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Abstract—We propose a von Mises–Fisher prior to remove
scale ambiguity arising in blind deconvolution (BD). Indeed,
traditional Bayesian BD methods rely on Gaussian priors that
address only partially this ambiguity. We first derive the posteri-
ors in closed-form to underline the benefit of a von Mises–Fisher
prior compared with a conventional Gaussian prior. We also
showcase its applicability within an augmented Gibbs sampler
that includes a state-of-the-art re-scaling step. However, state-
space exploration issues may still occur owing to the multimodal
nature of the posteriors. These preliminary results encourage the
design of BD-specific sphere-constrained sampling techniques.

Index Terms—Blind deconvolution, scale ambiguity, Gibbs
sampler, von Mises–Fisher prior.

I. INTRODUCTION

Blind deconvolution (BD) problems arise in many areas
such as physiological signal analysis [1], [2], seismic explo-
ration [3], multi-channel imaging restoration [4]. The general
principle of BD is to recover two vectors x and g from a
convolutional noisy observation y as defined in (1). However,
without any further information about x and g, the problem is
ambiguous and thus ill-posed. For instance, the so-called scale
ambiguity—which is of interest in this work—reflects that if
(x,g) is a solution to (1), then (αx,g/α) is also a solution
for any scaling parameter α 6= 0. In any event, additional
assumptions about x and g are required to make BD feasible.

In a Bayesian framework, this is naturally attempted by
assigning prior distributions to x and g (e.g., [5]–[7]). In par-
ticular, Gaussian priors (GP)—along with Bernoulli GP—are
extensively used in BD [1], [3], [8]–[10]. However, traditional
Gibbs sampling exhibit then state-space exploration issues
that have motivated various enhancement techniques [8]–[11].
In [8], a Metropolis-Hastings move is introduced to favor
sampling of time-shifted versions of (x,g). In [9], a K-
tuple and a collapsed Gibbs samplers are designed to avoid
the support of g to be stuck in a given configuration. In
[11], a scale-sampling step is added in the Gibbs sampler
to stimulate the exploration of the scale of (x,g) while
preserving the target distribution. Nonetheless, in absence of
theoretical performance guarantees, simulations still needs to
be run to assess the efficiency of these methods.

Interestingly, several authors have more recently proposed
to constrain x to have unit `2-norm [7]. While this sphere-
constraint removes scale ambiguity of BD (up to a sign),
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some results have shown that it actually can facilitate to solve
nonconvex optimization problems [4], [12]–[16].

In light of these promising results, we propose in this paper
to study the benefit of sphere-constrained prior in Bayesian
model for BD problems. In a first attempt, a simple model is
considered in what follows. We set g as a priori centered and
white Gaussian; the mean direction of x is a priori known, as
in many realistic applications (e.g., radar, sonar). We propose
a von Mises–Fisher prior (VMP) for x that narrows the scale
ambiguity to a sign ambiguity [17]; we alternatively consider
a conventional GP for x as a baseline scenario. We first derive
the theoretical posteriors of x and g to discuss the benefits of
VMP. We also illustrate state-space exploration issues of the
Gibbs sampler with both VMP and GP, even if the re-scaling
technique in [11] is used1.

II. BAYESIAN MODEL

A. Observation Model

We consider a linear convolution in presence of noise:

y = x ∗ g + n. (1)

where x ∈ RL, g ∈ RM and n ∼ N (0, σ2
nI) is an additive

white Gaussian noise vector with zero mean and known power
σ2
n. The convolution between x and g in (1) can be rewritten

such that x ∗ g = Xg = Gx with X the Toeplitz matrix
with first column [x>,01,M−1]> and first line [x1,01,M−1].
G is built similarly with appropriate dimension. From the
observation (1), the likelihood of x and g is

y|x,g ∼ N
(
Xg, σ2

nI
)
. (2)

BD aims at jointly estimating x and g using the likelihood (2).
Nonetheless, as previously discussed, (2) is an ill-posed prob-
lem due to ambiguities. Thus, we regularize (1) by assigning
prior distributions to x and g.

B. A Priori Model

Herein, x and g are supposed to be a priori independent.
Throughout the paper, we will compare two priors for x:
VMP is the proposed von Mises–Fisher prior [17], character-

ized by its concentration factor κ and its mean direction

1In our simple model, g is not sparse so that the technique introduced in [9]
is not needed. In addition, in the simulations presented later in Section V, the
lengths of x and g are small so that the time-shift problem addressed in [8]
is not noticeable and does need to be addressed.
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Closed-form posteriors
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Full conditionals
x g

VMP f(x|y,g) ∝ exp
{
v>x− x>Ax

}
1(x) (12)

f(g|y,x) ∝ exp

{
−

(g−ḡ)>Σ−1
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GP f(x|y,g) ∝ exp
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x̄ (x−x̄)

2

}
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x̃, i.e., x ∼ VM(κ, x̃) as detailed in (3) where 1 is the
indicator function on the L-dimension sphere SL−1

R ;
GP is the conventional Gaussian prior; for a fair comparison,

we choose x ∼ N (x̃, I/κ) — as detailed in (4) — so that
the conditional density of x given ‖x‖ = 1 boils down
to the von Mises–Fisher prior (3) [17, p. 175].

A conventional centered Gaussian prior is chosen for g, i.e.,
g ∼ N (0, σ2

gI) with known variance σ2
g , as recalled in (5).

III. THEORETICAL CLOSED-FORM POSTERIORS

In this work, as previously discussed, we aim at firstly
assessing the impact of VMP on the posteriors of x and g
compared to that of GP. Given our Bayesian models, posteriors
can actually be obtained in closed-forms (up to a normalizing
constant). They will be also useful to assess the convergence
of the Gibbs sampler described in the next Section.

The posterior of x (that of g is obtained similarly) is
derived using Bayes theorem as f(x|y) ∝ f(y|x)π(x) with
f(y|x) =

∫
g
f(y|x,g)π(g)dg. Details of calculations are

omitted in what follows.
In case of VMP, using (2), (3) and (5), the posteriors of

x and g respectively result in (8) and (9), with Σy|x =

σ2
gXX> + σ2

nI, v = G>y
σ2
n

+ κx̃, A = G>G
2σ2

n
. CFB is the nor-

malization constant of the Fisher–Bingham distribution2 viz.
CFB(γw,B) =

∫
SL−1
R

exp{γw>x − x>Bx}dx with γ > 0,
‖w‖ = 1 and without loss of generality B> = B.

In case of GP, using (2), (4) and (5), the posteriors of
x and g result in (10) and (11), respectively, with Σy|g =
κ−1GG> + σ2

nI.

2In Section V, CFB is numerically calculated for L = 2 with cylindrical
formulation of the integrand.

IV. MONTE CARLO MARKOV CHAIN ESTIMATION
METHOD

Even though closed-form posteriors are obtained in Sec-
tion III, it may be arduous to build Bayesian estimators from
them. The situation could worsen with more advanced hierar-
chical Bayesian models. For this reason, a numerical approach
is now considered to sample the posterior distributions.

A. Traditional Gibbs Sampler

Gibbs sampling is a Monte Carlo Markov Chain algorithm
that consists, in our case, in drawing alternatively x and
g from their full conditional. After a certain burn-in time
(Nbi iterations), samples of x and g are in theory distributed
according to their respective posterior [18]. Nr samples are
then retained to build histograms and/or compute estimates of
x and g.

Using Bayes theorem, the likelihood (2) and the a priori
independence between x and g, we obtain the joint posteriors
up to a constant factor for VMP in (6) and for GP in (7).
From them, we can directly express the full conditionals of
x and g as reported in (12)-(14) for VMP and in (13)-(14)
for GP. Note that, while (13) and (14) are simply simulated as
Gaussian distributions, (12) is recognized as a Fisher–Bingham
distribution sampled according to [19]. Parameters of these
distributions are v and A from (9), Σx̄ = (2A + κI)

−1, x̄ =

Σx̄v, Σḡ =
(

X>X
σ2
n

+ 1
σ2
g
I
)−1

, ḡ = Σḡ
X>y
σ2
n

.

B. Poor Mixing Property and Workaround

In BD, the traditional Gibbs sampler suffers from state-
space exploration issues [8]–[11]. We notably observe cor-
related chains with local modes that can be difficult to es-
cape, leading to a very slow convergence towards the target
distribution. In a first attempt to deal with this problem (still



persistent with VMP and GP), we implement in both Bayesian
models the scale-sampling method described in [11]. The latter
is actually tantamount to a Reversible Jump Monte Carlo
Markov Chain (RJMCMC) step [20], [21]—that preserves the
target distribution—with a unitary acceptance probability. In
particular, after sampling x and g, a scaling factor is sampled
from the pdf

f(s|x,g) ∝ |s|L−M−1π(sx)π(g/s), (16)

and then applied as {x,g} ← {sx,g/s}.
1) Scaling factor with VMP: Using (3) and (5), the scaling

factor pdf (16) is shown to be non-zero iff |s| = 1 and depends
only on x. Its probability mass function (pmf) is P (s = 1|x) =
1/(1 + exp{−2κx̃>x}). In other words, the scale-sampling
reduces to a sign-sampling.

2) Scaling factor with GP: Using (4) and (5), the scaling
factor pdf (16) reduces to

f(s|x,g) ∝

|s|L−M−1 exp

{
κx̃>xs− κ

‖x‖2

2
s2 −

‖g‖2

2σ2
g

s−2

}
.

We sample it as s , λr with joint pdf

f(r, λ|x,g) ∝

rL−M−1 exp

{
κx̃>xλr − κ

‖x‖2

2
r2 −

‖g‖2

2σ2
g

r−2

}
,

where r > 0 and λ ∈ {−1, 1}. To that end, we implement
a hybrid Gibbs sampler that iterates between r|λ,x,g and
λ|r,x,g. The latter follows a Bernoulli distribution with pmf
P (λ = 1|r,x) = 1/(1 + exp{−2κx̃>xr}). The former does
not follow a common distribution from which standard sam-
pling method exists. Nevertheless, a polynomial analysis of
this distribution shows it can be strictly log-concave (thus uni-
modal), otherwise either unimodal or bimodal. For the former
case, we choose a Metropolis-adjusted Langevin algorithm
(MALA) [22], [23] that is adequate for strictly log-concave
distribution. Otherwise, alternate sampling techniques can be
used such as slice-sampling [24]. Note that the proposed
hybrid Gibbs sampler allows the scaling factor s to be updated
both conditionally or independently of its previous values [25].

C. Augmented Gibbs Sampler Algorithm

Finally, the augmented Gibbs sampler implemented in Sec-
tion V for both VMP and GP is summarized in Algorithm 1.

Algorithm 1 (Gibbs sampler with scaling step).
given x(k−1) and g(k−1), sample:

1: x(k) from f
(
x|y,g(k−1)

)
2: g(k) from f

(
g|y,x(k)

)
3: s from (16)
4: Update {x(k),g(k)} ← {sx(k),g(k)/s}

V. SIMULATION AND RESULTS

For illustrative purposes, we adopt a 2-dimensional space
for x end g, i.e., L = M = 2, as it makes more convenient

12

3 4

−2 0 2
−2

−1

0

1

2

x1

x
2

VMP

12

3 4

−2 0 2
x1

GP

1 2

34

−2 0 2
−2

−1

0

1

2

g1

g 2

1 2

34

−2 0 2
g1

0

1.6381

0

1.6381

pdf true prior x̃ unit circle 1,2,3,4 mode designation

Fig. 1. Theoretical posteriors of x (top) and g (bottom) with VMP (left)
and GP (right). #1 is the major mode. Counterclockwise direction modes
numbering of f(x|y). Clockwise direction for f(g|y).

representations of posteriors. Nevertheless, same observations
could be made for higher dimensions and more realistic
scenarios, especially for the state-space exploration issue.
To generate the signal y in (1), we set x = [0.7826, 0.6226]>

∈ SL−1
R and g = [−0.7182, 1.2861]> is drawn from its

prior (5). We define the signal-to-noise ratio as SNR =
E|x{‖x ∗ g‖2}/E{‖n‖2} = Mσ2

g/((L + M − 1)σ2
n) to gen-

erate a noise vector at 18 dB. A realization gives n =
−[0.1423, 0.1656, 0.0164]>. Prior parameters are set as x̃ =
Ωx, κ = 1 and σ2

g = 5, where Ω is the rotation matrix of
angle −π/10.

A. Theoretical Posteriors

Theoretical posteriors (8)-(9) and (10)-(11) are depicted in
Fig. 1. The posteriors of x have 4 apparent modes both with
VMP and GP. It is also the case for g even if the color-scale
makes mode #3 not clearly visible. Mode #1 is the major
mode, mode #4 corresponds to a sign ambiguity and modes #2
and #3 are induced by a rotational ambiguity. As expected, we
have observed that these modes tend to be more peaked (resp.
spread) as the SNR increases (resp. decreases). In addition
the higher κ, the more predominant becomes mode #1 that,
at the same time, gets closer to x̃. Interestingly, the VMP
posterior of x in (8) stems directly from the conditioning to
‖x‖ = 1 of the GP posterior (10)3. Using a prior on the sphere
alleviates as expected the scale ambiguity inherent to (1) for
x, but also decreases the radial uncertainty for g. Thus, using
VMP instead of GP could be relevant to BD problems.

3It is in fact the case for all the pdf of x: (3)-(4) and (6)-(7).
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Fig. 2. Chain of samples of f(x|y) (top) and f(g|y) (bottom), with VMP
(left) and GP (right). Same modes numbering as in Fig. 1 – Traditional Gibbs
sampler.

B. Empirical Posteriors and Gibbs Sampler Behavior

We run both the traditional and the augmented Gibbs
sampler with VMP and GP. Samples from the first 7000
iterations are represented in Fig. 2 for the traditional Gibbs
sampler, and in Fig. 3 for the augmented. Both samplers are
initialized with x(0) ← x̃ to force the exploration of the
main mode #1 at the first iteration, and then to observe the
capability to explore other modes during sampling. As shown
in Fig. 3 compared with Fig. 2, the augmented sampler for
GP does avoid correlated chains “conditionally to a mode”,
but does not prevent from lingering in a given mode whether
a von Mises–Fisher or a Gaussian prior for x is proposed.
For instance, the sampling chains here explore modes #1 and
#3 for approximately more than 3000 iterations within the
augmented Gibbs sampler. We also observe that the sampling
of (x,g) occurs by pair of “opposite” modes: modes #(1, 3)
and modes #(2, 4) when the re-scaling technique is done. As a
matter of fact, in both VMP and GP the scaling factor sampled
from (16) has a signed value, namely s ∈ {−1, 1} for VMP
and λ , s/|s| ∈ {−1, 1} for GP. Hence, if (x,g) is near mode
#1, then its scaled version (sx,g/s) is either near mode #1 or
#3. In any event, being trapped in modes makes the empirical
posteriors of x and g highly dependent on the chain length and
the initialization. As exemplified in Fig. 4 for the traditional
Gibbs sampler where modes #3 and #4 with VMP, modes #2
and #3 with GP, are not sampled yet (cf. Fig. 2), and in Fig. 5
for the augmented where modes #2 and #4 are not sampled
yet (cf. Fig. 3) for both VMP and GP — with Nbi = 100 and
Nr = 3000. It can thus lead to poor estimates of the theoretical
posteriors, even if the re-scaling technique is used.

VI. CONCLUSION

In this paper, we studied the BD problem in a Bayesian
context. We assigned a von Mises–Fisher prior to one of the
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Fig. 3. Chain of samples of f(x|y) (top) and f(g|y) (bottom), with VMP
(left) and GP (right). Same modes numbering as in Fig. 1 – Augmented Gibbs
sampler.

two signals of interest; the other being a priori Gaussian.
The scale ambiguity is thus removed (up to a sign); thereby
greatly contributing to BD’s regularization compared to tradi-
tional Gaussian priors. This is supported via the derivation
of the posteriors in closed-form as well as their graphical
interpretation. Nevertheless, we showed that a Gibbs sampler-
based BD still suffers from state-space exploration issues,
even if the resampling technique in [11] is used. These
results are particularly exacerbated at high SNR and with low
concentration parameter for the von Mises–Fisher prior; they
suggest the design of sampling methods tailored to the sphere-
constrained BD problem.
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