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1

Definition

Composite materials (Latin: componere) ”‘A macroscopic combination of
two or more distinct materials into one with the intent of surpressing
undesirable properties of the constituent materials in favour of desirable
properties”’
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1

At Macro Level

Isotropic
”‘The same properties in all directions”’ (Metals, plastics, concrete, etc)
Anisotropic
”‘Different properties in different directions”’ (Wood, reinforced concrete,
fibre composites, bone, and almost all natural building materials)
An example would be the dependence of Young’s modulus on the direction
of load
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1

Laminates composites

Combination of two or more constituent materials on a macroscopic examination
to produce a new material with enhanced properties: Fibers (carbon, glass, Kevlar)
and matrix (Epoxy resin)

Strength and stiffness are proportional to the amount of fibers in the matrix (Fiber
volume fraction)
The reinforcing fibers provide the useful engineering properties e.g., strength and
stiffness); whereas the matrix serves to protect and stabilize the fibers while
transferring loads among the fibers predominantly through shear.
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Stacking Sequence
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Mirror symetry?
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1

Coupling terms

When the local coordinate changes : some terms of Compliance matrix are
different of Zero (Distortion of right angle)

For anistropic material, Stress-Strain Equations depend on Coordinate.
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Stress and Strain in a laminate
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Equivalent material
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Simple rules: Mixture Law
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1

Elasticity Review: stress tensor
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1

stress tensor: Matrix notation
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Plane stress assumption
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strain tensor: Matrix notation
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2

Stress-Strain Equations in Material Coordinate

In material coordinate, we can calculate: any load cases (in plane) is a combination
of these 3 cases
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2

Normal strain in coupon along O1 (Material Coordinate

When loading is normal to face 1 (normal stress σ1) , the structure elongates along O1
(ε1) and shortens along O2 (ε2).

Loading is in the axis of orthotropy (axis of symetry of materials), so right angle keeps
beeing right: ε12 is null.
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2

Shear Loading

Under pure shearing force τ12 ,no ε1 and ε2 appears.
G12 (shear modulus) is defined by : τ12 = 2G12ε12
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2

Stiffness Equations in Material Coordinate

any load cases (in plane) creating σ1 , σ2 , τ12 is a combination of these elementary
cases: 0@ ε1

ε2
2ε12

1A =

0@ 1/E1 − ν21
E2

0

− ν12
E1

1/E2 0

0 0 1/G12

1A 0@ σ1

σ2

τ12

1A
equivalent to (Hooke’s Law): [ε]=[S][σ],
where [S] is the Compliance Matrix (9 terms)
Multiplying by S−1, : [σ]=[Q”][ε]
we can obtain: [Q ′′] Reduced Stiffness Matrix in the orthotropic coordinate:

[Q ′′] =

0@ βE1 βν12E2 0
βν12E2 βE2 0

0 0 G12

1A
avec β = 1

1−ν12ν21
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Hooke’s Law for a 2D Angle Lamina

From local to global coordinate ?
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Coordinate Transformations
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Coordinate Transformations
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Stress Transformation
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Strain Transformation
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Stress-Strain relationship in Global Coordinate
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2

Stress-Strain relationship in Global Coordinate

Multiplying by [T ]−1
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Stiffness and Compliance Matrix in Global Coordinate
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Exemple 1
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3

Macromechanics

Nx = normal force resultant in the x direction (per unit length) Nxy = shear force

resultant (per unit length) Mx = bending moment resultant in the yz plane (per unit

length) Mxy = twisting moment resultant (per unit length)
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Displacement field
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Strain in the laminate
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Strain in the laminate for each layer
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Plate resultant forces
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Constitutive equation for laminated plate
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Laminate stiffness matrix
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ABD?

18 terms are governing:

A = [in-plane stiffness matrix]

D = [bending stiffness matrix]

B = [bending-extension coupling matrix]

B=0 if symetrical vs middle plan
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3

Aij, Bij, Dij Coefficients

Aij, Bij, Dij depends on thickness, orientation, stacking and materials
properties of each ply.

where zk are ply coordinate (sup and inf) (i,j=1,2,6)
IS THERE ANY COMPACT FORM OF THIS COMPLEX PROBLEM
EXISTING ???????

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 37 / 46



Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

4

Optimal Fibers Orientation
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4

Lamination parameters

Lamination parameters are a compact representation of the stacking
sequence. Miki, Tsäı and Pagano carried out this representation of the
mechanical behaviour of a laminate by decomposing the
material-dependent part and the stacking-sequence dependent part, ending
up with :

5 so-called material invariants or Tsäı-Pagano parameters {Ui}i=1...5

that only depend on the material properties (E11, E22, G12 and ν12

the longitudinal, transerve and shear moduli and the Poisson’s ratio)

12 so-called lamination parameters ξA{1,2,3,4}, ξ
B
{1,2,3,4}, ξ

D
{1,2,3,4} that

only depend on the stacking sequence (fiber orientations and number
of plies).

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 39 / 46



Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

4

Lamination parameters

The knowledge of both U and ξ is enough to derive the constitutive law of
the material. More precisely, they allow ud to compute the ABD stiffness
tensor where :

A is the in-plane stiffness tensor that describe the tensile compressive
behaviour of the material

D is the out-of-plane stiffness tensor that describe the flexural
behaviour

B is the coupling stiffness tensor
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4

Lamination parameters

Their definition is :

ξA{1,2,3,4} =
1

h

∫ h/2

−h/2
{cos(2θ(z)), cos(4θ(z)), sin(2θ(z)), sin(4θ(z))}dz (1)

ξB{1,2,3,4} =
1

h

∫ h/2

−h/2
{cos(2θ(z)), cos(4θ(z)), sin(2θ(z)), sin(4θ(z))}zdz

(2)

ξD{1,2,3,4} =
1

h

∫ h/2

−h/2
{cos(2θ(z)), cos(4θ(z)), sin(2θ(z)), sin(4θ(z))}z2dz

(3)
where h denotes the thickness of the laminate and θ the orientation of
fiber at height z ∈ [−h/2, h/2]. It is a general definition of ξ. For laminate
composite it turns down to a simple finite sum of Nplies terms
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4

Lamination parameters

Knowing these lamination parameters and the material invariants U. The
stiffness tensors can be obtained by

I11

I22

I12

I66

I16

I26

 =



1 ξI1 ξI2 0 0
1 −ξI1 ξI2 0 0
0 0 −ξI1 1 0
0 0 −ξI2 0 1
0 −ξI3/2 ξI4 0 0
0 ξI3/2 −ξI4 0 0




U1

U2

U3

U4

U5

 (4)

where I stands for A, B and D.
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4

Lamination parameters based lay-up optimization

The lamination parameters offers another representation of the stacking
sequence

They represent the stacking sequence description through 12
variables, no matter how many plies there are.

A lot of work has been done on describing the feasible design space
for lamination parameters : Miki, Diaconu, Weaver... and the
boundaries may be described with a closed form expression. Recently
Weaver and al. carried out an implicit relationship to describe to
feasible space for any set of arbitrary orientations.

They can be used to build up surrogate model.
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4

Lamination parameters

Figure: Exemple of feasible design space into the lamination parameter
representation
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4

Lamination parameter based lay-up optimization

This representation has been used with different optimization techniques:

Evolutionnary techniques : Haftka, Leriche, Todoroki...

Gradient based techniques : Herencia, Kere

other metaheuristics (SA, AC...) : Todoroki

Nonetheless, once an optimum has been found in the lamination
parameters space, we have to find a corresponding stacking sequence

This is not trivial and in the litterature, this problem is usually solved with
evolutionnary techniques. though some author derived original methods :
Todoroki used for instance a brounch-and-bound that is based on the
fractal structure of the lamination parameters space.

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 45 / 46



Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

4

Others representations

Note that this representation is not the only one to be used for lay-up
optimization

We can use directly the reduced stiffness tensors A and D and use
continous techniques (gradient descente techniques) (Adams,
Herencia,...). Note that we still have the post-identification problem.

There also exists an equivalent representation used by Vanucci : the
polar form
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