

(
IAA −

1

s
IwΩ(∗~zw)

)
−̇→ω (2.11)

From (2.9) and (2.11), the direct dynamics model of the appendage at point A is:

MA
A (s) =

[
mAI3 03×3

03×3 IAA

]
+

[
03×3 03×3

03×3 −1
s
IwΩ (∗~zw)

]
.

Transporting this model to point P , we get MA
P (s) = τTAPM

A
A (s)τAP , that leads to

equation (2.7) when taking the first of the following remarks into account.
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2.4 Inverse dynamics model 23

Remarks (independent of the projection frame used):

• τTAP
[

03×3 03×3

03×3 −1
s
IwΩ (∗~zw)

]
τAP =

[
03×3 03×3

03×3 −1
s
IwΩ (∗~zw)

]
, ∀ τAP .

• It clearly appears in (2.8) that the model of an embedded angular momentum

appendage is a second order 6 × 6 model containing 2 integrators. These 2

integrators were used to model the hub’s rotation vector −→ω from the angular

acceleration −̇→ω (equation (2.11)), that is the last 3 inputs of direct dynamics

model.

• When computing a minimal realization of the inverse dynamics model [MA+B
B (s)]−1

augmented with the 6 integrators needed to compute the speeds from the ac-

celerations, these previous integrators disappear.

• When considering a hub fitted with Na embedded angular momentum ap-

pendagesAi, i = 1, · · · , Na (for instance, reaction wheels), the dynamics model

of the assembly M
∑Na

i=1Ai+B
B (s), which is a 2N order model, should reduce to

a second-order model because the matrix (∗~h) is rank 2 for all vectors ~h and:

Na∑

i=1

1

s
Iwi

Ωi (
∗~zwi

) =
1

s

Na∑

i=1

Iwi
Ωi (

∗~zwi
) =

1

s
(∗~h)

where ~h =
∑Na

i=1 Iwi
Ωi~zwi

is the total angular momentum of the global assem-

bly, containing the Na spinning tops.

2.4 Inverse dynamics model

Figure 2.4 shows the block diagram of the inverse dynamics model [MA+B
B (s)]−1,

expressed in frame Rb. It also shows that the appendage’s direct dynamics model

is a feedback for the hub’s inverse dynamics model :

(
DBB +MA

B (s)
)−1

= [DBB]−1
(
I6 +MA

B (s)[DBB]−1
)−1

.

The usefulness of this representation instead of the direct inversion turns up when

conducting sensitivity or robustness analyses with respect to parametric variations

of the appendage’s model. Indeed, there is no need to invert the direct dynamics

model of the appendage MA
P (s). Moreover, one can assure that each characteristic

parameter of the model MA
P (s) (mA, IAP , ωi, ξi, li,P , Ω, · · · ) appear a minimum

number of occurences.
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24 2. Satellite Dynamics Toolbox: principles

−
+



−→a P−→̇
ω



Ra



−→a B−→̇
ω



Rb



−→
F B/A−→
T B/A,B




Rb



−→
F B/A−→
T B/A,P




Ra


 Tba 03×3
03×3 Tba





 Tba 03×3
03×3 Tba



T



−→
F ext−→
T ext,B




Rb
[
DBB

]−1
Rb

[
MA

P

]
Ra

(s)

[τPB]Rb

[
τTPB

]
Rb

Figure 2.4: Inverse dynamics model block diagram of the appendage [MA+B
B (s)]−1

expressed in frame Rb.

2.5 Revolute joint between the appendage and

the hub

Let us consider Figure 2.5 in which the joint between the hub B and the appendage

A at point P is a revolute joint along ~ra axis. We use the following definitions:

• θ̈ is the angular acceleration inside the revolute joint:

−̇→ω A/B = θ̈ ~ra or
[−̇→ω A/B

]
Ra

= θ̈



xra
yra
zra



Ra

,

• Cm is the torque (if present) along (P, ~za) applied by an actuator located inside

the revolute joint.

The objective is to compute the augmented direct model PA+B
B (s) (7 × 7) of the

assembly A+ B such that:




−→
F ext−→
T ext,B

Cm


 = PA+B

B (s)



−→a B−→̇
ω

θ̈
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−→
F B/A−→
T B/A,P




B



−→a B−→̇
ω






−→
F ext−→
T ext,B




B

A

O
~xb ~yb

~zb
θ̈

A

P

~xa

~ya

~za

~ra

Cm

Figure 2.5: Assembly of the base B and the appendage A linked with a revolute

joint along ~za

Because of the revolute joint, the projection of the torque
−→
T B/A,P , exerted by the

base on the appendage at point P , along ~ra axis is either: null in case of a free

revolute joint or equal to Cm in case of an actuated joint.

Cm =
−→
T B/A,P .~ra . (2.12)

Expressing the direct dynamics model MA
P (s) of the appendage at point P in frame

Ra enables us to write that:

[ −→
F B/A−→
T B/A,P

]
= MA

P (s)

[ −→a P−→̇
ω + θ̈~ra

]
(2.13)

From (2.12) and (2.13), one can write the augmented direct model (7 × 7) of the

appendage
[
PAP
]
Ra

(s) at point P and expressed in frame Ra:




[ −→
F B/A−→
T B/A,P

]

Ra

Cm


 =

[
I6

0 0 0 xra yra zra

] [
MA

P

]
Ra

(s)



I6

0

0

0

xra
yra
zra




︸ ︷︷ ︸
[PAP ]Ra

(s)




[ −→a P−→̇
ω

]

Ra

θ̈


 .

(2.14)

The block diagram of Figure 2.6 represents this operation. It also shows the con-

nection of the first six inputs and outputs between
[
PAP
]
Ra

(s) and the hub’s direct

model DBB in order to get the assembly model PA+B
B (s), expressed in frame Rb.
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26 2. Satellite Dynamics Toolbox: principles

Taking into account a revolute joint between the hub and an appendage with an

embedded angular momentum then allows for the modelling of CMGs (Control

Moment Gyros), the axis of the joint being the precession axis of the CMG.

+
+



−→a P−→̇
ω



Ra



−→a B−→̇
ω



Rb



−→
F B/A−→
T B/A,B




Rb



−→
F B/A−→
T B/A,P




Ra


 Tba 03×3
03×3 Tba





 Tba 03×3
03×3 Tba



T



−→
F ext−→
T ext,B




Rb

6 6

Cm

[
DBB

]
Rb

[
MA

P

]
Ra

(s)

[τPB]Rb

[
τTPB

]
Rb

[
PA
P

]
Ra

(s)

[xra yra zra ]

3

+ +θ̈



xra
yra
zra


 3

3

3

Figure 2.6: Direct dynamics model (7 × 7) block diagram of the assembly hub +

appendage PA+B
B (s) with revolute joint, expressed in frame Rb.

For control laws synthesis, one can use the following inverse model:



[ −→a B−→̇
ω

]

Rb

θ̈


 =

[
PA+B
B

]−1

Rb
(s)




[ −→
F ext−→
T ext,B

]

Rb

Cm


 (2.15)

that allows the user to introduce, between the seventh input to the seventh output,

a local model of the joint mechanism or controller K(s) according to Figure 2.7.

2.6 Generalisation

One can generalise the previous approach:

• to take Na appendages (Ai, i = 1, · · · , Na) linked with the hub at points Pi
into account,
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[
PA+B
B

]−1p
Rb

(s)

[ −→
F ext−→
T ext,B

]

Rb

θ̇θ̈ θCm 1
s

1
s

K(s)

[ −→a B−→̇
ω

]

Rb

Figure 2.7: Inverse dynamics model of the assembly hub + appendage with a revo-

lute joint and a local mechanism or controller model K(s), expressed in

frame Rb.

• to take into account that an appendage Ai can itself be the support (the

parent) of another appendage Aij at point Pij. Thus, one can model any open

kinematic chain of bodies that can be described through a connection tree. To

do this, one has to build the global model, starting from the tree leaves and

using the previous approach where the body Ai is considered as a base (hub)

or the parent of appendage Aij. However, because of assumption [H1], each

intermediate body must be rigid. Flexible bodies are allowed only at the end

of the kinematic chain.

The intrinsic formulae (they do not depend on a projection frame) that enable

transport (2.3) or addition (2.4) of direct dynamics models allow to build the global

model and to use it recursively. The SDT toolbox was developed on this principle.

For example, one can write the global direct dynamics model of the system shown

on Figure 2.8 as follows:

M
∑
Ai+B

B (s) = DBB

+ τTP1B

(
DA1
P1

+ τTP11P1
MA11

P11
(s)τP11P1

)
τP1B

+ τTP2B

(
MA2

P2
(s)
)
τP2B .

One can also use this generalization to model revolute joints between elements, as

detailed in the previous section. Thus, it allows for the modelling of a gyroscopic

actuator (CMG) fitted on a hub using three bodies as shown on Figure 2.9:

• the hub B,

• the fork Ai connected through a revolute joint (precession axis ~rai = ~zai) with

B at point Pi,

• the spinning top Aii ≡ Wi linked with Ai at point Pii = Gi and with its

angular momentum along ~zwi
(according to the assumptions [H6]).
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B

B

A1

O
~xb ~yb

~zb

P2

~xa2

~ya2

~za2

A2

A11

P1

~xa1

~ya1

~za1

P11

~xa11

~ya11

~za11

Figure 2.8: Example of an open kinematic chain

~zai

~yai

~xai

Pi

Gi

B

Ai

~ywi

~xwi ~zwi

Wi

Figure 2.9: Illustration of a CMG.
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Chapter 3

Implementation with Matlabr

The Matlabr package SDT_V1.3.zip to implement the Satellite Dynamics Tool-

box can be downloaded from:

http://personnel.isae.fr/daniel-alazard/matlab-packages

/satellite-dynamics-toolbox.html.

This toolbox requires a user defined data file describing the structure of the space-

craft. The variables to be declared by such a script file are described in section 3.2.

The Matlabr package contains also several examples of such a script file detailled

in sections 3.4 to 3.9 and the associated demo file demoSTD.m. It is advised to the

user to run step by step this demo file and to use one of the data file examples as

a guide to create its own data file. The next section describes the various functions

included in the toolbox in relation with the general notations used in the document

and summarized in the nomenclature. The inline help of these functions are given

in appendix A.

3.1 Satellite Dynamics Toolbox functions

Once the user defined data script file is created, 5 functions can be used: main,

translate_dynamic_model, rotate_dynamic_model, kinematic_model and antisym.

Let us called nom_fich.m the user defined data script file:

• main.m: using the syntax mod=main(’nom_fich’), the function outputs a

structure variable mod with 5 fields:

– mod.TotalMass: the total mass of the satellite (
∑Na

i=1m
Ai +mB, in kg),

– mod.TotalCg: the coordinates of the global centre of mass expressed in

the reference frame Rb: (
[−→
OG
]
Rb

, in m),

– mod.DynamicModel: the direct dynamics model expressed at the global
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30 3. Implementation with Matlabr

centre of mass (G) in the reference frame Rb: (
[
M

∑Na
i=1Ai+B

G

]
Rb

(s) in SI

units, meaning that the accelerations in input of the model are in m/s2

and in rad/s2 and that the forces and torques outputted by the model

are in N and Nm),

– mod.InverseTotalModel: the above inverse model (inputs are forces,

outputs are accelerations)

– mod.liste_IOs: a string of chars that describes the different channels of

the (square) model mod.DynamicModel and built from the names of the

bodies written in nom_fich.m. The first 6 channels are always relative

to the 3 translations and the 3 rotations of the hub (base). The optional

7th and beyond channels are the transfers between the torques Cm and

accelerations θ̈ local to each revolute joint linking two bodies, if activated.

• translate_dynamic_model.m: the syntax MB=translate_dynamic_model(A,B,MA)

translates (or transports) the direct dynamics model MA projected in a frame

Ri from point A (vector of the 3 components of the point A in the frame Ri)

to point B (vector of the 3 components of the point B in the frame Ri). Inputs

and output arguments are expressed in the same frame Ri:

[MB]Ri
(s) =

[
[τAB]TRi

06×Nr

0Nr×6 INr

]
[MA]Ri

(s)

[
[τAB]Ri

06×Nr

0Nr×6 INr

]
.

where Nr is the number of revolute joints in the structures.

• rotate_dynamic_model.m: the syntax MB=rotate_dynamic_model(MA,ANG,AXIS)

computes the direct or the inverse dynamics model (input argument MA) pro-

jected in a frame Ri after a rotation of ANG (deg) around the axis AXIS (unit

vector of the 3 components of the rotation axis ~ra in the frame Ri). Inputs

and output arguments are expressed in the same frame Ri. This function

computes the direction cosine matrix T associated to the rotation and then:

[MB]Ri
(s) =




T 03×3 03×Nr

03×Nr T 03×Nr

0Nr×3 0Nr×3 INr


 [MA]Ri

(s)




T T 03×3 03×Nr

03×Nr T T 03×Nr

0Nr×3 0Nr×3 INr


 .

where Nr is the number of revolute joints in the structures.

• kinematic_model.m: the syntax TAU=kinematic_model(A,B) computes the

kinematic model TAU betwen points A and B (vectors of the 3 components of

points A and B in a frame Ri):

[τAB]Ri
=

[
I3

[
(∗
−→
AB)

]
Ri

03×3 I3

]
.
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3.2 User defined data file nom fich.m 31

• antisym.m: the syntax M=antisym(V) computes the skew symmetric matrix

M =
[
(∗
−→
V )
]
Ri

associated to the vector V =
−→
V (3 components) projected in the

frame Ri (see nomenclature).

3.2 User defined data file nom fich.m

From a reference frame Rb, the user-defined data file nom_fich.m describes the

geometry, the dynamics parameters of the main body (hub) and of the different

appendages Ai. Running this file through:

>> nom_fich

must creates 3 variables:

• MB: structure describing the main body B. The different required fields of this

structure are detailed in table 3.1,

• nappend: the number of appendages Na (integer),

• SA: vector of Na cells. Each cell SA{i}, i=1:nappend, describes the appendage

Ai. The different required fields of the structure SA{i} are detailed in table

3.2.

3.2.1 Remarks

One can also define appendage SA{i} in an independent data file nom_fich_i.m (see

table 3.2, line 6), that creates the same variables MB, nappend and SA as nom_fich.m.

It allows the user:

• to use the recursivity of main.m in order to model chains of rigid bodies (see

example data files SpaceRoboticArm.m and files Segment1.m to Segment6.m

provided with the toolbox. They model a robotic manipulator on a space

platform).

• to use only one data file when the platform is fitted with several identical

appendages. We can meet this case when modelling a platform fitted with a

cluster of gyroscopic actuators (see example data file presented in section 3.7).
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Variable name Notation Type Unit

MB.Name char

MB.cg
[−−→
OB
]
Rb

double 3× 1 m

MB.m mB double Kg

MB.Ixx
[
IBB
]
Rb

(1, 1) double Kgm2

MB.Iyy
[
IBB
]
Rb

(2, 2) double Kgm2

MB.Izz
[
IBB
]
Rb

(3, 3) double Kgm2

MB.Ixy
[
IBB
]
Rb

(1, 2) double Kgm2

MB.Ixz
[
IBB
]
Rb

(1, 3) double Kgm2

MB.Iyz
[
IBB
]
Rb

(2, 3) double Kgm2

nappend Na integer

Table 3.1: Description of the fields of the structure MB.

3.2.2 A first tutorial (on inertia tensor specified at any ref-

erence point)

In the user defined data file nom fich.m, the tensor of inertia of each body (fields

MB.I** and SA{i}.I**) must be defined w.r.t. to its centre of mass. In some

applications, data are provided at a reference point O different from the centre of

mass B, then Huygens thereom (1.15) can be used in the script file nom fich.m

by using the following Matlabr sequence based on the function antisym:

MB.Name=’Platform’; % Name of the body

MB.cg = [ 0.0063;-0.0200;1.7744]; % position of gravity center

% in (0,X,Y,Z) (m)

MB.m = 905.6290; % mass (kg)

MB.IO=[3.8991*1.0e+03 0.0086*1.0e+03 -0.0265*1.0e+03;... % Main inertia in

0.0086*1.0e+03 4.0907*1.0e+03 0.0114*1.0e+03;... % (O,X1,Y1,Z1)

-0.0265*1.0e+03 0.0114*1.0e+03 0.4606*1.0e+03]; % (Kg m^2)

MB.I=MB.IO + MB.m*antisym(MB.cg)^2; % Huygens theorem

MB.Ixx=MB.I(1,1); % Main Inertia in

MB.Iyy=MB.I(2,2); % (CG1,X1,Y1,Z1) (kgm^2)

MB.Izz=MB.I(3,3);

MB.Ixy=MB.I(1,2); % Cross Inertia in

MB.Ixz=MB.I(1,3); % (CG1,X1,Y1,Z1) (kgm^2)

MB.Iyz=MB.I(2,3);
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In this example the Huygens thereom is applied to the main body MB but the same

procedure can be applied to any appendage SA{i}.

3.3 FAQ

• The field liste_IOs returned by the function main is wrong (?):

the function main.m is called recursively and uses persistent variables. In a

nominal use, the persistent variables are managed inside the function main.m

but if the function returned on an error message (due to wrong data in

nom_fich.m for instance), it is then required to clear persistent variables for

the next call by the command:

clear main

• The fields DynamicModel or InverseTotalModel returned by the function

main contains some NaN (?):

the mass or inertia seen from one of the d.o.fs is null. There is a mistake in

the file nom_fich.m.

• The ss model returned by the function main in the field DynamicModel or

InverseTotalModel contains unstable dynamics (?):

the mass or inertia of one or more bodies is not definite positive. There is a

mistake in the file nom_fich.m.
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Variable name Notation Type Unit

1 SA{i}.Name char

2 SA{i}.P
[−→
OP
]
Rb

double 3× 1 m

3 SA{i}.TM Tba double 3× 3

4(∗) SA{i}.pivot boolean

5(∗) SA{i}.pivotdir [~ra]Ra
= [xra yra zra ]T double 3× 1

6(∗∗) SA{i}.angle θ double deg

7(∗∗∗) SA{i}.filename char

8 SA{i}.cg
[−→
PA
]
Ra

double 3× 1 m

9(#) SA{i}.omega Ω double rad/s

10 SA{i}.m mA double Kg

11 SA{i}.Ixx
[
IAA
]
Ra

(1, 1) double Kgm2

12 SA{i}.Iyy
[
IAA
]
Ra

(2, 2) double Kgm2

13 SA{i}.Izz
[
IAA
]
Ra

(3, 3) double Kgm2

14 SA{i}.Ixy
[
IAA
]
Ra

(1, 2) double Kgm2

15 SA{i}.Ixz
[
IAA
]
Ra

(1, 3) double Kgm2

16 SA{i}.Iyz
[
IAA
]
Ra

(2, 3) double Kgm2

17(##) SA{i}.flex integer

18 SA{i}.L [LP ]Ra
ou [LA]Ra

double N × 6
√
Kg,

√
Kgm

19 SA{i}.wi [ω1 ω2 · · · ωN ] double 1×N rad/s

20 SA{i}.z [ξ1 ξ2 · · · ξN ] double 1×N

Table 3.2: Description of the fields of the structure in cell SA{i}.

(∗): if SA{i}.pivot=1 then there is a revolute joint between the appendage and the hub at point P . The direction

~ra) of the revolute joint axis can be specified in the field # 5 SA{i}.pivotdir, otherwize the defaut value is

SA{i}.pivotdir=[0;0;1]. In case of a revolute joint, the direct dynamics model will be augmented on the outputs,

by the joint torque Cm and on the inputs, by the joint acceleration θ̈. If SA{i}.pivot=0 then the appendage is

cantilevered to the hub B at point P and the fields # 5 and 6 are optional or disregarded.

(∗∗): if SA{i}.pivot=1 then is possible to take into account a tilt of the appendage by SA{i}.angle degrees along

the revolute joint axis.

(∗∗∗): if the appendage is described by a data file, then the fields from line 8 to 20 are optional or disregarded.

(#) if the field SA{i}.omega exists, then the appendage is considered as an onboard angular momentum along

~zai . Then, SA{i}.omega and SA{i}.Izz are the angular rate and the main inertia of the spinning top, SA{i}.Ixx

is its radial inertia, fields # 12, 14, 15 and 16 are optional or disregarded and the appendage must be rigid:

SA{i}.flex=0.

(##): if SA{i}.flex=0 then the appendage is supposed rigid and the fields from line 18 to 20 are optional or

disregarded. If SA{i}.flex=1 then the appendage is flexible and SA{i}.L is the list of the modal participation

factors LA expressed at centre of mass A of the appendage. If SA{i}.flex=2 then the appendage is flexible and

SA{i}.L is the list of the modal participation factors LP at anchoring point P . We remind that LP = LAτAP .
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3.4 Example 1: Spacecraft1.m

This file describes a platform (MB.Name=’Platform’) fitted with 2 (nappend=2) flex-

ible appendages (SA{1} and SA{2}) cantilevered in 2 different points of the platform:

• a solar array (SA{1}.Name = ’Solar Array’) described by 3 flexible modes,

• an antenna (SA{2}.Name = ’Antenna’) described by 3 flexible modes.

The frequencies ωi, i = 1, 2, 3 of the 3 modes are the same for both appendages.

Because of the symmetry of the two modal participation factors along the z axis of

each appendage, one flexible mode is uncontrollable. It is reduced when computing

a minimal realization of the model.

The following Matlabr session (see also the script file demoSTD.m) shows how to

use this file with the SDT and perform complementary analyses.

>> mod=main(’Spacecraft1’);

2 states removed.

>> % 1 flexible mode removed (due to symmetry of flexible appendage)

>> mod.TotalCg % the position of the total centre of mass G.

ans =

0.1909

0.3909

0

>> mod.liste_IOs % list of channels

ans =

Trans. X Platform

Trans. Y Platform

Trans. Z Platform

Rot. X Platform

Rot. Y Platform

Rot. Z Platform

>> Md=mod.DynamicModel; % direct dynamic model.

>> % Translation of the direct dynamic model from the global centre of mass G

>> % to the hub’s centre of mass B:

>> Spacecraft1 % to get all the data in the workspace.

>> MD_B=translate_dynamic_model(mod.TotalCg,MB.cg,Md);
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>> % Inverse Dynamic Model:

>> Mi=mod.InverseTotalModel;

>> damp(Mi) % The 5=6-1 flexible modes.

Eigenvalue Damping Frequency

-4.03e-02 + 8.03e+00i 5.02e-03 8.03e+00

-4.03e-02 - 8.03e+00i 5.02e-03 8.03e+00

-5.07e-02 + 9.03e+00i 5.61e-03 9.03e+00

-5.07e-02 - 9.03e+00i 5.61e-03 9.03e+00

-9.64e-02 + 1.70e+01i 5.67e-03 1.70e+01

-9.64e-02 - 1.70e+01i 5.67e-03 1.70e+01

-1.09e-01 + 1.80e+01i 6.02e-03 1.80e+01

-1.09e-01 - 1.80e+01i 6.02e-03 1.80e+01

-1.11e-01 + 2.09e+01i 5.29e-03 2.09e+01

-1.11e-01 - 2.09e+01i 5.29e-03 2.09e+01

(Frequencies expressed in rad/seconds)

>> figure

>> sigma(Mi) % Frequency domain response.

The frequency response is presented on Figure 3.1.

Figure 3.1: Frequency response (Singular Values) of the inverse dynamics model.
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3.5 Example 2: Spacecraft2.m

This file describes the same platform as example 1 but now, the link between the

solar array and the hub is a revolute joint along ~ea1 = ~za1 . The following Matlabr

session (see also the script file demoSTD.m) shows how to use this file with the SDT

and perform complementary analyses, more particularly study the response of the

revolute joint’s angle to a force impulse applied at the global centre of mass. One

will notice that thanks to the revolute joint, the 6 flexible modes are now both

controllable and observable: computing a minimal realization of the model will not

reduce the number of modes.

>> clear all,close all,

>> mod=main(’Spacecraft2’);

>> mod.liste_IOs % Now the dynamic model is 7x7

ans =

Trans. X Platform

Trans. Y Platform

Trans. Z Platform

Rot. X Platform

Rot. Y Platform

Rot. Z Platform

Joint: Solar Array/Platform

>> Md=mod.DynamicModel; % direct dynamic model.

>> Mi=mod.InverseTotalModel; % inverse dynamic model

>> Mi71=Mi(7,1); % Transfer between a force applied on the

>> % platform along X axis and the revolute joint’s

>> % relative acceleration.

>> ddint=tf(1,[1 0 0]); % double integrations

>> % impulse response of Mi71/s/s :

>> figure

>> impulse(Mi71*ddint,3) % response of the revolute joint angle to

>> % an impulse on the X thruster.

The impulse response is shown on Figure 3.2.

Remark: The file Spacecraft3.m describes the same assembly but uses file APPENDAGE1.m

to define the solar array. File Spacecraft4.m shows the usefulness of the recursivity

used in function main.m: it describes the same assembly as Spacecraft3.m, with a

third (more complex) appendage which is the assembly described in Spacecraft3.m...
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Figure 3.2: Impulse response of the transfer between θ, the angle of the revolute

joint, and the force applied at the global centre of mass along X

3.6 Example 3: Spacecraft5.m

This file describes the same platform as example 1 but now, it is fitted with 3

more appendages (nappend=5) modelling embedded angular momentums along the

3 directions (~xb, ~yb, ~zb) in the hub’s frame. Such devices can model reaction wheels

(RWA), that have a very high speed (close to their saturation).

The following Matlabr session (see also the script file demoSTD.m) shows how to

use this file with the SDT and perform complementary analyses. One will notice

the following facts:

• The reduction of one uncontrollable mode (same as example 1)

• The reduction of a double pair of integrators. Indeed, to model the 3 embed-

ded angular momentum (see the remarks in section 2.3.3), we introduced three

pairs of integrators in the direct dynamics model. However, only 2 integra-

tors are required to model the gyroscopic couplings due to the total angular

momentum (i.e. the sum of the 3 embedded angular momentums).

• The gyroscopic mode in the inverse dynamics model which is represented by

a pair of poles on the imaginary axis, at low frequency (around 0.1 rd/s)

• The reduction of a pair of integrators when introducing the 3 integrators be-

tween the 3 angular accelerations and speeds of the hub. All the integrators

added into the dynamics model to take into account gyroscopic couplings dis-

appeared in the reduction, as expected.
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>> clear all,close all,

>> mod=main(’Spacecraft5’);

2 states removed.

2 states removed.

2 states removed.

>> % 1 flexible mode removed (due to symmetry of flexible appendages)

>> % + 2 double integrators removed.

>> Md=mod.DynamicModel; % direct dynamic model.

>> damp(Md) % only 2 integrators to represent the 3 angular momentums.

Eigenvalue Damping Frequency

1.36e-15 -1.00e+00 1.36e-15

-5.68e-15 1.00e+00 5.68e-15

-4.00e-02 + 8.00e+00i 5.00e-03 8.00e+00

-4.00e-02 - 8.00e+00i 5.00e-03 8.00e+00

-4.00e-02 + 8.00e+00i 5.00e-03 8.00e+00

-4.00e-02 - 8.00e+00i 5.00e-03 8.00e+00

-7.50e-02 + 1.50e+01i 5.00e-03 1.50e+01

-7.50e-02 - 1.50e+01i 5.00e-03 1.50e+01

-7.50e-02 + 1.50e+01i 5.00e-03 1.50e+01

-7.50e-02 - 1.50e+01i 5.00e-03 1.50e+01

-1.00e-01 + 2.00e+01i 5.00e-03 2.00e+01

-1.00e-01 - 2.00e+01i 5.00e-03 2.00e+01

(Frequencies expressed in rad/seconds)

>> Mi=mod.InverseTotalModel;

>> damp(Mi)

Eigenvalue Damping Frequency

-2.14e-11 + 9.21e-02i 2.32e-10 9.21e-02

-2.14e-11 - 9.21e-02i 2.32e-10 9.21e-02

-4.03e-02 + 8.03e+00i 5.02e-03 8.03e+00

-4.03e-02 - 8.03e+00i 5.02e-03 8.03e+00

-5.06e-02 + 9.02e+00i 5.61e-03 9.02e+00

-5.06e-02 - 9.02e+00i 5.61e-03 9.02e+00

-9.62e-02 + 1.70e+01i 5.67e-03 1.70e+01

-9.62e-02 - 1.70e+01i 5.67e-03 1.70e+01

-1.09e-01 + 1.80e+01i 6.02e-03 1.80e+01

-1.09e-01 - 1.80e+01i 6.02e-03 1.80e+01

-1.11e-01 + 2.09e+01i 5.29e-03 2.09e+01

-1.11e-01 - 2.09e+01i 5.29e-03 2.09e+01
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(Frequencies expressed in rad/seconds)

>> % ==> in addition to flexible modes, one can see a very low frequency

>> % (around 0.1 rd/s) mode corresponding to the gyroscopic mode

>> figure

>> sigma(Mi) % ==> a very low fequency resonance.

>> % Angular model:

>> Mi=Mi(4:6,4:6);

>> % Integrations between angular acceleration and rates:

>> int=tf(1,[1 0]);

>> Mi_int=minreal(Mi*(int*eye(3)));

2 states removed.

>> % ==> 2 states removed: extra integrators to model gyroscopic couplings

>> % are removed, as wanted.

The frequency-domain response is shown on Figure 3.3.

Figure 3.3: Frequency-domain response (Singular Values) of the inverse dynamics

model.

3.7 Example 4: FOUR CMGs.m

This file describes the example of a platform fitted with a cluster of 4 identical

gyroscopic actuators, in a pyramidal configuration. The geometries, weights and

inertias of the different bodies are very close to those of the experimental platform

TETRAGYRE developed by ONERA/DCSD (see http://www.onera.fr/dcsd/gyrodynes/

ISAE/DMIA/ADIS Page 40/58

http://www.onera.fr/dcsd/gyrodynes/
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and Figure 3.4). The default configuration is obtained when the spinning tops axes

are horizontal and when the sum of the angular momentums is zero.

Figure 3.4: The bench TETRAGYRE.

The main data file is FOUR_CMGs.m. It describes the platform (hub) B and the nom-

inal configuration of the 4 CMGs. One difference with the example files detailed

above is that we add a global variable angles (4 × 1) that represents the current

configuration of the precession axes. It also enables the computation of the dy-

namics model in any configuration without modifying the data file. This variable

is initialized with the nominal angular configuration (angles=[0;0;0;0];). The

file dataCMG.m describes one CMG (see Figure 2.9) and is called 4 times by the file

FOUR_CMGs.m. The CMG is modelled as a fork Ai for the main part of the appendage

and a spinning top Wi as the appendage’s appendage.

The following Matlabr session (see also the script file demoSTD.m) shows how to

use this file with the SDT, performs complementary analyses and proposes a 3-axes

attitude control law. This control law has the following structure, also depicted in

Figure 3.5:

• a inner control loop feedbacking the precession speeds σ̇i. It is a pure propor-

tional control and it is the same on the 4 precession axes:

Cmi
= 0.06(σ̇i,ref − σ̇i),∀ i = 1, · · · , 4 ,

• an outer control loop feedbacking the 3 hub attitudes. It is a pure proportional

control and it is the same on the hub’s 3 rotation axes:
[−→
T ref

]
Rb

= 3[(φref − φ) (θref − θ) (ψref − ψ)]T ,
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• a guidance law for the cluster of gyroscopic actuators which is the pseudo-

inverse of the Jacobian J0 = J(σi)|σi=0 (3×4) computed from the 4 precession

speeds to the hub’s 3 rotation speeds when in nominal configuration:

[σ̇1,ref σ̇2,ref · · · σ̇4,ref ]
T = JT0 (J0J

T
0 )−1

[−→
T ref

]
Rb

.

3

4

−→̇
ω



φ
θ
ψ






σ̇1
...
σ̇4






σ̈1
...
σ̈4




I4
s

I3
s

I3
s

[
M

∑
Ai+B

G(4:10,4:10)

]−1
(s)

[−→
T ref

]
Rb



φref
θref
ψref






σ̇1,ref

...
σ̇4,ref




JT
0 (J0J

T
0 )−13 I3

+

−

3

3 4 4

+

−

−→
T ext,G



Cm1

...
Cm4




0.06 I4

Figure 3.5: Attitude control using 4 CMGs.

>> clear all,close all,

>> mod=main(’FOUR_CMGs’);

Angular configuration: 0 0 0 0

2 states removed.

>> mod.liste_IOs % Definition of the various channels

ans =

Trans. X Platform

Trans. Y Platform

Trans. Z Platform

Rot. X Platform

Rot. Y Platform

Rot. Z Platform

Joint: CMG #1/Platform

Joint: CMG #2/Platform

Joint: CMG #3/Platform

Joint: CMG #4/Platform

>> Md=mod.DynamicModel; % direct dynamic model

>> % Model restricted to 3 axes angular motion + CMGs channels:

>> Md=Md(4:10,4:10);
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>> % One can check that the total angular momentum is null:

>> M3x3=minreal(Md(1:3,1:3))

6 states removed.

M3x3 =

d =

u1 u2 u3

y1 5.315 0 -0.005015

y2 0 5.315 -0.005015

y3 -0.005015 -0.005015 10.61

Static gain.

>> % ==> The 3x3 model is static: no more gyroscopic couplings between platform

>> % and inertial frame.

>> Mi=inv(Md); % Inverse dynamic model.

>> damp(Mi)

Eigenvalue Damping Frequency

-3.55e-15 + 4.85e+01i 7.33e-17 4.85e+01

-3.55e-15 - 4.85e+01i 7.33e-17 4.85e+01

-5.33e-15 + 4.85e+01i 1.10e-16 4.85e+01

-5.33e-15 - 4.85e+01i 1.10e-16 4.85e+01

-7.25e-17 + 8.40e+01i 8.63e-19 8.40e+01

-7.25e-17 - 8.40e+01i 8.63e-19 8.40e+01

(Frequencies expressed in rad/seconds)

>> % ==> the pulsations of the 3 gyroscopic modes.

>> % Dynamic model for a new angular configuration:

>> global angles

>> angles=[10;20;-5;-25];

>> mod_bis=main(’FOUR_CMGs’);

Angular configuration: 10 20 -5 -25

2 states removed.

>> damp(mod_bis.InverseTotalModel)

Eigenvalue Damping Frequency

-1.24e-16 + 3.13e+01i 3.95e-18 3.13e+01

-1.24e-16 - 3.13e+01i 3.95e-18 3.13e+01
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7.11e-15 + 6.32e+01i -1.12e-16 6.32e+01

7.11e-15 - 6.32e+01i -1.12e-16 6.32e+01

8.29e-17 + 8.59e+01i -9.65e-19 8.59e+01

8.29e-17 - 8.59e+01i -9.65e-19 8.59e+01

(Frequencies expressed in rad/seconds)

>> % ==> angular frequecies of gyroscopic modes have changed.

>> % First integrators (angular rates on outputs on nominal model Mi):

>> int=tf(1,[1 0]);

>> Gv=minreal((int*eye(7))*Mi);

3 states removed.

>> % Precession rate servo-loop (inner loop):

>> bf2=feedback(Gv*diag([1 1 1 0.06 0.06 0.06 0.06]),eye(4),4:7,4:7);

>> bf2=minreal(bf2); % 3 states removed: OK !!

3 states removed.

>> damp(bf2)

Eigenvalue Damping Frequency

-3.00e+01 + 3.81e+01i 6.18e-01 4.85e+01

-3.00e+01 - 3.81e+01i 6.18e-01 4.85e+01

-3.00e+01 + 3.81e+01i 6.18e-01 4.85e+01

-3.00e+01 - 3.81e+01i 6.18e-01 4.85e+01

-5.99e+01 1.00e+00 5.99e+01

-3.00e+01 + 7.85e+01i 3.57e-01 8.40e+01

-3.00e+01 - 7.85e+01i 3.57e-01 8.40e+01

(Frequencies expressed in rad/seconds)

>> % ==> gyroscopic modes are correctly damped.

>> % Platform attitude servo-loop:

>> % The jacobian is defined as the DCgain of the transfer between the 4

>> % precession rates reference inputs and the 3 platform angular rates:

>> Jacob=dcgain(bf2(1:3,[4:7]))

Jacob =

0.0120 -0.0120 0.0000 0.0000

0.0000 0.0000 0.0120 -0.0120

0.0035 0.0035 0.0035 0.0035

>> % Second integrators: platform angular positions and rates on outputs:
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>> sint=ss(0,1,[1;0],[0;1]);

>> Gpv=minreal(append(sint,sint,sint,1,1,1,1)*bf2);

>> % CMGs guidance:

>> Gpv=Gpv*[eye(3),zeros(3);zeros(4,3) pinv(Jacob)];

>> % Attitude servo-loop bandwitdh (outer loop):

>> w=3;

>> bf=feedback(Gpv*diag([1,1,1,w,w,w]),eye(3),[4 5 6],[1 3 5]);

>> damp(bf)

Eigenvalue Damping Frequency

-3.08e+00 1.00e+00 3.08e+00

-3.25e+00 1.00e+00 3.25e+00

-3.25e+00 1.00e+00 3.25e+00

-2.84e+01 + 3.69e+01i 6.09e-01 4.66e+01

-2.84e+01 - 3.69e+01i 6.09e-01 4.66e+01

-2.84e+01 + 3.69e+01i 6.09e-01 4.66e+01

-2.84e+01 - 3.69e+01i 6.09e-01 4.66e+01

-5.99e+01 1.00e+00 5.99e+01

-2.84e+01 + 7.80e+01i 3.43e-01 8.30e+01

-2.84e+01 - 7.80e+01i 3.43e-01 8.30e+01

(Frequencies expressed in rad/seconds)

>> % ==> all the modes are correctly damped.

>> figure

>> step(bf([1 3 5],[4 5 6]),2);

The step response is shown on Figure 3.6.

3.8 Example 5: SpaceRoboticArm.m

This file describes a spatial vehicle fitted with a manipulator (arm) with 6 degrees

of freedom and a high aspect ratio, as shown on Figure 3.7. We suppose that the

segments are all rigid. The obtained model has 12 channels: 6 for the degrees of

freedom of the hub and 6 for the manipulator. The files Segment1.m, Segment2.m,

..., Segment6.m describe the different segments. Each segment is composed of a

main body (hub) and one appendage which is the next segment. The global variable

config (6×1) can be used to set the angular configuration of the manipulator (same

as in the previous example).

The following Matlabr session (see also the script file demoSTD.m in the STD_V1.3

sub-directory) shows how to use this file with the SDT.
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Figure 3.6: Step response of the CMG platform with attitude control, on the 3 axes

B

link # 1

link # 2

link # 3
link # 4

link # 5

link # 6

B ~xb

~yb~zb

Figure 3.7: A manipulator arm fitted on a spatial vehicle

>> clear all,close all,

>> global config

>> mod=main(’SpaceRoboticArm’);

Angular configuration: 0 30 120 0 0 0

>> mod.liste_IOs % The 12 channels (d.o.f. order).

ans =

Trans. X Main_body
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Trans. Y Main_body

Trans. Z Main_body

Rot. X Main_body

Rot. Y Main_body

Rot. Z Main_body

Joint: Link#6/Link#5

Joint: Link#5/Link#4

Joint: Link#4/Link#3

Joint: Link#3/Link#2

Joint: Link#2/Link#1

Joint: Link#1/Main_body

>> mod.TotalCg % Position of the global centre of mass.

ans =

0.0270

-0.3741

1.4893

>> mod.DynamicModel

ans =

d =

u1 u2 u3 u4

y1 1400 -6.311e-30 6.311e-30 -7.272e-31

y2 -6.311e-30 1400 3.864e-46 4.547e-13

y3 6.311e-30 3.864e-46 1400 -3.411e-13

y4 -7.272e-31 4.547e-13 -3.411e-13 1.361e+04

y5 0 3.088e-30 -2.132e-14 -57.02

y6 3.411e-13 2.132e-14 -2.361e-30 -266.3

y7 0 0 0 0.3375

y8 8.472e-16 -32.74 -18.9 202.1

y9 -4.216e-15 25.2 -43.65 -241.7

y10 -1.002e-13 598.8 -1037 -4377

y11 -5.978e-14 1500 523.7 -1.07e+04

y12 523.7 37.8 0 -266.3

u5 u6 u7 u8

y1 0 3.411e-13 0 8.472e-16

y2 3.088e-30 2.132e-14 0 -32.74

y3 -2.132e-14 -2.361e-30 0 -18.9
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y4 -57.02 -266.3 0.3375 202.1

y5 1.141e+04 1269 4.133e-17 15.53

y6 1269 2934 -5.646e-17 -26.91

y7 4.133e-17 -5.646e-17 0.3375 2.067e-17

y8 15.53 -26.91 2.067e-17 32.09

y9 19.45 11.23 -0.3375 2.562e-15

y10 223.7 129.2 -0.3375 2.562e-15

y11 57.02 225.4 -0.3375 -208.9

y12 1269 2267 -5.646e-17 -27.79

u9 u10 u11 u12

y1 -4.216e-15 -1.002e-13 -5.978e-14 523.7

y2 25.2 598.8 1500 37.8

y3 -43.65 -1037 523.7 0

y4 -241.7 -4377 -1.07e+04 -266.3

y5 19.45 223.7 57.02 1269

y6 11.23 129.2 225.4 2267

y7 -0.3375 -0.3375 -0.3375 -5.646e-17

y8 2.562e-15 2.562e-15 -208.9 -27.79

y9 30.01 385.8 225.1 11.91

y10 385.8 7804 3983 145.3

y11 225.1 3983 1.088e+04 265.9

y12 11.91 145.3 265.9 2464

Static gain.

>> % This model is static since all links are rigid

3.9 Example 6: Spacecraft1u.m

This version of the toolbox (SDT Version 1.3) also allows to take parametric varia-

tions of parameters into account, and more particularly the main structural param-

eters such as the mass, the inertias, the geometry (position of the centre of mass and

position of the anchoring points), the angular frequencies, dampings and modal par-

ticipation factors. To sum up, all the parameters defined by the fields of type double

of the structures MB and SA{i} (see table 3.1 and 3.2) except the angular parameters

(SA{i}.TM, SA{i}.pivotdir and SA{i}.angle) can be defined with parametric un-

certainties. The varying parameters can be defined by the function ureal from the

Robust Control Toolbox (RCT). Then, the output variables of the SDT are

uncertain matrices or state-space representations and are fully compatible with the

analysis tools of the RCT.

The file Spacecraft1u.m is based on example 2 and adds parametric variations on

dynamics and geometric parameters of the hub and of the appendage. The following
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Matlabr session shows how to perform a sensitivity analysis of the frequency

response of the inverse dynamics model (see Figure 3.8).

>> clear all,close all,

>> mod=main(’Spacecraft1u’);

>> mod.TotalCg % the position of the global centre of mass.

ans =

Uncertain matrix with 3 rows and 1 columns.

The uncertainty consists of the following blocks:

MB_m: Uncertain real, nominal = 100, variability = [-10,10]%, 1 occurrences

SA1_CGx: Uncertain real, nominal = 1, variability = [-10,10]%, 1 occurrences

SA1_Px: Uncertain real, nominal = 0, range = [-0.01,0.01], 1 occurrences

SA1_Py: Uncertain real, nominal = 1, variability = [-10,10]%, 1 occurrences

SA1_m: Uncertain real, nominal = 50, variability = [-10,10]%, 1 occurrences

SA2_CGy: Uncertain real, nominal = 1, variability = [-10,10]%, 1 occurrences

SA2_Py: Uncertain real, nominal = -1, variability = [-10,10]%, 1 occurrences

SA2_Pz: Uncertain real, nominal = 0, range = [-0.01,0.01], 1 occurrences

SA2_m: Uncertain real, nominal = 20, variability = [-10,10]%, 1 occurrences

Type "ans.NominalValue" to see the nominal value, "get(ans)" to see all properties,

and "ans.Uncertainty" to interact with the uncertain elements.

>> Mi=mod.InverseTotalModel; % inverse dynamic model

>> figure

>> sigma(Mi)

>> % sensitivity of the frequency domain response to parametric variations.

Figure 3.8: Frequency responses (Singular Values) of the inverse dynamics model for

several parameter configurations
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3.10 Exercise

Statement

Using the data file SpaceRoboticArm.m (see section 3.8) describing a chaser space-

craft with a robotic arm and the data file Spacecraft1.m (see section 3.4) describing

a spacecraft with two symmetrical flexible appendages, the objective of this exercise

is two build the data file to analyse the dynamic behavior of the chaser holding the

spacecraft considered as a debris (see Figure 3.9). The interface point P7 between

the arm end effector and the debris is characterized by:

• its coordinate vector in the frameRa6 attached to the end effector (Segment6.m):[−−−→
O6P7

]
Ra6

= [0 0 0.55]T ,

• its coordinates vector in the frame Ra7 attached to the debris spacecraft

(Spacecraft1.m):
[−−−→
O7P7

]
Ra7

= [−0.3 0 − 1.2]T .

The direction cosine matrix between frames Ra6 and Ra7 (see nomenclature) is:

Ta6a7 =




cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ


 with: θ = 80 deg .

Solution

Firstly, the data file Segment6.m must be completed by the following instructions
to take into account that Segment6 (the end-effector) hold an appendage described
in the data file Spacecraft1.m

nappend = 1;

%==========================================================================

% APPENDAGE 1 : SA{1}

% DEBRIS SPACECRAFT

%--------------------------------------------------------------------------

SA{1}.Name = ’DEBRIS’; % Name of next appendage: the debris

SA{1}.P = [0;0;0.55]; % position of connection point P7 in (O6,X,Y,Z) (m)

SA{1}.TM = [ cos(80*pi/180) 0 sin(80*pi/180) % T_A6A7

0 1 0

-sin(80*pi/180) 0 cos(80*pi/180)];

SA{1}.pivot = 0; % cantilevered joint

SA{1}.filename = ’Spacecraft1’;
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Ra7

Ra6

P7

O7

O6

Figure 3.9: A manipulator arm fitted on a spatial vehicle holding a debris spacecraft.

Secondly, the data file Spacecraft1.m must be completed by the following instruc-
tions to take into account the new reference point P7 (instead of the previous one:
O7):

% DEBRIS case: taking into account P7_O7:

MB.cg = MB.cg + [0.3;0;1.2];

SA{1}.P = SA{1}.P + [0.3;0;1.2];

SA{2}.P = SA{2}.P + [0.3;0;1.2];

Then the model of the assembly: chaser + robotic arm + debris can be computed
using:

>> clear all,close all,

>> global config

>> mod=main(’SpaceRoboticArm’);
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Modélisation mécanique classique”, RAv 1/21116 DCSD - Avril 2013

[5] D. Alazard “Reverse engineering in control design”, Wiley, 2013.

[6] Newton–Euler equations: http://en.wikipedia.org/wiki/Newton-Euler equations

ISAE/DMIA/ADIS Page 53/58

http://en.wikipedia.org/wiki/Newton-Euler_equations


EMPTY PAGE



55

Appendix A

Inline help

A.1 help of function main.m

MODEL = main(FILENAME) compute the model MODEL of the

spacecraft described in the file FILENAME.m

MODEL is a structure:

MODEL.TotalMass: total mass of the spacecraft,

MODEL.TotalCg: 3x1 coordinate vector of the global centre of mass

(CGtot) in the reference frame attached to the main body

(0, X, Y, Z),

MODEL.InverseTotalModel: [(6+NBPIVOTS)x(6+NBPIVOTS) ss] inverse dynamic

model between inputs:

* 6 dof external force-torque applied on the main body,

* NBPIVOTS torques applied inside the NBPIVOTS

pivot joints between main body and appendages,

and outputs:

* 6 dof linear-angular accelerations of main body,

* NBPIVOTS relative angular accelerations of

appendages w.r.t main body around pivots axis.

This model is written at point CGtot in frame (CGtot,

X, Y, Z).

MODEL.DynamicModel: [(6+NBPIVOTS)x(6+NBPIVOTS) ss] direct dynamic model of

the spacecraft (the inverse of the previous one).

MODEL.liste_IOs: Description and ordering of the (6+NBPIVOTS) inputs

(outputs) used in the dynamic model.

Reference:

Alazard, D., Cumer, C., and Tantawi, K.,

\Linear dynamic modeling of spacecraft with various flexible

appendages and on-board angular momentums".
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In Proceedings of the 7th International ESA Conference on Guidance,

Navigation & Control Systems

Tralee, Ireland, 1-5 June 2008

A.2 help of function translate dynamic model.m

TDM = translate_dynamic_model(vec_A,vec_B,DM) translate the direct

dynamic model from point A to point B in the same reference frame.

Inputs:

* vec_A: 3x1 coordinate vector of point A,

* vec_B: 3x1 coordinate vector of point B,

* DM: dynamic model at point A.

Output:

* TDM: dynamic model at point B.

It is assumed that the first 6x6 block of DM represent the dynamic model

between the 6 dof acceleration vector and the 6 dof external force

vector.

A.3 help of function rotate dynamic model.m

DM_OUT = rotate_dynamic_model (DM_IN , ANGLE, AXIS)

computes the dynamic model after a rotation of ANGLE (deg)

around the axis AXIS :

* DN_IN: dynamic model of a body in a frame R,

* ANGLE: rotation angle (deg),

* AXIS: 3 components in the frame R of the unitary vector

along the rotation axis,

* DN_OUT: dynamic model of the rotated body in the frame R.

It is assumed that the first 6x6 block of DM_IN represent the dynamic model

between the 6 dof acceleration vector and the 6 dof external force

vector.

A.4 help of function kinematic model.m

JACOB=kinematic_model(vec_A, vec_B) calculates the kinematic model JACOB

of a body between two points A and B

Inputs:

* vec_A: 3x1 coordinate vector of point A in a given frame,

* vec_B: 3x1 coordinate vector of point B (in the same frame).

ISAE/DMIA/ADIS Page 56/58



A.5 help of function antisym.m 57

Output:

* JACOB: 6x6 kinematic model (projected in the same frame).

| eye(3) (*AB) |

JACOB = | |

|zeros(3) eye(3)|

A.5 help of function antisym.m

MAT=antisym(VEC) computes the antisymmetric matrix MAT associated

with a vector VEC.

if VEC=[x y z]’ then MAT=[0 -z y;z 0 -x;-y x 0].
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