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SIMPLIFIED MODELLING 

ORIGIN 
Which simplified model to quickly and accurately assess the load transfer within a hybrid (bolted / 

bonded) joint in-plane loaded? 

f 
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SIMPLIFIED MODELLING 

ORIGIN 
Pr. Marc Sartor (INSA Toulouse) suggested to model the joints with special elements, termed macro-

elements (ME). (Paroissien, 2006) (Paroissien et al., 2007a) (Paroissien et al., 2007b) 
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SIMPLIFIED MODELLING 

kinematics 

1D-bar bar element 
bonded-bars element 

(BBa element) 
2 DoF fastener 

element 

1D-beam beam element 
bonded-beams element 

(BBe element) 
6 DoF fastener 

element 

elementary 
stiffness 
matrix 

𝑲𝒃𝒂𝒓𝒓𝒆 

𝑲𝒑𝒐𝒖𝒕𝒓𝒆 

𝑲𝑩𝑩𝒂 

𝑲𝑩𝑩𝒆 

𝑲𝑭_𝟑 

𝑲𝑭_𝟔 

ORIGIN 
Pr. Marc Sartor (INSA Toulouse) suggested to model the joints with special elements, termed macro-

elements (ME). 
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ORIGIN 
The methodology consists in: 

 

1. to assemble the structural stiffness matrix from the elementary stiffness matrix 

 

2. to apply the boundary conditions 

 

3. to minimize the potential energy leading to the linear system  
  

 

The main difficulty is then the formulation of elementary stiffness matrices. 

v=0 

u=0 
v=0 f 

x,u 

y,v 

𝑭𝒔 = 𝑲𝒔𝑼𝒔 

𝑲𝒔 

+,q 

SIMPLIFIED MODELLING 
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FASTENER MACRO-ELEMENT 

ELEMENTARY STIFFNESS MATRIX 
The elementary stiffness matrix of fastener macro-element depends on the chosen kinematics. 

1D-bar 

𝑪𝒖 

𝑪𝒖 

Shear spring 

𝑲𝑭−𝟐 = 𝑪𝒖
𝟏 −𝟏
−𝟏 𝟏

 

This modelling corresponds to the classical one used for the simplified stress analysis of bolted joint 

under 1D-bar kinematics (Ross, 1947).  
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1D- beam 6 springs + 1 RBE 

𝑪𝒖,𝟏 

𝑪𝒖,𝟐 

𝑪𝒗,𝟐 

𝑪𝒗,𝟏 

𝑪𝜽,𝟐 

𝑪𝜽,𝟏 

𝑪𝒖,𝟏 

𝑪𝒖,𝟐 

𝑪𝒗,𝟐 

𝑪𝒗,𝟏 

𝑪𝜽,𝟐 

𝑪𝜽,𝟏 

𝐾𝐹−6 =
1

𝑘

2𝐶𝑢𝐶𝜃 −2𝐶𝑢𝐶𝜃 0 0 −𝛿𝐶𝑢𝐶𝜃 −𝛿𝐶𝑢𝐶𝜃

−2𝐶𝑢𝐶𝜃 2𝐶𝑢𝐶𝜃 0 0 𝛿𝐶𝑢𝐶𝜃 𝛿𝐶𝑢𝐶𝜃

0 0 𝑘𝐶𝑣 −𝑘𝐶𝑣 0 0
0 0 −𝑘𝐶𝑣 𝑘𝐶𝑣 0 0

−𝛿𝐶𝑢𝐶𝜃 𝛿𝐶𝑢𝐶𝜃 0 0 2𝐶𝜃
2 + 𝛿2𝐶𝑢𝐶𝜃 −2𝐶𝜃

2

−𝛿𝐶𝑢𝐶𝜃 𝛿𝐶𝑢𝐶𝜃 0 0 2𝐶𝜃
2 2𝐶𝜃

2 + 𝛿2𝐶𝑢𝐶𝜃

 

symmetrical fastener 

𝒌 = 𝟐𝑪𝜽 +
𝜹𝟐

𝟐
𝑪𝒖 

d 

(Paroissien et al., 2017) 

ELEMENTARY STIFFNESS MATRIX 
The elementary stiffness matrix of fastener macro-element depends on the chosen kinematics. 

FASTENER MACRO-ELEMENT 
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ELEMENTARY STIFFNESS MATRIX 
The elementary stiffness matrices of fastener macro-element depend on fastener stiffness Cu, Cv and Cq.  

 

In the literature, it exists a large number of formulae to compute these stiffnesses such as: 
(Tate and Rosenfeld, 1946) (Swift, 1984) (Huth, 1986) (Cope and Lacy, 2000) (Morris, 2004) 

 

These fastener stiffnessses are regarded as global parameters representing for several local phenomenon. 

They can be assessed from experimental and numerical tests, in a tailored application field. 

𝑪𝒖,𝟏 

𝑪𝒖,𝟐 

𝑪𝒗,𝟐 

𝑪𝒗,𝟏 

𝑪𝜽,𝟐 

𝑪𝜽,𝟏 𝑪𝒖 

FASTENER MACRO-ELEMENT 
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BONDED-LAP MACRO-ELEMENT 

ELEMENTARY STIFFNESS MATRIX 
A – Preamble 

In the literature, it exists a large numbers of closed-form formulae to accurately predict the adhesive 

stress distribution along the overlap, such as detailed in: (van Ingen and Volt, 1993) (Tsaï and Morton, 1994) (da Silva et 

al. 2009).  

 it means that the choice of simplified hypotheses on which are based these formulae is judicious. 

 

Nevertheless, the application field of these formulae is in general quite restricted. For example, Goland 

and Reissner provided in 1944 (Goland and Reissner, 1944) the adhesive shear and peel stress distribution for a 

balanced, simply supported, in plane loaded lap joint. But, there is not any more closed-form solution if 

the adherends are dissimilar or if the joint is clamped…. 

v=0 

u=0 
v=0 f 
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BONDED-LAP MACRO-ELEMENT 

ELEMENTARY STIFFNESS MATRIX 
A – Preamble 

The judicious simplified hypotheses lead to a system of ODEs composed of the constitutive equations and 

of the local equilibrium equations. 

This system can be difficult to be solved in particular : 

• when the adherends are dissimilar 

• when the boundary conditions are given 

• when the material are non linear 

N1(L) 

N2(L) 

N1(0) 

N2(0) 

V1(L) 

V2(L) 

V1(0) 

V2(0) 

M1(0) 

M2(0) 

M1(L) 

M2(L) 

Goland and Reissner introduced a methodology for the 

stress analysis of bonded joints referred to sandwich-

type analysis. It consists in analyzing the bonded 

overlap as function of internal loads and/or 

displacements joint extremities.  

The adhesive layer is seen as bed of springs linked to 

the adherends surface modelled as plates. 

 Moreover, in the solution by Goland and Reissner takes 

into account for the non linear geometrical effect 

induced by the lag of the neutral line. 
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BONDED-LAP MACRO-ELEMENT 

ELEMENTARY STIFFNESS MATRIX 
A – Preamble 

As a result, following Goland and Reissner, several other analyses have been published to enlarge the 

application field. Most of them used the sandwich type analysis, such as: (Hart-Smith 1973b) (Williams 1975) 

(Bigwood and Crocombe 1989) (Oplinger 1991) (Tsaï et al. 1998)  (Högberg  2004) (Nemes and Lachaud 2009) (Luo et Tong  2009) 

(Weißgraeber et al. 2014).  

 

Other simplified stress analyses of bonded joints were published by modelling the adherends and the 

adhesive layer such as 2D continuum media (Renton and Vinson, 1977) (Allman, 1977) (Adams and Mallick, 1992). This 

type of analysis allows for the compliance of the free stress state at overlap ends. 

 

Nevertheless, in order to solve the system of ODEs in a large application field, particular resolution 

schemes have to used such as: 

• « multisegment integration method » (Mortensen, 1997)  

• the macro-element technique (Gustafson et al., 2006) (Paroissien, 2006)  
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ELEMENTARY STIFFNESS MATRIX 
B – Principle 

The elementary stiffness matrix for a bonded overlap expresses the relationships between the nodal 

displacements and the nodal forces. 

−𝑵𝟏 𝟎

−𝑵𝟐 𝟎

𝑵𝟏 𝜟

𝑵𝟐 𝜟

−𝑽𝟏 𝟎

−𝑽𝟐 𝟎

𝑽𝟏 𝜟

𝑽𝟐 𝜟

−𝑴𝟏 𝟎

−𝑴𝟐 𝟎

𝑴𝟏 𝜟

𝑴𝟐 𝜟

= 𝑲𝑷𝑪

𝒖𝟏 𝟎

𝒖𝟐 𝟎

𝒖𝟏 𝜟

𝒖𝟐 𝜟

𝒗𝟏 𝟎

𝒗𝟐 𝟎

𝒗𝟏 𝜟

𝒗𝟐 𝜟

𝜽𝟏 𝟎

𝜽𝟐 𝟎

𝜽𝟏 𝜟

𝜽𝟐 𝜟

 

−𝑵𝟏 𝟎

−𝑵𝟐 𝟎

𝑵𝟏 𝜟

𝑵𝟐 𝜟

= 𝑲𝑩𝑪

𝒖𝟏 𝟎

𝒖𝟐 𝟎

𝒖𝟏 𝜟

𝒖𝟐 𝜟

 

𝑵𝟐 𝚫  

𝑵𝟏 𝚫  

𝑵𝟏 𝟎  

𝑵𝟐 𝟎  

𝒖𝟏 𝟎  

𝒖𝟐 𝟎  𝒖𝟐 𝚫  

𝒖𝟏 𝚫  

𝒖𝟏 𝟎  

𝒖𝟐 𝟎  𝒖𝟐 𝚫  

𝒖𝟏 𝚫  

𝒗𝟐 𝚫  

𝒗𝟏 𝚫  𝒗𝟏 𝟎  

𝒗𝟐 𝟎  

𝜽𝟏 𝟎  

𝜽𝟐 𝟎  

𝜽𝟏 𝚫  

𝜽𝟐 𝚫  

𝑵𝟏 𝟎  

𝑵𝟐 𝟎  

𝑵𝟐 𝚫  

𝑵𝟏 𝚫  
𝑽𝟏 𝟎  

𝑽𝟐 𝟎  

𝑽𝟏 𝚫  

𝑽𝟐 𝚫  

𝑴𝟏 𝟎  

𝑴𝟐 𝟎  

𝑴𝟐 𝚫  

𝑴𝟏 𝚫  

BONDED-LAP MACRO-ELEMENT 
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ELEMENTARY STIFFNESS MATRIX 
B – Principle 

Contrary to the classical FE, the shape of interpolation functions is not assumed a priori. The shape of 

interpolation functions has the shape of functions solving the ODEs. 

 

One significant consequence is that only one ME is needed to model an entire bonded overlap (linear 

elastic analysis). The displacements, internal forces and adhesive stresses are obtained at any abscissa of 

the overlap.  

• 6 nodes 
• 6 dof in 1D-bar 
• 18 dof in 1D-beam 

BONDED-LAP MACRO-ELEMENT 
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ELEMENTARY STIFFNESS MATRIX 
C – 1D-bar 

The hypotheses are: 

• homogeneous linear elastic material behavior 

• local equilibrium of Volkersen (Volkersen, 1938) 

• the adherends are modelled as bars, with eventually a linear variation of the shear stress with the 

thickness (Tsaï et al., 1998) 

• the adhesive layer is modelled as a bed of shear springs 

• the adhesive thickness ea is constant  

• mechanical loading and application of a uniform temperature variation DT 

DT 

DT 

BONDED-LAP MACRO-ELEMENT 
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ELEMENTARY STIFFNESS MATRIX 
C – 1D-bar 

x 𝒖𝟐 

𝒖𝟏 
𝚫𝒖 

𝒅𝒖𝒋

𝒅𝒙
=

𝑵𝒋

𝑨𝒋
+ 𝜶𝒋𝚫𝑻 𝑻 =

𝑮𝒂

𝒆𝒂
𝚫𝒖 

constitutive equations 

𝒆𝒂 

𝒅𝒙 

𝑵𝟏 𝒙 + 𝒅𝒙  

𝑵𝟐 𝒙 + 𝒅𝒙  

𝑵𝟏 𝒙  

𝑵𝟐 𝒙  

𝒃𝒅𝒙. 𝑻 𝒙  

𝒅𝑵𝟐

𝒅𝒙
= 𝒃𝑻 

𝒅𝑵𝟏

𝒅𝒙
= −𝒃𝑻 

local equilibrium of Volkersen 

𝒆𝟏 

𝒆𝟐 

x,u 

𝒃 : profondeur 

𝐴𝑗 = 𝐸𝑗𝑏𝑒𝑗  

DT 

BONDED-LAP MACRO-ELEMENT 
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ELEMENTARY STIFFNESS MATRIX 
C – 1D-bar 

From the constitutive equations and the local equilibrium equations, a system of ODE’s in the adherend 

longitudinal displacements can be written and solved. 

𝒅𝒖𝒋

𝒅𝒙
=

𝑵𝒋

𝑨𝒋
+ 𝜶𝒋𝚫𝑻, 𝑗 = 1,2 

𝑻 =
𝑮𝒂

𝒆𝒂
𝒖𝟐 − 𝒖𝟏  

𝒅𝑵𝒋

𝒅𝒙
= −𝟏 𝒋𝒃𝑻, 𝑗 = 1,2 𝒅𝟐𝒖𝟏

𝒅𝒙𝟐
+

𝑮𝒂

𝒆𝒂

𝟏

𝒆𝟏𝑬𝟏
𝒖𝟐 − 𝒖𝟏 = 𝟎 

𝒅𝟐𝒖𝟐

𝒅𝒙𝟐
−

𝑮𝒂

𝒆𝒂

𝟏

𝒆𝟐𝑬𝟐
𝒖𝟐 − 𝒖𝟏 = 𝟎 

𝒖𝟏 =
𝟏

𝟐
𝒄𝟏 + 𝒄𝟐𝒙 − 𝒄𝟑 𝟏 + 𝝌 𝒆−𝜼𝒙 − 𝒄𝟒 𝟏 + 𝝌 𝒆𝜼𝒙  

𝒖𝟐 =
𝟏

𝟐
𝒄𝟏 + 𝒄𝟐𝒙 + 𝒄𝟑 𝟏 − 𝝌 𝒆−𝜼𝒙 + 𝒄𝟒 𝟏 − 𝝌 𝒆𝜼𝒙  

𝜼𝟐 =
𝑮𝒂

𝒆𝒂

𝟏

𝒆𝟏𝑬𝟏
+

𝟏

𝒆𝟐𝑬𝟐
 𝝌 =

𝟏
𝒆𝟏𝑬𝟏

−
𝟏

𝒆𝟐𝑬𝟐

𝟏
𝒆𝟏𝑬𝟏

+
𝟏

𝒆𝟐𝑬𝟐

 

BONDED-LAP MACRO-ELEMENT 
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MACRO-ÉLÉMENT DE RECOUVREMENT COLLÉ 

ELEMENTARY STIFFNESS MATRIX 
C – 1D-bar 

The 4 integration constants ci can then be expressed as functions of the 4 nodal displacements. 

𝒄𝟏
𝒄𝟐

𝒄𝟑

𝒄𝟒

= 𝑴𝒆
−𝟏

𝒖𝟏 𝟎

𝒖𝟐 𝟎

𝒖𝟏 𝜟

𝒖𝟐 𝜟

⇔ 𝑪 = 𝑴𝒆
−𝟏𝑼𝒆 

𝑴𝒆
−𝟏 =

𝟏 − 𝝌 𝟏 + 𝝌 𝟎 𝟎

−
𝟏 − 𝝌

𝜟
−

𝟏 + 𝝌

𝜟

𝟏 − 𝝌

𝜟

𝟏 + 𝝌

𝜟

−
𝒆𝜼𝜟

𝟐 𝒔𝒊𝒏𝒉𝜼𝜟

𝒆𝜼𝜟

𝟐 𝒔𝒊𝒏𝒉𝜼𝜟

𝟏

𝟐 𝒔𝒊𝒏𝒉𝜼𝜟
−

𝟏

𝟐 𝒔𝒊𝒏𝒉𝜼𝜟

𝒆−𝜼𝜟

𝟐 𝒔𝒊𝒏𝒉 𝜼𝜟
−

𝒆𝜼−𝜟

𝟐 𝒔𝒊𝒏𝒉𝜼𝜟
−

𝟏

𝟐 𝒔𝒊𝒏𝒉𝜼𝜟

𝟏

𝟐 𝒔𝒊𝒏𝒉𝜼𝜟

 

𝒖𝟏 =
𝟏

𝟐
𝒄𝟏 + 𝒄𝟐𝒙 − 𝒄𝟑 𝟏 + 𝝌 𝒆−𝜼𝒙 − 𝒄𝟒 𝟏 + 𝝌 𝒆𝜼𝒙  

𝒖𝟐 =
𝟏

𝟐
𝒄𝟏 + 𝒄𝟐𝒙 + 𝒄𝟑 𝟏 − 𝝌 𝒆−𝜼𝒙 + 𝒄𝟒 𝟏 − 𝝌 𝒆𝜼𝒙  
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MACRO-ÉLÉMENT DE RECOUVREMENT COLLÉ 

ELEMENTARY STIFFNESS MATRIX 
C – 1D-bar 

From the constitutive equation of adherends, the normal forces can be deduced as functions of 

integration constants: 

𝑵𝟏 𝒙 =
𝟏

𝟐
𝒄𝟐 + 𝒄𝟑𝜼 𝟏 + 𝝌 𝒆−𝜼𝒙 − 𝜼𝒄𝟒 𝟏 + 𝝌 𝒆𝜼𝒙 𝑨𝟏 − 𝑨𝟏𝜶𝟏𝜟𝑻 

𝑵𝟐 𝒙 =
𝟏

𝟐
𝒄𝟐 − 𝒄𝟑𝜼 𝟏 − 𝝌 𝒆−𝜼𝒙 + 𝜼𝒄𝟒 𝟏 − 𝝌 𝒆𝜼𝒙 𝑨𝟐 − 𝑨𝟐𝜶𝟐𝜟𝑻 

𝑵𝟏

𝑨𝟏
=

𝒅𝒖𝟏

𝒅𝒙
− 𝜶𝟏𝚫𝑻 

𝑵𝟐

𝑨𝟐
=

𝒅𝒖𝟐

𝒅𝒙
− 𝜶𝟐𝚫𝑻 



Éric Paroissien. Simplified modelling for the simulation of bolted and/or bonded joints. Macro-element technique. 20 

MACRO-ÉLÉMENT DE RECOUVREMENT COLLÉ 

ELEMENTARY STIFFNESS MATRIX 
C – 1D-bar 

From the constitutive equation of adherends, the normal forces can be deduced as functions of 

integration constants: 

𝑵𝟏 𝒙 =
𝟏

𝟐
𝒄𝟐 + 𝒄𝟑𝜼 𝟏 + 𝝌 𝒆−𝜼𝒙 − 𝜼𝒄𝟒 𝟏 + 𝝌 𝒆𝜼𝒙 𝑨𝟏 − 𝑨𝟏𝜶𝟏𝜟𝑻 

𝑵𝟐 𝒙 =
𝟏

𝟐
𝒄𝟐 − 𝒄𝟑𝜼 𝟏 − 𝝌 𝒆−𝜼𝒙 + 𝜼𝒄𝟒 𝟏 − 𝝌 𝒆𝜼𝒙 𝑨𝟐 − 𝑨𝟐𝜶𝟐𝜟𝑻 

𝑵𝟏

𝑨𝟏
=

𝒅𝒖𝟏

𝒅𝒙
− 𝜶𝟏𝚫𝑻 

𝑵𝟐

𝑨𝟐
=

𝒅𝒖𝟐

𝒅𝒙
− 𝜶𝟐𝚫𝑻 

−𝑵𝟏 𝟎

−𝑵𝟐 𝟎

𝑵𝟏 𝜟

𝑵𝟐 𝜟

+

−𝑨𝟏𝜶𝟏

−𝑨𝟐𝜶𝟐

𝑨𝟏𝜶𝟏

𝑨𝟐𝜶𝟐

𝜟𝑻 = 𝑵𝒆

𝒄𝟏
𝒄𝟐

𝒄𝟑

𝒄𝟒

 ⇔ 𝑭𝒆 + 𝑭𝒕𝒉𝒆𝒓𝒎 = 𝑵𝒆𝑪  

The nodal forces are then expressed as functions of integration constants such as: 

𝑵𝒆 =
𝟏

𝟐

𝟎 −𝑨𝟏 −𝜼 𝟏 + 𝝌 𝑨𝟏 𝜼 𝟏 + 𝝌 𝑨𝟏

𝟎 −𝑨𝟐 𝜼 𝟏 − 𝝌 𝑨𝟐 −𝜼 𝟏 − 𝝌 𝑨𝟐

𝟎 𝑨𝟏 𝜼 𝟏 + 𝝌 𝒆−𝜼𝜟𝑨𝟏 −𝜼 𝟏 + 𝝌 𝒆𝜼𝜟𝑨𝟏

𝟎 𝑨𝟐 −𝜼 𝟏 − 𝝌 𝒆−𝜼𝜟𝑨𝟐 𝜼 𝟏 − 𝝌 𝒆𝜼𝜟𝑨𝟐
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MACRO-ÉLÉMENT DE RECOUVREMENT COLLÉ 

ELEMENTARY STIFFNESS MATRIX 
C – 1D-bar  

For the 1D-bar kinematics, it is then possible to obtain the expressions for the components of the 

elementary stiffness matrix KBBa (Paroissien, 2006) (Paroissien, 2007a). 

𝑲𝑩𝑩𝒂 =
𝟏

𝟏 + 𝝌𝑨

𝑨𝟐

𝜟

𝜼𝜟

𝒕𝒂𝒏𝒉𝜼𝜟
+

𝟏

𝝌𝑨
𝟏 −

𝜼𝜟

𝒕𝒂𝒏𝒉𝜼𝜟
−

𝜼𝜟

𝒔𝒊𝒏𝒉𝜼𝜟
−

𝟏

𝝌𝑨

𝜼𝜟

𝒔𝒊𝒏𝒉𝜼𝜟
− 𝟏

𝟏 −
𝜼𝜟

𝒕𝒂𝒏𝒉𝜼𝜟

𝜼𝜟

𝒕𝒂𝒏𝒉𝜼𝜟
+ 𝝌𝑨

𝜼𝜟

𝒔𝒊𝒏𝒉𝜼𝜟
− 𝟏 −

𝜼𝜟

𝒔𝒊𝒏𝒉𝜼𝜟
− 𝝌𝑨

−
𝜼𝜟

𝒔𝒊𝒏𝒉𝜼𝜟
−

𝟏

𝝌𝑨

𝜼𝜟

𝒔𝒊𝒏𝒉 𝜼𝜟
− 𝟏

𝜼𝜟

𝒕𝒂𝒏𝒉𝜼𝜟
+

𝟏

𝝌𝑨
𝟏 −

𝜼𝜟

𝒕𝒂𝒏𝒉𝜼𝜟
𝜼𝜟

𝒔𝒊𝒏𝒉𝜼𝜟
− 𝟏 −

𝜼𝜟

𝒔𝒊𝒏𝒉𝜼𝜟
− 𝝌𝑨 𝟏 −

𝜼𝜟

𝒕𝒂𝒏𝒉𝜼𝜟

𝜼𝜟

𝒕𝒂𝒏𝒉𝜼𝜟
+ 𝝌𝑨

 𝝌𝑨 =
𝑨𝟐

𝑨𝟏
 

𝑭𝒆 + 𝑭𝒕𝒉𝒆𝒓𝒎 = 𝑵𝒆𝑪  

𝑪 = 𝑴𝒆
−𝟏𝑼𝒆 

𝑭𝒆 + 𝑭𝒕𝒉𝒆𝒓𝒎 = 𝑵𝒆𝑴𝒆
−𝟏𝑼𝒆  

𝑲𝑩𝑩𝒂 
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MACRO-ÉLÉMENT DE RECOUVREMENT COLLÉ 

SOLUTION 
C – 1D-bar 

The resolution of                               allows for the determination of the nodal displacement vector: 

 

For each ME, the vector of nodal displacement is then known: 

 

Thus , for each ME, the integration constants are obtained such as:  

 

As result, the internal loads, the displacements and adhesive shear stress are obtained at any x: 

𝑪 = 𝑴𝒆
−𝟏𝑼𝒆 

𝑭𝑺 = 𝑲𝑺𝑼𝑺 𝑼𝑺 

𝑼𝒆 

𝒖𝟏 =
𝟏

𝟐
𝒄𝟏 + 𝒄𝟐𝒙 − 𝒄𝟑 𝟏 + 𝝌 𝒆−𝜼𝒙 − 𝒄𝟒 𝟏 + 𝝌 𝒆𝜼𝒙  

𝒖𝟐 =
𝟏

𝟐
𝒄𝟏 + 𝒄𝟐𝒙 + 𝒄𝟑 𝟏 − 𝝌 𝒆−𝜼𝒙 + 𝒄𝟒 𝟏 − 𝝌 𝒆𝜼𝒙  

𝑵𝟏 𝒙 =
𝟏

𝟐
𝒄𝟐 + 𝒄𝟑𝜼 𝟏 + 𝝌 𝒆−𝜼𝒙 − 𝜼𝒄𝟒 𝟏 + 𝝌 𝒆𝜼𝒙 𝑨𝟏 − 𝑨𝟏𝜶𝟏𝜟𝑻 

𝑵𝟐 𝒙 =
𝟏

𝟐
𝒄𝟐 − 𝒄𝟑𝜼 𝟏 − 𝝌 𝒆−𝜼𝒙 + 𝜼𝒄𝟒 𝟏 − 𝝌 𝒆𝜼𝒙 𝑨𝟐 − 𝑨𝟐𝜶𝟐𝜟𝑻 

𝑻 =
𝑮𝒂

𝒆𝒂
𝒖𝟐 − 𝒖𝟏  
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MACRO-ÉLÉMENT DE RECOUVREMENT COLLÉ 

ELEMENTARY STIFFNESS MATRIX 
C – 1D-beam  

The hypotheses are: 

• linear elastic material behavior 

• local equilibrium of Goland and Reissner (Goland and Reissner, 1944) 

• the adherends are modelled as laminated Euler-Bernoulli beams, with eventually a linear variation of 

the shear stress with the thickness (Tsaï et al., 1998)  

• the adhesive layer is modelled as a bed of shear and peel springs 

• the adhesive thickness ea is constant  

• mechanical loading and application of a uniform temperature variation DT 

DT 

DT 
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ELEMENTARY STIFFNESS MATRIX 
C – 1D-beam  

x 𝒖𝟐 

𝒖𝟏 

𝚫𝒖 

constitutive equations 

𝒆𝒂 

𝒗𝟏 

𝒗𝟐 

𝚫𝒗 

𝜽𝟐 

𝜽𝟏 

𝑵𝒋 = 𝑨𝒋

𝒅𝒖𝒋

𝒅𝒙
− 𝑩𝒋

𝒅𝜽𝒋

𝒅𝒙
 𝑴𝒋 = −𝑩𝒋

𝒅𝒖𝒋

𝒅𝒙
+ 𝑫𝒋

𝒅𝜽𝒋

𝒅𝒙
 

𝑻 =
𝑮𝒂

𝒆𝒂
𝒖𝟐 − 𝒖𝟏 −

𝒆𝟐

𝟐
𝜽𝟐 −

𝒆𝟏

𝟐
𝜽𝟏  𝑺 =

𝑬𝒂

𝒆𝒂
𝚫𝒗 

𝜽𝒋 =
𝒅𝒗𝒋

𝒅𝒙
 

𝑵𝟏 + 𝒅𝑵𝟏 

𝑵𝟐 + 𝒅𝑵𝟐 

𝑵𝟏 

𝑵𝟐 

𝒃𝒅𝒙. 𝑺 

local equilibrium of Goland and Reissner 

𝒅𝑵𝒋

𝒅𝒙
= −𝟏 𝒋𝒃𝑻 

𝒅𝑽𝒋

𝒅𝒙
= −𝟏 𝒋+𝟏𝒃𝑺 

𝒅𝑴𝒋

𝒅𝒙
+ 𝑽𝒋 + 𝒃

𝒆𝒋

𝟐
𝑻 = 𝟎 

𝑽𝟐 + 𝒅𝑽𝟐 𝑴𝟐 + 𝒅𝑴𝟐 

𝑽𝟏 + 𝒅𝑽𝟏 𝑴𝟏 + 𝒅𝑴𝟏 

𝑽𝟐 
𝑴𝟐 

𝑽𝟏 
𝑴𝟏 

𝒃𝒅𝒙. 𝑻 

𝒃𝒅𝒙. 𝑻 

BONDED-LAP MACRO-ELEMENT 
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ELEMENTARY STIFFNESS MATRIX 
C – 1D-beam 

Contrary to the 1D-bar case, the closed-form expressions for the components of the elementary stiffness 

matrix are not obtained. However, the resolution scheme consisting in: 

• determining the shape of solutions in displacements as functions of integration constants 

• deducing the shape of internal loads as functions of integration constants  

can be applied.  

The difficulty here is the identification of a set of 12 free integration constants among the 27 appearing 

during the employed mathematical path.  

𝑭𝒆 + 𝑭𝒕𝒉𝒆𝒓𝒎 = 𝑵𝒆𝑴𝒆
−𝟏𝑼𝒆 = 𝑲𝑷𝑪𝑼𝒆 

−𝑵𝟏 𝟎

−𝑵𝟐 𝟎

𝑵𝟏 𝜟

𝑵𝟐 𝜟

−𝑽𝟏 𝟎

−𝑽𝟐 𝟎

𝑽𝟏 𝜟

𝑽𝟐 𝜟

−𝑴𝟏 𝟎

−𝑴𝟐 𝟎

𝑴𝟏 𝜟

𝑴𝟐 𝜟

+

−𝑵𝟏
𝜟𝑻

−𝑵𝟐
𝜟𝑻

𝑵𝟏
𝜟𝑻

𝑵𝟐
𝜟𝑻

𝟎
𝟎
𝟎
𝟎

𝑴𝟏
𝜟𝑻

𝑴𝟐
𝜟𝑻

−𝑴𝟏
𝜟𝑻

−𝑴𝟐
𝜟𝑻

= 𝑲𝑷𝑪

𝒖𝟏 𝟎

𝒖𝟐 𝟎

𝒖𝟏 𝜟

𝒖𝟐 𝜟

𝒗𝟏 𝟎

𝒗𝟐 𝟎

𝒗𝟏 𝜟

𝒗𝟐 𝜟

𝜽𝟏 𝟎

𝜽𝟐 𝟎

𝜽𝟏 𝜟

𝜽𝟐 𝜟

 

𝒖𝟏 𝟎  

𝒖𝟐 𝟎  𝒖𝟐 𝚫  

𝒖𝟏 𝚫  

𝒗𝟐 𝚫  

𝒗𝟏 𝚫  𝒗𝟏 𝟎  

𝒗𝟐 𝟎  

𝜽𝟏 𝟎  

𝜽𝟐 𝟎  

𝜽𝟏 𝚫  

𝜽𝟐 𝚫  

BONDED-LAP MACRO-ELEMENT 
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ELEMENTARY STIFFNESS MATRIX 
C – 1D-beam 

Another resolution scheme is developed since 2014. It is based on the resolution of the system of 1st 

order ODEs in the internal loads and displacements, making use of the exponential matrix (Paroissien et al., 

2018a) (Paroissien et al., 2018b). 

𝒅𝑿

𝒅𝒙
= 𝚨𝑿 𝑋 =

𝑁1

𝑉1

𝑀1

𝑁2

𝑉2

𝑀2

𝑢1

𝑣1

𝜃1

𝑢2

𝑣2

𝜃2

 

𝒅𝒖𝑗

𝒅𝒙
=

𝑫𝒋𝑵𝑗 + 𝑩𝑗𝑴𝑗

𝚫𝑗
 

𝒅𝜽𝑗

𝒅𝒙
=

𝑨𝒋𝑴𝑗 + 𝑩𝑗𝑵𝑗

𝚫𝑗
 

𝒅𝒗𝒋

𝒅𝒙
= 𝜽𝒋 

𝒅𝑵𝒋

𝒅𝒙
= −𝟏 𝒋𝒃

𝑮𝒂

𝒆𝒂
𝒖𝟐 − 𝒖𝟏 −

𝒆𝟐

𝟐
𝜽𝟐 −

𝒆𝟏

𝟐
𝜽𝟏  

𝒅𝑽𝒋

𝒅𝒙
= −𝟏 𝒋+𝟏𝒃

𝑬𝒂

𝒆𝒂
𝒗𝟏 − 𝒗𝟐  

𝒅𝑴𝒋

𝒅𝒙
= −𝑽𝒋 − 𝒃

𝒆𝒋

𝟐

𝑮𝒂

𝒆𝒂
𝒖𝟐 − 𝒖𝟏 −

𝒆𝟐

𝟐
𝜽𝟐 −

𝒆𝟏

𝟐
𝜽𝟏  

 
𝜱𝑨 𝑿 = 𝟎 = 𝒆𝒙𝒑𝒎 𝑨. 𝟎  

𝜱𝑨 𝑿 = 𝜟 = 𝒆𝒙𝒑𝒎 𝑨.𝜟  
 

𝑴𝒆, 𝑵𝒆, 𝑲𝑷𝑪 = 𝑵𝒆𝑴𝒆
−𝟏 

BONDED-LAP MACRO-ELEMENT 



Éric Paroissien. Simplified modelling for the simulation of bolted and/or bonded joints. Macro-element technique. 27 

ELEMENTARY STIFFNESS MATRIX 
C – 1D poutre 

This resolution scheme allows for the fast formulation of the elementary stiffness matrix when the 

simplified hypotheses are modified. For example: Timoshenko beam, local equilibrium of Hart-Smith (Hart-

Smith, 1973) or of Luo and Tong (Luo et Tong, 2009). 

𝒅𝒖𝑗

𝒅𝒙
=

𝑫𝒋𝑵𝑗 + 𝑩𝑗𝑴𝑗

𝚫𝑗
 

𝒅𝜽𝑗

𝒅𝒙
=

𝑨𝒋𝑴𝑗 + 𝑩𝑗𝑵𝑗

𝚫𝑗
 

𝒅𝒗𝒋

𝒅𝒙
= 𝜽𝒋 

𝒅𝑵𝒋

𝒅𝒙
= −𝟏 𝒋𝒃

𝑮𝒂

𝒆𝒂
𝒖𝟐 − 𝒖𝟏 −

𝒆𝟐

𝟐
𝜽𝟐 −

𝒆𝟏

𝟐
𝜽𝟏  

𝒅𝑽𝒋

𝒅𝒙
= −𝟏 𝒋+𝟏𝒃

𝑬𝒂

𝒆𝒂
𝒗𝟏 − 𝒗𝟐  

𝒅𝑴𝒋

𝒅𝒙
= −𝑽𝒋 − 𝒃

𝒆𝒋

𝟐

𝑮𝒂

𝒆𝒂
𝒖𝟐 − 𝒖𝟏 −

𝒆𝟐

𝟐
𝜽𝟐 −

𝒆𝟏

𝟐
𝜽𝟏  

𝒅𝒗𝒋

𝒅𝒙
=

𝑽𝒋

𝑯𝒊
+ 𝜽𝒋  

𝒅𝑴𝒋

𝒅𝒙
= −𝑽𝒋 − 𝒃

𝒆𝒋 + 𝒆𝒂

𝟐

𝑮𝒂

𝒆𝒂
𝒖𝟐 − 𝒖𝟏 −

𝒆𝟐

𝟐
𝜽𝟐 −

𝒆𝟏

𝟐
𝜽𝟏  

𝒅𝑴𝒋

𝒅𝒙
= −𝑽𝒋 − 𝒃

𝒆𝒋

𝟐

𝑮𝒂

𝒆𝒂
𝒖𝟐 − 𝒖𝟏 −

𝒆𝟐

𝟐
𝜽𝟐 −

𝒆𝟏

𝟐
𝜽𝟏 − 𝜽𝒋𝑵𝒋 

BONDED-LAP MACRO-ELEMENT 
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NONLINEAR MATERIAL BEHAVIOR 

NONLINEAR COMPUTATION 
The non linear material behavior of the adhesive layer and of fasteners can be taken into account thanks 

to computation scheme based on the Newton-Raphson iterative scheme using the secant stiffness matrix 

(Lélias et al., 2015). 

In the case of non linear adhesive material, a mesh along the overlap is then required in order to be able 

to update the elementary stiffness matrix of each ME. 

displacement 

lo
ad

 

solution  
for the non linear problem 

st
re

ss
 

Displacement jump 

secant modulus 

Projection 
 on criteria 

Various behavior laws are available (elasto-plastic, damaging evolution (CZM)) or will be available 

(visco-elastic, visco-plastic). 
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APPLICATION CASES 

CPU TIME REDUCTION 
Unbalanced single-lap bonded joint with an elastic perfectly plastic adhesive material in plane loaded 

(Paroissien et al., 2013a). 

The adhesive stresses are read on the 

converged 3D FE model on the neutral line of 

the adhesive layer.  

Benefit in CPU time: x50 
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APPLICATION CASES 

CPU TIME REDUCTION 
The simulation of the mechanical behavior of bonded joints using  the FEM is time consumming due to 

the relative difference in thickness between the adherends and the adhesive layers. 

Example of single-lap bonded joint in 3D: 

• adherend thickness: 2 mm /  adhesive thickness: 0.2 mm 

• 10 cubic elements in adhesive thickness = 0.02 mm each 

• transition ratio of 1 imposed at the adhesive interface, an 
element size of 0.02 mm 

potentially 100 elements in the adherend thickness, to be 
multiplied by length, width mesh parameters… 
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ASSESSMENT OF CZM FOR THIN ADHESIVE LAYERS 
The ME technique has successively been used for the assessment of CZM for thin adhesive layers (Lélias, 

2016) (Lélias et al., 2018). 

DCB 

ENF 

various geometries // lego game 

APPLICATION CASES 
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HYBRID (BOLTED/BONDED) JOINTS 
Comparison between experimental test, 3D FE test and 1D-beam ME test of a single lap HBB joint in-

plane  loaded (Paroissien et al., 2017). 

experimental 3D FE 

adhesive 

fastener 

APPLICATION CASES 
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HYBRID (BOLTED/BONDED) 
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Nombre de cycles 

riveted @20°C

HBB @-55°C

HBB @20°C

HBB @50°C

Static and fatigue performance better 

than pure bolted or pure bonded, if the 

adhesive is judiciously chosen. 

(Hartman, 1966) 

Fatigue strength prediction from ME output: 

• for the holes with classical semi-empirical uni-

axial approaches (Müller, 1995) 

• for the adhesive layer through the progressive 

degradation of CZM (Khomarishad, 2011) 

APPLICATION CASES 
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BONDED JOINTS UNDER THERMAL LAODING 

Comparison between 1D FE model and 1D ME model (Paroissien et al., 2013b). 

The 1D FE model is built with beam and spring elements. 
Unbalanced single-lap joints under pure thermal loading under membrane and bending. 

APPLICATION CASES 
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FUNCTIONNALY GRADED ADHESIVE JOINTS 
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in collaboration with University of Porto 
Unbalanced single-lap joints under combined 
mechanical and thermal loading with a symmetrical 
parabolic graduation (Paroissien et al., 2018b).  
• reduction of peak stresses 
• the simplified model offers a solution to optimize 

the graduation 

APPLICATION CASES 

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25

ad
h

e
si

ve
 s

h
e

ar
 s

tr
e

ss
 in

 M
P

a
 

abscissa along the overlap in mm 

1D-beam ME shear stress at Ea,min and Ga,min

1D-beam ME shear stress at Ea,max and Ga,max

[TC#3] 1D-beam ME shear stress

graded 

-20

-10

0

10

20

30

40

50

0 5 10 15 20 25

ad
h

e
si

ve
 p

e
e

l s
tr

e
ss

 in
 M

P
a

 

abscissa along the overlap in mm 

1D-beam ME peel stress at Ea,min and Ga,min

1D-beam ME peel stress at Ea,max and Ga,max

[TC#3] 1D-beam ME peel stress

graded 

DT 

F 



Éric Paroissien. Simplified modelling for the simulation of bolted and/or bonded joints. Macro-element technique. 36 

REDUCTION OF PEAK STRESSES 

single-lap joint with tapered adherend 
• reduction of peak peel stresses 

APPLICATION CASES 
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IN PROGRESS 

Prediction of failure at adherend/adhesive interface [PRACCOMET] 
• PhD Thesis by Thiago Birro (2017-2020) supervised by 1Frédéric Lachaud, 2Maëlenn Aufray and 1Éric 

Paroissien 

• funded by Région Occitanie and ISAE-SUPAERO (APR2017 UFT MiP) 

• Collaboration with CIRIMAT: TACCOS 

 experimental and numerical modelling of adherend/adhesive interface behavior 

1Institut Clément Ader (ICA), Université de Toulouse, ISAE-SUPAERO, INSA, IMT MINES ALBI, UTIII, CNRS, France 
2CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, France 
3Université de. Bordeaux, Arts et Metiers ParisTech, CNRS, I2M, UMR 5295, France  

Assessment of constitutive behavior of thin adhesive layer [S3PAC] 
• PhD Thesis by Agathe Jaillon (2017-2020) supervised by 1Frédéric Lachaud, 3Julien Jumel and 1Éric 

Paroissien 

• funded by BPI France, Région Occitanie and Région Nouvelle Aquitaine 

• FUI (21) S3PAC 

 experimental and numerical modelling of cohesive behavior as function of adhesive thickness 



Éric Paroissien. Simplified modelling for the simulation of bolted and/or bonded joints. Macro-element technique. 38 

TO COME 

Macro-element of bonded plates [SCODyn] 
• PhD Thesis by Benjamin Ordonneau (2018-2021) supervised by 1Michel Salaün and 1Éric Paroissien 

• funded by CETIM and DGA 

 formulation of elementary stiffness and mass matrices of bonded overlap under 3D loading 

Dual functionalisation strength / fragmentation [SIMPACOS] 
• PhD Thesis by Lorraine Silva (2018-2021) supervised by 1Christine Espinosa and 4Lucas FM da Silva 

• funded by  ED MEGeP 

 particle-based numerical simulation to predict strength and controlled fragmentation for space 

structures 

1Institut Clément Ader (ICA), Université de Toulouse, ISAE-SUPAERO, INSA, IMT MINES ALBI, UTIII, CNRS, France 
4Department of Mechanical Engineering, Faculty of Engineering, University of Porto, Portugal 
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