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ORIGIN
Which simplified model to quickly and accurately assess the load transfer within a hybrid (bolted /
bonded) joint in-plane loaded?
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ORIGIN

Pr. Marc Sartor (INSA Toulouse) suggested to model the joints with special elements, termed macro-
elements (|V|E). (Paroissien, 2006) (Paroissien et al., 2007a) (Paroissien et al., 2007b)
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ORIGIN
Pr. Marc Sartor (INSA Toulouse) suggested to model the joints with special elements, termed macro-

elements (ME).

kinematics o
1D-bar bar element bonded-bars element 2 DoF fastener
(BBa element) element
1D-beam beam element bonded-beams element 6 DoF fastener
(BBe element) element
elel:nentary Kpyre Ko Kp s
stiffness
matrix Kpoutre Kgpge Kr 6
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ORIGIN
The methodology consists in:

1. to assemble the structural stiffness matrix from the elementary stiffness matrix Ky
2. to apply the boundary conditions

3. to minimize the potential energy leading to the linear system F, = K Uy

The main difficulty is then the formulation of elementary stiffness matrices.
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ELEMENTARY STIFFNESS MATRIX
The elementary stiffness matrix of fastener macro-element depends on the chosen kinematics.

This modelling corresponds to the classical one used for the simplified stress analysis of bolted joint
under 1D-bar kinematics (Ross, 1947).

» | o 1 Ko=)
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ELEMENTARY STIFFNESS MATRIX
The elementary stiffness matrix of fastener macro-element depends on the chosen kinematics.

symmetrical fastener
2C,Co —2C,Co O 0 —8C,Cy —8C,Cy
—2C,Cq  2C,Cq 0 0 5C,Co 5C,Co
1 0 0 kC, —kC, 0 0
Ke-s =% 0 0 —kC, kC, 0 0
—8C,Co  8C,Co 0 0  2Cy*+6%C,Co —2Cy*
—8C,Co  8C,Cy 0 0 2Cy* 2C% + 82C,Cy
52 (Paroissien et al., 2017)

k: 2C9+7Cu
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ELEMENTARY STIFFNESS MATRIX
The elementary stiffness matrices of fastener macro-element depend on fastener stiffness C,, C, and C,.

In the literature, it exists a large number of formulae to compute these stiffnesses such as:
(Tate and Rosenfeld, 1946) (Swift, 1984) (Huth, 1986) (Cope and Lacy, 2000) (Morris, 2004)

These fastener stiffnessses are regarded as global parameters representing for several local phenomenon.
They can be assessed from experimental and numerical tests, in a tailored application field.

e
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ELEMENTARY STIFFNESS MATRIX

A — Preamble
In the literature, it exists a large numbers of closed-form formulae to accurately predict the adhesive

stress distribution along the overlap, such as detailed in: (van Ingen and Volt, 1993) (Tsai and Morton, 1994) (da Silva et

al. 2009).
» it means that the choice of simplified hypotheses on which are based these formulae is judicious.

Nevertheless, the application field of these formulae is in general quite restricted. For example, Goland
and Reissner provided in 1944 (Goland and Reissner, 1944) the adhesive shear and peel stress distribution for a
balanced, simply supported, in plane loaded lap joint. But, there is not any more closed-form solution if
the adherends are dissimilar or if the joint is clamped....
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ELEMENTARY STIFFNESS MATRIX

A — Preamble
The judicious simplified hypotheses lead to a system of ODEs composed of the constitutive equations and

of the local equilibrium equations.

This system can be difficult to be solved in particular :
* when the adherends are dissimilar

* when the boundary conditions are given

* when the material are non linear

Goland and Reissner introduced a methodology for the
stress analysis of bonded joints referred to sandwich- : %
type analysis. It consists in analyzing the bonded : ‘

overlap as function of internal loads and/or N1(0)

displacements joint extremities. = V2(0) m2(0) v2(L)

The adhesive layer is seen as bed of springs linked to D LMZ(L)
the adherends surface modelled as plates. : N2(0) - N2(L)

Moreover, in the solution by Goland and Reissner takes
into account for the non linear geometrical effect
induced by the lag of the neutral line.
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ELEMENTARY STIFFNESS MATRIX
A — Preamble

As a result, following Goland and Reissner, several other analyses have been published to enlarge the

application field. Most of them used the sandwich type analysis, such as: (Hart-Smith 1973b) (Williams 1975)
(Bigwood and Crocombe 1989) (Oplinger 1991) (Tsai et al. 1998) (Hogberg 2004) (Nemes and Lachaud 2009) (Luo et Tong 2009)

(WeiBgraeber et al. 2014).

Other simplified stress analyses of bonded joints were published by modelling the adherends and the
adhesive layer such as 2D continuum media (Renton and Vinson, 1977) (Allman, 1977) (Adams and Mallick, 1992). This
type of analysis allows for the compliance of the free stress state at overlap ends.

Nevertheless, in order to solve the system of ODEs in a large application field, particular resolution
schemes have to used such as:

* « multisegment integration method » (Mortensen, 1997)

* the macro-element technique (Gustafson et al., 2006) (Paroissien, 2006)
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ELEMENTARY STIFFNESS MATRIX
B — Principle

The elementary stiffness matrix for a bonded overlap expresses the relationships between the nodal
displacements and the nodal forces.

N4(0)
Ni(d) /-N1(0) 1,(0) u;(0) uy(A)
—N,(0) K u,(0)
N, (0) N1(4) B\ wy ()
2 N,(4) u,(4)
N,(A) u,(0) u,(A)
—N,(0) u,(0)
M, (A) —N2(0) u,(0)
N1(0) Vl(A)'Tf\ x:g% Z;&B v1(0) €01(0) v1(8) &01(8)
pad N1(A) —V1(0) v4(0)
M,(0) V1{(0) —V2(0) | _ K v,(0)
<«M:(8) Vi(4) PCl vy(a)
N2(0) V,(4) v,(4)
¢ N,(A) —M,(0) 0,(0)
I‘ﬁ(o) VZ (0) 2 _MZ (O) 92 (0) Uy (0) u, (A)
2 M, (4) 0,(4)
M,(4) 0,(4)
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ELEMENTARY STIFFNESS MATRIX

B — Principle
Contrary to the classical FE, the shape of interpolation functions is not assumed a priori. The shape of
interpolation functions has the shape of functions solving the ODEs.

One significant consequence is that only one ME is needed to model an entire bonded overlap (linear
elastic analysis). The displacements, internal forces and adhesive stresses are obtained at any abscissa of

the overlap.

6 nodes

6 dof in 1D-bar
18 dof in 1D-beam
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ELEMENTARY STIFFNESS MATRIX

C - 1D-bar

The hypotheses are:

* homogeneous linear elastic material behavior

* local equilibrium of Volkersen (volkersen, 1938)

* the adherends are modelled as bars, with eventually a linear variation of the shear stress with the
thickness (Tsai et al., 1998)

* the adhesive layer is modelled as a bed of shear springs

* the adhesive thickness e, is constant

* mechanical loading and application of a uniform temperature variation A;
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ELEMENTARY STIFFNESS MATRIX
C-1D-bar

b : profondeur

: ;:Au
- ——m e m oo Jesspecsssncassonad]
$ea
-] p--- -]
i )
X u,
du; N
x 4 Aj = E;be €a

N, (x) <—_—> Ny (x + dx)
—_—

bdx.T(x)

_
Nz(x)<— Ny(x + dx)

N,
dx

dN,
dx

bT

|
X,u
constitutive equations local equilibrium of Volkersen
u
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ELEMENTARY STIFFNESS MATRIX

C - 1D-bar
From the constitutive equations and the local equilibrium equations, a system of ODE’s in the adherend

longitudinal displacements can be written and solved.

dN; ,
d—’ = (-1)/bT,j = 1,2 d’u; G, 1
X G dxz +ea 31E1 (uz_ul) =0
T=—(u,—u »
ea(2 v d?u, G, 1 ( Y=o
du; N; 7 Uz —Uq) =
—o =Lt b =12 dx*  eq ezE;
Jj
1
Uy = > [c1 + c2x —c3(1 + y)e™™ — ¢4 (1 + y)e™]
» |
U, = 3 [c1 + c2x+c3(1 — y)e™™ + c4(1 — y)e™]
1 1
G 1 1 e E;{ e,E
n? = a n y = 11 1 z1 2
eq \e1E1 ek, n
e1E;  eyE;
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ELEMENTARY STIFFNESS MATRIX

cr (&%

C - 1D-bar
The 4 integration constants c; can then be expressed as functions of the 4 nodal displacements.
1 u,(0
Uy ==[c1+cx—c3(1+ y)e ™™ —cy(1 + y)e™] €1 1(0)
2 2 ) oyt | %20 ) o yo1y
1 3 N N T2 ¢) e e
U =5 [c1 +c2x+c3(1 — x)e™™ + ¢, (1 — x)e™] Cy u,(4)
(1-x) 1+x) 0 0 \
- a+x (1-x (1+x)
A A A A
M;t = e e 1 1
2sinhnA 2sinhnA 2sinhnA 2sinhnA
e 14 e'l~4 1 1
2 sinhnA ~ 2sinh na ~ 2sinh nd4 2sinhnA /
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ELEMENTARY STIFFNESS MATRIX
C - 1D-bar
From the constitutive equation of adherends, the normal forces can be deduced as functions of

integration constants:

N du 1
—=——ayA; Ni(x) =5[ez + czn(1 + x)e ™™ —ncy(1 + x)e"]Ay — Ajaq 4y
Al dx 2
1
% = % — ayAr Ny(x) = 2 [c2 —csn(1 — y)e ™™ + nc (1 — x)e™]A; — Azay Ay
2
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ELEMENTARY STIFFNESS MATRIX
C - 1D-bar
From the constitutive equation of adherends, the normal forces can be deduced as functions of

integration constants:

N du 1

L1 a Ar Ni(x) =z[cy +e3n(1 + x)e ™ —ncy (1 + x)e™ Ay — Aja Ay
Al dx 2

NZ duZ — 1 -nx nx

= = A N,(x) = 2 [c2 —c3n(1 — x)e ™™ +1ncy (1 — x)e"™]A; — Ay, Ay

=—Qa
Az dx 25T

The nodal forces are then expressed as functions of integration constants such as:

—N1(0) —Aj104 C1
—N,(0) —Aza; _ C2 _
Noa) | F| A, |Ar=Ne| c; | © Fe+ Funerm = NeC
N,(4) Az a, Ca
0 -4, -n(1+x)4, n(1+ x)A,
v 1|0 4 n(1 - x)A; —n(1 — x)A;
7210 A n@+ype ™A -n(1+ x)e™A,
0 A, -n(1-xye ™4, nd-yxe™A4,
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ELEMENTARY STIFFNESS MATRIX
C - 1D-bar
For the 1D-bar kinematics, it is then possible to obtain the expressions for the components of the

elementary stiffness matrix Kgg, (Paroissien, 2006) (Paroissien, 2007a).

c=M.U,
» Fe + Fiperm =
Fe+ Fiperm = NC

KBBa
na N 1 1 na na 1 na 1
tanhnd x4 tanhnA sinhnd xyu sinhnA
n4 na n4 n4
1- -1 - -
K 1 A tanhnA tanhnA T X sinhnA sinhnA Xa X4 = ﬂ
PeTTty,a| __mA 1 w4 w4 1 mA A
sinhnA x4, sinhnA tanhnd x4 tanhnA
na na na na
. -1 —— —Xa 1- + Xa
sinhnA sinhnA tanhnA tanhnA
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SOLUTION

C-1D-bar
The resolution of Fg = K¢Ug allows for the determination of the nodal displacement vector: Ug

For each ME, the vector of nodal displacement is then known: U,
Thus, for each ME, the integration constants are obtained such as: C = Mger

As result, the internal loads, the displacements and adhesive shear stress are obtained at any x:

1
U = 2 [c1 + cox —c3(1 + y)e ™™ — c (1 + y)e™] G
a
1 T = _(uZ — ul)
U, = > [c1 + c2x+¢c3(1 — y)e ™™ + ¢, (1 — y)e™] a
1 X X
Ni(x) = 2 [cz + c3n(1 + x)e ™™ —ncy(1 + x)e™ A — Ayaq Ay
1
N;(x) = E[ —c3n(1 — x)e ™™ +ncy(1 — x)e™]A; — Ay, Ar
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MACRO-ELEMENT DE RECOUVREMENT COLLE

ELEMENTARY STIFFNESS MATRIX

C - 1D-beam
The hypotheses are:

linear elastic material behavior

local equilibrium of Goland and Reissner (Goland and Reissner, 1944)
the adherends are modelled as laminated Euler-Bernoulli beams, with eventually a linear variation of

the shear stress with the thickness (Tsai et al., 1998)

the adhesive layer is modelled as a bed of shear and peel springs

the adhesive thickness e, is constant

mechanical loading and application of a uniform temperature variation A,

CF‘]FS

|CA

LAA~
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BONDED-LAP MACRO-ELEMENT

Université

ELEMENTARY STIFFNESS MATRIX

C - 1D-beam
constitutive equations

local equilibrium of Goland and Reissner

Ny EEREREREEEEEEEE
L N1+dN1
M1 | 74 bdx.T
bdx.S V, +dv M, + dM
bdx.T 2t 24—-) 2 +dM;
V[
L N2+dN2
M=
Nj=Aj———Bj—~ i= P T i dx
dv;
j dv; .
Ep— —J _(—1)y+1
J dx dx (=1/*°bS
G, €y €1 E, dM; e;
T=—(u —u—-2g ——0) §S=—2Ap am; €
e, 2 1~ 5 050 e, dx+V’+b2T 0
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ELEMENTARY STIFFNESS MATRIX

C - 1D-beam

Contrary to the 1D-bar case, the closed-form expressions for the components of the elementary stiffness
matrix are not obtained. However, the resolution scheme consisting in:

* determining the shape of solutions in displacements as functions of integration constants

* deducing the shape of internal loads as functions of integration constants

can be applied.

The difficulty here is the identification of a set of 12 free integration constants among the 27 appearing
during the employed mathematical path.

Ar _

—N,(0) _N}IT 1,(0) Fe+ Fiporm = NeMelue = KpcU,

-N(0) | | N2 u2(0)

N.(4) Ny' u4(4)

N, () NAr ,(4)

-V1(0) 0 v41(0) 000

Va0 AR ©) v1(0) & 1(0) v (8) &P (8)

Vi(4) 0 Pl vi(4)

V,(4) 0 v,(4) u1(0) u;(A)

—M,(0) m," 6,(0)

_M3(0) MA:'T 0, (0) v2(0) < 6:2(0) v2(8) < 02(8)

M,(4) _MAT 0,(4)

M,(4) 1 0,(4) u,(0) u,(4)
_M;‘T
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ELEMENTARY STIFFNESS MATRIX

C - 1D-beam
Another resolution scheme is developed since 2014. It is based on the resolution of the system of 1st
order ODEs in the internal loads and displacements, making use of the exponential matrix (Paroissien et al.,

2018a) (Paroissien et al., 2018b). 11\111
1
M,
dN; . G e e N,
J a 2 1
—=(-1)Yb— -u——0,——~0 V.
dx 1 ea(u2 =5 %75 1) dX M22
— = AX X = Uy
ﬂ — (—1)j+1bﬂ(v —vy) dx vy
dx e, 1 2 04
dM G ua
iy _p&iba T P | )
ax - ViTbge, (2 = s 2 9273 01) 6,
dx ~— A; {¢A(X =0) = expm(A4.0)
D,(X=A4)=expm(4.4)
dvj _
dx
do;, A;M; + BiN; » M, N, Kpc=NM,!
dx A;
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ELEMENTARY STIFFNESS MATRIX

C-1D poutre
This resolution scheme allows for the fast formulation of the elementary stiffness matrix when the

simplified hypotheses are modified. For example: Timoshenko beam, local equilibrium of Hart-Smith (Hart-

smith, 1973) or of Luo and Tong (Luo et Tong, 2009).

dN; .G e e dM; e;G e e
—J_(_1)pla . —-%29. _ -1 j_ jUa 2 1
dx _( 1)bea(u2 U 2 02 201) E——V]—bEe—a(uz—ul—?Bz—?Bl)—BjN]
dv; ) E
d_x]: (—1)]+1be—:(v1 —v3)
dM; e G e e
—J_ _y._pda oy, — %29 _ -1
dx = V] b 2 €. (uz Uuq 2 02 2 01)
du; _D;N; + B;M,
dx A;

d V;
ﬂ=0- 7 =_]+0]
dx 7/ dx  H; dM; (ej +eq) Gg e, e,

—dx =—Vj—b—2 e—a(uz—ul—iez—iel)
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NONLINEAR COMPUTATION
The non linear material behavior of the adhesive layer and of fasteners can be taken into account thanks
to computation scheme based on the Newton-Raphson iterative scheme using the secant stiffness matrix

(Lélias et al., 2015).
In the case of non linear adhesive material, a mesh along the overlap is then required in order to be able

to update the elementary stiffness matrix of each ME.

load

stress

T T T4
n 1,7 d
vl
S A,
VA A4
1.,
/ 14
1.,

?.
Y S solution
/oy for the non linear problem

Projection
on criteria

d
'\secant modulus

Various behavior laws are available (elasto-plastic, damaging evolution (CZM)) or will be available
(visco-elastic, visco-plastic).

displacement

>

v

Displacement jump
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CPU TIME REDUCTION
Unbalanced single-lap bonded joint with an elastic perfectly plastic adhesive material in plane loaded

(Paroissien et al., 2013a).

1 | | |

0.9 i = ===3D FE model o
0.8
0.7
0.6
0.5
0.4

o —— Fd
: et

14 | | | |

1.2 = = ==3D FE model 2
) ’l
1 + 1D-beam present model [/
0.8
\ (]
0-6 -n '|_
04 L
0.2 i"'

+ 1D-beam present model

The adhesive stresses are read on the

the adhesive layer.

converged 3D FE model on the neutral line of

adhesive shear stress in MPa

adhesive peel stress in MPa

-0.2 -
-0.4 ez >t

-0.6
0 5 10 15 20 25 30

abscissa along the overlap in mm a-
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0.02 mm each

in 3D:

t

join
transition ratio of 1 imposed at the adhesive interface, an

10 cubic elements in adhesive thickness
element size of 0.02 mm

Example of single-lap bonded
—>potentially 100 elements in the adherend thickness, to be

multiplied by length, width mesh parameters...

70
L
7))
<<
&
Z
O
s
O
=
o
o
<

The simulation of the mechanical behavior of bonded joints using the FEM is time consumming due to

the relative difference in thickness between the adherends and the adhesive layers.

CPU TIME REDUCTION
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de Toulouse

Eric Paroissien. Simplified modelling for the simulation of bolted and/or bonded joints. Macro-element technique.



APPLICATION CASES

Université
de Toulouse

ASSESSMENT OF CZM FOR THIN ADHESIVE LAYERS

The ME technique has successively been used for the assessment of CZM for thin adhesive layers (Lélias,
2016) (Lélias et al., 2018).

Eric Paroissien. Simplified modelling for the simulation of bolted and/or bonded joints.

Adhesive shear stress[MPa]

Adhesive peel stress[VPa)
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|CA
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2000

— Experimental
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HYBRID (BOLTED/BONDED) JOINTS
Comparison between experimental test, 3D FE test and 1D-beam ME test of a single lap HBB joint in-

plane loaded (Paroissien et al., 2017).

adhesive
fastener
> >

1.2 ‘ second peak load \L
1.1 first peak load 7 -

1 TP
0.8 / \
07 /-
0.6 /
0.5
0.4 f
0.3 experimental test ||

0.2 ff —0=—1D-beam test =

0.1 )j;r --- 3D FE test
0 T

0 0.5 1 1.5 2 2.5
total displacement in mm
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——HBB [experimental test] ——HBB [1D-beam test]

Static and fatigue performance better

—m pure bonded [1D-beam test] ---@-- pure bolted [1D-beam test]

than pure bolted or pure bonded, if the

"

adhesive is judiciously chosen.

UL e
hY NN
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BONDED JOINTS UNDER THERMAL LAODING

Comparison between 1D FE model and 1D ME model (Paroissien et al., 2013b).
The 1D FE model is built with beam and spring elements.
Unbalanced single-lap joints under pure thermal loading under membrane and bending.
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APPLICATION CASES

FUNCTIONNALY GRADED ADHESIVE JOINTS

in collaboration with University of Porto

Unbalanced single-lap joints under combined

mechanical and thermal loading with a symmetrical

parabolic graduation (Paroissien et al., 2018b).

* reduction of peak stresses

* the simplified model offers a solution to optimize
the graduation
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REDUCTION OF PEAK STRESSES

single-lap joint with tapered adherend
* reduction of peak peel stresses

r1ormalized adhesive shear
stress
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Prediction of failure at adherend/adhesive interface [PRACCOMET]
PhD Thesis by Thiago Birro (2017-2020) supervised by 1Frédéric Lachaud, 2Maélenn Aufray and 1Eric

Toulouse Adhésion Cohésion

Paroissien

funded by Région Occitanie and ISAE-SUPAERO (APR2017 UFT MiP)

Collaboration with CIRIMAT: TACCOS

experimental and numerical modelling of adherend/adhesive interface behavior

Collage Structural

Assessment of constitutive behavior of thin adhesive layer [S3PAC]

PhD Thesis by Agathe Jaillon (2017-2020) supervised by Frédéric Lachaud, 3Julien Jumel and !Eric
Paroissien

funded by BPI France, Région Occitanie and Région Nouvelle Aquitaine

FUI (21) S3PAC

experimental and numerical modelling of cohesive behavior as function of adhesive thickness

%
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1nstitut Clément Ader (ICA), Université de Toulouse, ISAE-SUPAERO, INSA, IMT MINES ALBI, UTIII, CNRS, France \ //

2CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, France

3Uni

versité de. Bordeaux, Arts et Metiers ParisTech, CNRS, I12M, UMR 5295, France
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Macro-element of bonded plates [SCODyn]
« PhD Thesis by Benjamin Ordonneau (2018-2021) supervised by 'Michel Salaiin and Eric Paroissien

* funded by CETIM and DGA
» formulation of elementary stiffness and mass matrices of bonded overlap under 3D loading

Dual functionalisation strength / fragmentation [SIMPACOS]
* PhD Thesis by Lorraine Silva (2018-2021) supervised by !Christine Espinosa and “Lucas FM da Silva

* funded by ED MEGeP
» particle-based numerical simulation to predict strength and controlled fragmentation for space

structures

linstitut Clément Ader (ICA), Université de Toulouse, ISAE-SUPAEROQ, INSA, IMT MINES ALBI, UTIII, CNRS, France
4Department of Mechanical Engineering, Faculty of Engineering, University of Porto, Portugal
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