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Abstract Dynamic Spectrum Access systems offer temporarily available spectrum
to opportunistic users capable of spreading transmissions over a number of non-
contiguous subchannels. Such methods can be highly beneficial in terms of spectrum
utilization, but excessive fragmentation degrades performance and hence off-sets the
benefits. To get some insight into acceptable levels of fragmentation, we present ex-
perimental and analytical results derived from a mathematical model. According to
the model, a system operates at capacity serving requests for bandwidth by assigning
a collection of one or more gaps of unused bandwidth to each request as bandwidth
becomes available. Our main result is a proof that, even if fragments can be arbitrarily
small, the system remains stable in the sense that the average total number of frag-
ments remains bounded. Within the class of dynamic fragmentation models, includ-
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ing models of dynamic storage allocation that have been around for many decades,
this result appears to be the first of its kind.

In addition, we provide extensive experimental results that describe behavior, at
times unexpected, of fragmentation as parameter values are varied. Different scan-
ning rules for searching gaps of available spectrum, all covered by the above stability
result, are also studied. Our model applies to dynamic linked-list storage allocation,
and provides a novel analysis in that domain. We prove that, interestingly, a version
of the 50 % rule of the classical, non-fragmented allocation model holds for the new
model as well. Overall, the paper provides insights into the behavior of practical frag-
mentation algorithms.

Keywords Dynamic spectrum access · Fragmentation · Ergodicity of Markov
chains · Cognitive radio · Lyapunov function

Mathematics Subject Classification 60J20

1 Introduction

This paper focuses on the analysis of dynamic resource allocation algorithms and
is motivated by applications of these algorithms to Dynamic Spectrum Access Net-
works (also known as Cognitive Radio Networks). Cognitive Radios can adapt their
transmitter parameters to the environment in which they operate and are viewed as
key enablers of efficient use of the underutilized wireless spectrum [1, 7, 8, 17]. Un-
der the basic model of Cognitive Radio Networks [1], Secondary Users (SUs) are
allowed to use white spaces (also known as spectrum holes) that are not used by the
Primary Users but must avoid interfering with active Primary Users (for instance, see
Fig. 1).

An SU’s channel allocation may be broken down into a number of subchannels,
each allocated to a distinct hole of unused bandwidth. As shown in Fig. 1, this can
be realized, for example, by employing a variant of Orthogonal Frequency-Division
Multiplexing (OFDM) [10, 15, 18–20, 22]. Although the physical-layer aspects of
OFDM-based Dynamic Spectrum Access have been extensively studied recently, al-
lowing channel fragmentation introduces several new problems [12, 20, 23] that sig-
nificantly differ from classical Medium Access Control (MAC).1

Fig. 1 Non-contiguous OFDM with Primary and Secondary Users (SUs), where the Secondary Users use
non-contiguous channels that do not overlap with the Primary Users’ channels

1Further details on Dynamic Spectrum Access Networks can be found in [3], which also contains an
extensive review of related work.
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In this paper, we study a baseline theoretical model in which the spectrum is
shared by SUs only. Those users have to transmit and receive data, and accordingly
need some bandwidth for given amounts of time. Hence, bandwidth requests of SUs
are characterized by a desired total bandwidth and the duration of a time interval over
which it is needed. The data transmission can take place over a non-contiguous chan-
nel (i.e., a number of subchannels). Once a transmission terminates, some fragments
(subchannels) are vacated, and therefore, gaps (spectrum holes/white spaces) develop
randomly in both size and position. When allocating a channel to a new SU request,
it is fragmented (in the frequency domain) into available gaps until the full requested
bandwidth is provided. This process repeats itself, until the next request fails to fit into
the available fragments (more details are provided in the model subsection below).

The main goal of the paper is to investigate the phenomena of fragmentation in-
duced by spectrum allocation algorithms. For this purpose, we will ignore the par-
ticularities of techniques such as OFDM and make a couple of assumptions (for a
complete system description, see Sect. 2): (i) the system operates at capacity and
there is always a waiting bandwidth request; and (ii) the fragment size is not bounded
from below. Making the first assumption allows us to study the effect of fragmenta-
tion in the worst case. Clearly, if there are idle periods, when there are no waiting
requests, only departures occur and the fragmentation level of the system decreases
during these periods. Similarly, the latter assumption allows us to study the system
performance when artificial lower bounds on the fragment size are not imposed. This
differs from OFDM-based systems in which a subcarrier has a given minimal band-
width.

In the application of these spectrum allocation algorithms, intriguing new prob-
lems in dynamic allocation arise. For example, because of the dynamic use of the
spectrum, the bandwidth available to a new user will usually be distributed among
a number of gaps in the spectrum. In principle, the random arrival and departure of
users might cause the system to evolve in such a way that sequences of many, very
small gaps are often allocated to user requests. In such cases, the system performance
will deteriorate, since the algorithms maintaining the state of a highly fragmented
spectrum become more time-consuming. To put these remarks on a proper footing,
we first need to introduce the details of our model.

1.1 The model

A continuous frequency band of given width is made available to users. Each such
user makes a request composed of a required total bandwidth and the duration of
a residence time for the exchange of data over a channel of this bandwidth. Chan-
nels are allocated to requests on a first-come-first-served basis, subject to available
bandwidth. A channel must remain fixed while active, and on departure it returns its
allocation to the pool of available bandwidth. The channel of an allocated request is
allowed to consist of multiple, disjoint bandwidth fragments, each being accommo-
dated by a gap of unused spectrum that was available at the time of allocation.

For convenience, the model normalizes the spectrum to the interval [0,1], so the
sizes of all bandwidth requests are numbers in [0,1]. Our goal is to characterize the
fragmentation of requests when the system is operating at capacity, so we assume that
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there is effectively an infinite queue of waiting users. For the purposes of the example
to be given shortly, we denote the sizes of their bandwidth requests by u1, u2, . . . .
We will also use ui as the name of the ith user. An initial, non-fragmented state is
constructed as follows. Starting at 0, consecutive subintervals of sizes u1, u2, . . . are
assigned as the channels of waiting users until a request size ui , i > 1, is encountered
which exceeds available bandwidth, i.e.,

u1 + · · · + ui−1 ≤ 1 < u1 + · · · + ui

At this point, all i − 1 of the channels in this initial state begin their residence
times. Subsequent state transitions take place at departure epochs when the residence
times of currently allocated channels expire. Suppose all requests up to uj have been
allocated channels and a request ui , i ≤ j , departs, releasing its allocated channel.
If there is still not enough bandwidth for uj+1, then it must wait for one or more
additional departures. Otherwise, uj+1, uj+2, . . . are allocated their requested band-
widths until, once again, a request is encountered that asks for more bandwidth than
is available. All channels then begin or continue their residence times as before until
the next departure.

The linear-scan (LS) rule sets up a channel by scanning the spectrum in order of
increasing frequency, allocating gaps of available bandwidth in partial fulfillment of
the request until enough bandwidth has been allocated to satisfy the entire request.
In general, the last gap is only partially used, in which case the last fragment is left-
justified in the last gap. An example is shown in Fig. 2. Allocations are shown for
the first eight user requests, assuming that, at time 0, the spectrum is not in use. The
requests with sizes u1, u2, and u3 are the first to be allocated channels; u4 must wait
for a departure, since the first four request sizes sum to more than 1. The variables
ti give the sequence of departure times of allocated requests. We see that the first
occurrence of fragmentation takes place at the departure of u2 and the subsequent
admission of u4; an initial fragment of u4 is placed in the gap left by u2 and a final
fragment is placed after u3. Note also that, even after u2 and u4 have departed, there
is still not enough bandwidth for u5. After the additional departure of u1, both u5 and
u6, but not u7, can be allocated bandwidth.

Fig. 2 An example of the admission and departure processes and the resulting spectrum fragmentation
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We complete the model description by giving the probability laws governing the
residence times and sizes of the waiting requests. With α ∈ (0,1] a parameter of the
model, the sizes uj+1, uj+2, . . . are drawn independently from the uniform distribu-
tion on (0, α]. The residence times of allocated requests are independent of request
sizes and form a sequence of i.i.d. exponentially distributed random variables. For
simplicity, the mean is normalized to 1.

1.2 Main results

At first glance, since request sizes can be arbitrarily small, the fragments used by
bandwidth requests might well become progressively narrower as time passes, in
which case the number of fragments could grow without bound. Clearly, such an
operational model cannot be supported by a realistic system, so it is of great interest
to know whether this can actually happen. The principal theoretical contribution of
this paper is a proof that in fact, with high probability, the number of fragments in the
system remains acceptably low. A precise statement is deferred to the next section
where additional notation and concepts are introduced.

In addition to mathematical results, and in order to gain further insight into the
performance of the system, we present the results of extensive experiments. These
show that although for a given maximum request size α, the number of fragments has
a finite expected value, there is a linear relationship between 1/α and the expected
number of fragments into which a request is divided. This indicates that when the
requests are constrained to be small, they are also fragmented into a relatively large
number of fragments. From a practical point of view, this implies that, if we can
impose a lower bound on the fragment size by rejecting gaps that are too small, then
we have a useful control on the ill effects of excessive fragmentation.

Our experiments show that different bandwidth allocation algorithms exhibit sig-
nificantly different performance in terms of the fragmentation occurring in the sys-
tem. As one example, an algorithm that scans the gaps in decreasing order of their
sizes reduces the fragmentation by almost an order of magnitude compared to LS.
Interestingly, the experiments also show that the number of fragments is distributed
according to a normal law with a relatively low mean value. Finally, the experiments
for small α led to the interesting observation that the ratio of the average number
of gaps to the average number of requests being served was approximately 1/2. Al-
though we were unable to prove this ratio-of-averages result, we were able to prove
a corresponding 50 % limit law for the expected value of the ratio of the number of
gaps to the number of requests being served.

The spectrum allocation problems described here can be characterized in the con-
text of dynamic storage allocation problems of computers; see Knuth [14]. In that
context, the term “spectrum” refers to the storage unit, “bandwidth requirements”
refer to storage requirements, and “channel” refers to a region in storage contain-
ing a file. In the original dynamic storage model, fragmentation referred only to
the gaps of unoccupied storage interspersed with intervals of occupied storage: files
were not fragmented. The reader familiar with that model may have found the 50 %
rule observed in our experiments to be reminiscent of Knuth’s 50 % rule, which as-
serts that the number of gaps is approximately half the number of files when exact
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fits of files into gaps are rare. Our notion of fragmentation applies also to the files
themselves, so our discovery that a similar 50 % rule continued to apply was a sur-
prising one at first. Note that, in terms of the storage application, our model corre-
sponds precisely to linked-list allocation of files—channels allocated to requests are
sets of linked, disjoint segments of storage allocated to file fragments. Our results
provide a novel analysis for such systems, and have implications for the garbage-
collection/defragmentation process in linked-list systems. We note that studies of dy-
namic storage allocation have been around for some 40 years, and widely recognized
as posing very challenging problems to both combinatorial and stochastic modeling
and analysis. In particular, results of the type found in this paper, rigorous within
stochastic models, seem to be quite new.

The remainder of the paper begins in the next section with the introduction of no-
tation, a formalization of the spectrum state space, and the stochastic processes of
interest in later sections. Section 3 presents experimental results that bring out the
effects of fragmentation, particularly as a function of the maximum request size α.
In Sect. 4 relations between variables describing the configuration of gaps and frag-
ments are proved in preparation for (1) a 50 % limit law for the relation between
the number of active channels and the number of gaps in the spectrum at departure
times, and (2) our main stability result, which shows that the expected value of the
total number of fragments and gaps is bounded. These results are proved in Sects. 4
and 5, respectively. Section 5 also proves that, for α large enough, an equilibrium
distribution exists. Section 6 discusses algorithmic issues, such as changes in perfor-
mance resulting from alternative allocation algorithms, and Sect. 7 discusses experi-
mental results that exhibit normal approximations for the total number of fragments
and gaps. Section 8 concludes the paper with a discussion of the results and future
research directions.

2 Preliminaries

The state of a fragmentation process must carry the information given by a sequence
of gaps alternating with sequences of contiguous fragments. Accordingly, we formal-
ize a state space S for our model as follows.

Definition 1 A state x ∈ S is given by

x = (L1, . . . ,Lr ;u)

where u is the size of the request waiting at the head of the queue, r ≥ 1 is the num-
ber of currently active channels, and Li is the list of open subintervals of [0,1] occu-
pied by the fragments of the ith channel. For x to be admissible, the open intervals
in

⋃
i Li must be mutually disjoint, and, since the size of u exceeds the bandwidth

available, u > 1 − ∑
i si has to hold, where si is the cumulative size of the fragments

in Li .

Since channel residence times are i.i.d. exponentially distributed random variables,
the process (X(t)) on S is a Markov process. The Markov chain embedded at depar-
ture times tn will be of special interest.
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When treated as a random variable, the size of the request waiting to be allocated
bandwidth at time t is denoted by U(t). Similarly, Ui(t) denotes a random variable
giving the size of the ith request behind the head of the queue. Except for Sect. 5,
the dependence on time will usually be omitted. We denote by R(t) the number of
requests with an active channel at time t . F(t) and G(t) denote, respectively, the
numbers of fragments and gaps at time t .

With this notation, we are in position to state our main contribution to mathemat-
ical foundations. We prove that the total number of gaps and fragments at departure
epochs has bounded exponential moments, as follows: For some η > 0 and any initial
state x ∈ S ,

sup
n≥1

Ex

(
eη(F (tn)+G(tn))

)
< +∞

where Ex denotes expectation for the process X started at X(0) = x. While our choice
of a uniform distribution for request sizes is a useful one, it is not essential to this
result; it holds for more general distributions. The result shows that the sum F(tn) +
G(tn) is strongly concentrated near the origin. This fact provides strong support for
the informal assertion made in Sect. 1 to the effect that, with high probability, the level
of fragmentation stays reasonably low. Our analysis has several basic ingredients:
relations between the number of fragments and gaps in the spectrum (Lemma 2); a
drift relation of Lyapunov type for the total number of gaps, fragments, and requests
(Proposition 1); a general inequality for Markov chains (Theorem 4); and a stability
result of [13].

The last of these results refers to the early work of Kipnis and Robert [13] on a
non-fragmented version of our model. Channel allocations can be moved as needed in
order to put all available bandwidth together in one block, so fragmentation is avoided
entirely. They consider a system with arrivals, but with arrival rates sufficiently high,
their analysis of maximum throughput gives us an analysis of (R(tn)), assuming that
the same probability laws for request sizes and residence times apply. This follows
simply from the fact that the admission criterion for waiting requests is the same
in both models. A major result in [13] asserts the existence and uniqueness of an
invariant measure for (R(tn)). Explicit formulas are hard to come by, but those in [13]
for the maximal departure rate in special cases have provided useful checks for our
experiments.

In Sect. 6, we shall also evaluate two scanning alternatives to LS. The first is cir-
cular scan (CS), which is still a linear scan of the gaps, but each scan starts where
the previous one left off; after the last gap in [0,1], CS cycles back to the first gap
in [0,1]. The second is largest-first-scan (LFS), which is intended to further reduce
fragmentation by assigning gaps in order of decreasing size. Although these algo-
rithms make different scans of the gap sequence, they are all alike in their treatment
of the last gap occupied: the last fragment is left-justified in the last gap. This is a
key assumption, and it is very likely to hold in practice. In our probability model,
it follows that, with probability 1, the last gap used in a channel allocation will be
changed to a fragment and a smaller residual gap.
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3 Experimental results

The experimental study reported in this section serves two related roles. First, it
brings out characteristics of the fragmentation process that need to be borne in mind
in implementations, particularly where these characteristics show parameter values
that must be avoided, if a system with fragmentation is to operate efficiently. The
second role is that of experimental mathematics, in which results indicate where be-
havior might well be formalized and rigorously proved as a contribution to mathe-
matical foundations. In the latter role, this section leads up to the next two sections,
which formalize and prove the stability of the fragmentation process.

The experiments were conducted with a discrete-event simulator written in C that
also includes a stochastic arrival process, a capability that we intend to explore in
future research. The maximum request size α is the single parameter surviving the
normalizations of the simpler mathematical model of this paper. The simulations were
most demanding, of course, for small α, when large numbers of departure events were
needed to ensure behavior near the stationary regime. For every α value chosen in the
interval [0.01,1], 20 million departure events were simulated starting in an empty
state, with data collected for the last 10 million events. For every choice of α in
[0.001, 0.01], 100 million departure events were processed and data collection was
performed during the last 50 million events. The excellent accuracy of this tool was
established in tests against exact results for special classes of queueing systems, and
against the maximum throughput results derived in [13]. Examples of the test results
can be found in the appendix and in [21].

The results for the average number of channels, the average number of gaps, and
the average number of fragments per channel are shown in Fig. 3. The curves are
nearly linear in 1/α for small values of α; indeed, the errors in the linear fits are
within the thickness of the printed lines. In particular, the asymptotic (as α → 0)
average number of channels in the spectrum is 2/α. When requests are large relative
to the spectrum (i.e., for α > 1/3), the behavior is not given by functions quite so
simple. As such cases are of less practical interest, we omit the relevant data.

The asymptotic linear growth of the average number of channels as a function of
channel size is obvious, but the linearity of the other two measures is not so obvious.
A closer look shows that the average number of gaps is almost exactly one half the

Fig. 3 Average numbers of
channels, of gaps, and of
fragments per channel
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Fig. 4 Average total number of
fragments vs.1/α: a quadratic fit

Fig. 5 Percentage of type-i
fragments

average number of channels for even relatively small 1/α. This is the unexpected ver-
sion of Knuth’s 50 % rule that we mentioned in Sect. 1. We return to this behavior in
the next section, where we prove a 50 % limit law. The linear growth of the average
number of fragments per channel may also be unexpected at first glance: the frag-
mentation of channels increases as the average channel size decreases. This linear
growth implies the quadratic growth of the average total number of fragments plotted
in Fig. 4 (the accuracy of the fit is as before: the error is within the thickness of the
printed lines).

The analysis in later sections will focus largely on tracking fragment types defined
as follows: a fragment is of type i, if it is adjacent to i other fragments, where i = 0,
1, or 2. It can be seen in Fig. 5 that for small α, more than 90 % of the fragments
are type-2 fragments. In addition, clearly, the number of type-0 and type-1 fragments
is a function of the number of gaps. These observations and the results illustrated in
Figures 3 and 4 indicate that, even for relatively small 1/α, the average total number
of type-0 and type-1 fragments grows linearly in 1/α, but the average number of
type-2 fragments grows quadratically.

Figure 6 compares the average gap and fragment sizes. As might be expected, for
relatively small α, they are close to each other. The relation holds even for moderately
large α, although for α rather close to 1, the difference amounts to about a factor of 2.
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Fig. 6 Average sizes of
fragments and gaps

With this property and the 50 % rule suggested by Fig. 3, the linear growth in the
number of fragments per channel (shown in Fig. 3) is easily explained for moderately
small α in the following way.

As mentioned above, for moderately small α, the number of channels is approxi-
mately 2/α (i.e., the spectrum size divided by the average request size). By the 50 %
rule, the number of gaps is roughly 1/α. At any time, the total size of the gaps is at
most α, since there is a request waiting for departures whose requested bandwidth
exceeds the total size of the gaps. Therefore, at most α available bandwidth is spread
among 1/α gaps, giving an average gap size on the order of α2. The average fragment
size is at most (and indeed very close to) the average gap size. The fragments must
occupy at least 1 − α of the spectrum since, as mentioned above, at most a fraction
α of the spectrum is devoted to gaps. Thus, the number of fragments must be on the
order of 1/α2, and so the average number of fragments per channel must be on the
order of (in particular, linear in) 1/α. As α → 0, the asymptotics of these estimates
become more precise.
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4 Numbers of fragments and gaps

This section presents analytical results relating the numbers of fragments and gaps
under the fragmentation process (X(t)). Recall the definition of fragment types:
For i = 0, 1 or 2, a fragment is said to be of type i if it touches exactly i other
fragments.Ni(t) denotes the number of type i fragments at time t , so that F(t) =
N0(t) + N1(t) + N2(t) is the total number of fragments.

Let σ(t) denote the sum of the numbers of fragments and gaps,

σ(t) = F(t) + G(t). (1)

The number of gaps and the numbers of fragment types are related as follows.

Lemma 1 With probability 1,

G(t) = N0(t) + 1

2
N1(t) + I (t) (2)

for any t ≥ 0, where I (t) = 1, if there is a gap starting at the origin, and 0 otherwise.

Proof Each gap, except for boundary gaps starting at 0 or ending at 1, separates two
fragments. Two gaps surround a type-0 fragment not touching the origin, only one
touches a type-1 fragment not touching the origin, and none touch a type-2 fragment,
so the gaps strictly inside (0,1) are double-counted in 2N0(t) + N1(t). Gaps at the
boundaries are counted only once in this expression, so if there are gaps touching
each boundary, 2 must be added to 2N0(t) + N1(t) to produce a double count of all
gaps. Then N0(t) + N1(t)/2 + 1 counts the gaps as called for by the lemma.

With probability 1, a gap always touches the boundary at 1, so the only case left
to consider is the absence of a gap touching the origin. In this case, there is a type-0
or type-1 fragment touching the origin, and so a nonexistent gap has been counted in
2N0(t) + N1(t). This over-count cancels the under-count of the gap touching 1, and
so no correction term is needed, i.e., N0(t) + N1(t)/2 counts all gaps as stated in the
lemma. �

Definition 2 Let (tk) denote the sequence of departure times, let Di(tk) denote the
number of type i fragments in the channel leaving at time tk , and let A(tk) denote the
number of requests admitted to the spectrum at time tk . Finally, define the drift in the
total number of fragments and gaps:

�σ(tk)
def= σ(tk) − σ(tk−1) (3)

with the convention t0 = Di(t0) = Ai(t0) = 0.

The following lemma is the basis of the stability analysis of σ(t) in Sect. 5, and
the 50 % rule proved later in this section.
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Lemma 2 With probability 1, the departure at tk creates the following change in the
total number of fragments and gaps:

�σ(tk) = A(tk) − 2D0(tk) − D1(tk) + J (tk), k ≥ 1 (4)

with t0 = 0, and J (tk) = 1, if a fragment starting at the origin is in the departing
channel, and 0 otherwise.

Proof With probability 1, each new channel allocation covers completely every gap
it is allocated, except for the last one, which is only partially covered. Thus, with
probability 1, each new channel allocation changes gaps to fragments, except for the
last gap which is changed to a fragment plus a gap; this adds one to σ(tk−1) for each
admission, which accounts for the total of A(tk) in (4).

Two fragments of the same channel cannot be contiguous, so it is correct to add
up the changes created by departing fragments, with each being treated separately.
Suppose first that there is no fragment (0, b) against the origin. Then for every type-0
fragment in the departing channel, two gaps and a fragment are replaced by a single
gap for a net decrease of two, and for every departing type-1 fragment, a gap and
a fragment are replaced by a single gap for a net reduction of one. This gives the
reduction of 2D0(tk) + D1(tk) appearing in (4). If there is a fragment (0, b), it must
be of type 0 or 1; if it is of type 0, then its departure gives a decrease of one; if it
is of type 1, its departure has no effect. Each of these contributions is one less than
it would be were the fragment not touching the origin. There can only be one such
fragment, so the correction shown in J (tk) for a fragment (0, b) follows. �

We will denote by G−(tk) the total number of gaps just after the kth departure,
but before new admissions, if any, are made. Note that if we remove A(tk) from the
right-hand side of (4) and add back the total number of departing fragments at tk , i.e.,
D0(tk) + D1(tk) + D2(tk), we get the number of gaps available to admissions at the
kth departure:

G−(tk) = G(tk−1) − D0(tk) + D2(tk) + J (tk) (5)

with J (tk) = 1 as in Lemma 2.
Knuth’s widely known 50 % rule appears in a very different context than the model

here, so it is difficult to anticipate the apparent fact that it also holds for our fragmen-
tation model. However, one can argue a similar result assuming that the fragmentation
process has a stationary distribution. The result is given below as an expected value
of a ratio, rather than a ratio of expected values.

Theorem 1 Assume that for each α > 0, the fragmentation process at departure
epochs (X(tk), k ≥ 0) with request sizes uniformly distributed in (0, α) admits at
least one stationary distribution. For each α > 0 pick one stationary distribution πα .
Then

lim
α→0

Eπα

(
G(0)

R(0)

)

= 1

2
.
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Proof Any stationary distribution πα must satisfy Eπα [σ(t1)] = Eπα [σ(t0)] and
Eπα [A(t1)] = 1. Thus, using Lemma 2 one gets

Eπα

[
2D0(t1) + D1(t1) − J (t1)

] = 1. (6)

Now for a state x having R(0) > 0 channels and Ni(0) type-i (i = 0,1,2) fragments,
we have from Lemma 1

Ex

[
2D0(t1) + D1(t1) − J (t1)

] = (
2N0(0) + N1(0)

)/
R(0) − Ex

[
J (t1)

]

= 2
[
G(0) − I (0)

]/
R(0) − Ex

[
J (t1)

]
.

The term Ex[J (t1)] is equal to the probability that a fragment starting at the origin
leaves. This is certainly smaller than the probability that the channel with the frag-
ment closest to the origin leaves, which by symmetry is equal to 1/R(0). Using in
addition I (0) = 0 or 1 one gets

0 ≤ 1

2
− Eπα

(
G(0)/R(0)

) ≤ 2Eπα

(
1/R(0)

)
.

Now for any stationary distribution πα the random variable R(0) under πα must be
distributed according to the stationary distribution of the non-fragmented model of
Kipnis and Robert [13], and one easily checks that Eπα (1/R(0)) goes to 0 as α goes
to 0, hence the result. �

Note that, because we have a Lyapunov function (see Proposition 1), the exis-
tence of a stationary distribution would be guaranteed if we could prove that the
process (X(tn)) has the Feller property, see for instance Proposition 12.1.3 in Meyn
and Tweedie [16].

5 Stability results

This section establishes that the average total number of fragments and gaps remains
bounded and that, for certain distributions of request sizes, ergodicity holds. The anal-
ysis leads to the following two results. Recall that (tn) is the sequence of departure
times (t0 = 0) and σ(t) = F(t)+G(t), defined in (1), is the total number of fragments
and gaps.

Theorem 2 There exists some η > 0 such that, for any initial state x ∈ S ,

sup
n≥1

Ex

(
eησ(tn)

)
< +∞. (7)

Clearly, this implies that for any initial state x ∈ S , the sequence (Ex(σ (tn)),
n ≥ 0) is bounded. With an additional assumption on the distribution of the request
size, a stronger stability result can be proved.

Theorem 3 When α > 1/2, the process (X(t)) is positive Harris recurrent; in par-
ticular, it has a unique stationary distribution.
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A criterion for finite exponential moments using a Lyapunov function is estab-
lished next. Then, we provide some estimates of the drift of the number of fragments
between departures which will show us how to construct such a Lyapunov function.
The proofs of Theorems 2 and 3 will finally be given in Sects. 5.4 and 5.5.

5.1 A criterion for finite exponential moments

Before stating the main result, some results on Markov chains are needed. In the se-
quel, ≤st refers to stochastic ordering, i.e., V ≤st Z means that E(f (V )) ≤ E(f (Z))

for any increasing function f . For reasons that will become clear in Lemma 5, the
following lemma focuses on admissions at four consecutive departure times. Recall
that (Ui, i ≥ 1) are the sizes of the requests waiting to be allocated bandwidth after
U , the first one, and that they are assumed to be i.i.d.

Lemma 3 The random variable A(t1)+ · · ·+A(t4) is stochastically dominated by a
random variable Z such that E(eλZ) < +∞ for some λ > 0.

Proof It is clear that A(t1) ≤ Z + 1 where

Z = 1 + inf{n ≥ 1 : U1 + · · · + Un ≥ 1}.
Markov’s inequality shows that for any z ≥ 0,

P(Z ≥ z + 1) = P(U1 + · · · + Uz ≤ 1) ≤ e
(
E

(
e−U1

))z

and so E(eηZ) is finite for η > 0 small enough. From this observation, it is not difficult
to extend the result to A(t1) + · · · + A(t4) instead of just A(t1). �

This lemma shows in particular that

ξ
def= sup

i≥1
sup
x∈S

Ex

(
A(ti)

)
< +∞.

is well-defined; this constant will be used repeatedly throughout the rest of the anal-
ysis. The proof of the following lemma is standard, and therefore, omitted.

Lemma 4 Let Z ≥ 0 be a positive, real-valued random variable such that E(eλZ) <

+∞ for some λ > 0, and define c = λ−2
E(eλZ − 1 − λZ). Then for any 0 ≤ ε ≤ λ

and any real-valued random variable V such that V ≤st Z, we have E(eεV ) ≤ 1 +
εE(V ) + ε2c.

The following result is closely related to a result of Hajek [11].

Theorem 4 Let (Yk) be a discrete-time, continuous state-space Markov chain such
that for some function f ≥ 0, there exist K,γ > 0 such that for any initial state y with
f (y) > K , the inequality Ey(f (Y1) − f (Y0)) ≤ −γ holds. Assume that there exists
a random variable Z such that for any initial state y, Z dominates stochastically the
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random variable f (Y1) − f (Y0) under Py . Assume finally that E(eλZ) < +∞ for
some λ > 0. Then there exist η > 0 and 0 ≤ C < +∞ such that for any initial state y,

sup
n≥1

Ey

(
eηf (Yn)

) ≤ eηf (y) + C.

Proof For any 0 < ε ≤ λ,

Ey

(
eεf (Yn+1)

) = Ey

(
EYn

(
eε(f (Y1)−f (Y0))

)
eεf (Yn)1{f (Yn)≤K}

)

+ Ey

(
EYn

(
eε(f (Y1)−f (Y0))

)
eεf (Yn)1{f (Yn)>K}

)
. (8)

Since by assumption, f (Y1) − f (Y0) under Py is stochastically dominated by Z for
every y, one gets

EYn

(
eε(f (Y1)−f (Y0))

) ≤ E
(
eεZ

) = E
(
eλZ

) def= D

and therefore

Ey

(
EYn

(
eε(f (Y1)−f (Y0))

)
eεf (Yn)1{f (Yn)≤K}

) ≤ DeεK. (9)

For the second term, we apply Lemma 4 to the random variable f (Y1)−f (Y0) under
PYn :

EYn

(
eε(f (Y1)−f (Y0))

) ≤ 1 + εEYn

(
f (Y1) − f (Y0)

) + cε2.

Thus, on the event {f (Yn) > K}, one gets

EYn

(
eε(f (Y1)−f (Y0))

) ≤ 1 − γ ε + cε2 def= ρε (10)

and finally

Ey

(
EYn

(
eε(f (Y1)−f (Y0))

)
eεf (Yn)1{f (Yn)>K}

) ≤ ρεEy

(
eεf (Yn)

)
. (11)

Gathering the two bounds (9) and (11) in (8) finally gives

Ey

(
eεf (Yn+1)

) ≤ ρεEy

(
eεf (Yn)

) + DeεK

which leads by induction to

Ey

(
eεf (Yn)

) ≤ ρn
ε eεf (y) + 1 − ρn+1

ε

1 − ρε

DeεK.

Let η = (ε/(2γ )) ∧ λ. From the definition of ρε in (10), one can easily check that
0 < ρη < 1. Therefore, choosing ε = η gives the result. �

Theorem 4 will be applied to the Markov chain (X(t4n)) with a function f of the

form σκ
def= σ + κR for some κ > 0 suitably chosen. (X(t4n)) is not the most natural

choice at first glance, but it appears to be needed because of the complexity of the
state space.
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By Lemma 2, σ(t1) − σ(t0) ≤ A(t1) + 1 and clearly R(t1) − R(0) = A(t1) − 1, so
that

σκ(t4) − σκ(t0) ≤ (κ + 1)
(
A(t1) + · · · + A(t4)

) + 4

and therefore, by Lemma 3, σκ(t4) − σκ(t0) is stochastically dominated by some
random variable Z with an exponential moment. Therefore, one has to establish a
negative drift relation for σκ(t4) − σκ(t0) in order to apply Theorem 4 to the frag-
mentation process (X(t4n)). This is the purpose of the following two subsections.
The most delicate part is to control the term σ(t4) − σ(t0), which is the objective of
the following section.

5.2 Evolution of the number of fragments

Let x ∈ S , the initial state of the system, have r active channels, and define the total
available gap size h = 1 − (s1+· · ·+sr ). Time 0, referring to the initial state x, will
usually be omitted; e.g., σ(0),F (0),G(0), . . . will be simplified to σ,F,G, . . . . The
quantity �σ(tn) is defined in (3) as σ(tn) − σ(tn−1).

Lemma 5 Fix 0 < ε < 1 and 0 < η < 1/2, and let x ∈ S be an initial state such that
σ = G + F ≥ 2K + 1 for some fixed K ≥ 0.

Then F = N0 + N1 + N2 ≥ K , and

(1) If r = 1, then Ex(�σ(t1)) ≤ ξ − K .
(2) If r > 1 and N0 + N1 ≥ εK , then

Ex

(
�σ(t1)

) ≤ ξ + 1 − εK

r
.

Assume in the remaining cases that r > 1, define K ′ = K((1 − ε)/r − ε)+, and
let i∗ ∈ {1, . . . , r} index a channel Li∗ in x with the most type-2 fragments.

(3) If N0 + N1 ≤ εK and u > h + si∗ , then

Ex

(
�σ(t2)

) ≤ ξ + 2 − K ′

r(r − 1)
. (12)

(4) If N0 + N1 ≤ εK , u < h + si∗ and h + si∗ < ηα, then

Ex

(
�σ(t3)

) ≤ ξ + 2 − (1 − η)K ′

r2(r − 1)
. (13)

(5) If N0 + N1 ≤ εK , u < h + si∗ and ηα < h + si∗ , then there exists a γ (η) > 0
such that

Ex

(
�σ(t4)

) ≤ ξ + 2 − γ (η)K ′

r5
. (14)

It follows that there exists a ξ > 0 and a function ψ(r) > 0 such that for any x with
σ ≥ 2K + 1,

Ex

(
σ(t4) − σ

) ≤ ξ − Kψ(r). (15)
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Proof As is readily verified, G ≤ F +1, so 2K +1 ≤ σ = F +G ≤ 2F +1, and hence
F ≥ K as claimed. In what follows, we use repeatedly the two following simple facts:

Ex

(
D0(t1) + D1(t1)

) = (N0 + N1)/r, (16)

and by Lemma 1,

G ≥ K ⇒ N0 + N1 ≥ K − 1. (17)

– First case: r = 1. In this case, right after the only channel initially present leaves,
there is no channel allocated bandwidth, and therefore, σ(t1) = A(t1). Note that r = 1
is only possible when α > 1/2, and in this case the possibility for a channel to be
alone is crucial in the proof of the Harris recurrence stated in Theorem 3.

– Second case: r > 1, N0 + N1 ≥ εK . Under these assumptions, the inequality
follows from (4):

Ex

(
�σ(t1)

) ≤ ξ + 1 − Ex

(
D0(t1) + D1(t1)

) = ξ + 1 − N0 + N1

r
≤ ξ + 1 − εK

r
.

In the 3 remaining cases, let N∗
j denote the number of type-j fragments in

any channel i∗ which has the most type-2 fragments. If N0 + N1 ≤ εK , then
since F ≥ K , necessarily N2 ≥ (1 − ε)K and N∗

2 ≥ (1 − ε)K/r . Define the event
D∗ = {channel Li∗ leaves at t1} and recall that G− denotes the number of gaps right
after Li∗ leaves but before new admissions, if any, are made. It follows from (5) that
G− ≥ K ′ in the event D∗, since

G− = G − N∗
0 + N∗

1 + J (t1) ≥ (−εK + (1 − ε)K/r
)+ = K ′.

The remaining analysis tacitly assumes that r > 1, that N0 + N1 ≤ εK , and that the
channel Li∗ leaves at t1.

– Third case: u > h + si∗ . Under this condition, A(t1) = 0, since when Li∗ leaves
it does not provide enough additional bandwidth for U . In particular, R(t1) = r − 1
and G(t1) = G− ≥ K ′, and so

Ex

(
�σ(t2)

) ≤ ξ + 1 − Ex

(
D0(t2) + D1(t2);D∗).

The strong Markov property makes it possible to lower-bound this last term.

Ex

(
D0(t2) + D1(t2);D∗) = Ex

(
EX(t1)

(
D0(t1) + D1(t1)

);D∗)

= Ex

(
(N1 + N2)(t1)

R(t1)
;D∗

)

≥ K ′ − 1

r − 1
Px

(
D∗) = K ′ − 1

r(r − 1)

and therefore, Ex(�σ(t2)) ≤ ξ + 2 − K ′/(r(r − 1)).
– Fourth case: u < h + si∗ < ηα. In this case U is admitted at t1. Thus it makes

sense to define the event

E4 = D∗ ∩ {U leaves at t2 and U1 > ηα}.
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Then as before

Ex

(
�σ(t3)

) ≤ ξ + 1 − Ex

(
D0(t3) + D1(t3);E4

)
.

In the event E4, U is admitted at t1 and leaves at t2, while U1 stays blocked at t1 and
t2, so that G(t2) = G− ≥ K ′ and R(t2) = r − 1. Hence as in the second case,

Ex

(
D0(t3) + D1(t3);E4

) ≥ K ′ − 1

r − 1
Px(E4) ≥ (1 − η)K ′

r2(r − 1)
− 1

since Px(E4) = (1 − η)/r2. Thus (13) holds.
– Fifth case: u < h + si∗ and ηα < h + si∗ . Again, U is admitted at t1. Letting Ui

denote the sizes of the requests behind U , define the event

B = {Ui < ηα, i = 1, . . . , τ and Uτ+1 > 2ηα}

with τ = inf{n ≥ 0 : U1 + · · · + Un > h + si∗ − ηα} and E′
5 = D∗ ∩ B ∩

{U leaves at t2}. It is readily verified that 1 ≤ τ < +∞ almost surely. Moreover,
one has in E′

5

0 < h∗ def= h + si∗ − (U1 + · · · + Uτ ) < ηα < Uτ+1.

This means that at t2, exactly τ new requests U1, . . . ,Uτ have been admitted, and
Uτ+1 is blocked. Moreover, for any i ∈ {1, . . . , τ }, one has h∗ + Ui < 2ηα < Uτ+1,
so that if one of the τ channels allocated to the (Ui) leaves, Uτ+1 remains blocked.

When Li∗ left, there were G− ≥ K ′ gaps; in the remainder of the analysis, we call
an initial gap a gap present right after Li∗ left. After Li∗ left, U and A(t1) − 1 new
requests were admitted, and then U left and A(t2) new requests were admitted at t2.
Thus, at t2, each initial gap is in either of two states: either it is completely filled, or
it is still a gap, i.e., it has not been filled completely. Let k be the number of initial
gaps completely filled at t2, and let k′ = G− − k: then k + k′ = G− ≥ K ′. In each
initial gap completely covered at t2, there is at least one type-2 fragment of one of
the τ new channels. Therefore, N1,2 +N2,2 + · · ·+Nτ,2 ≥ k with Ni,2 the number of
type-2 fragments of the channel corresponding to U . In particular there is a channel
Lj∗ , j∗ ∈ {1, . . . , τ } with at least the average k/τ of type-2 fragments: Nj∗,2 ≥ k/τ .
Define finally the event E5 = E′

5 ∩ {Lj∗ leaves at t3}. Since h∗ + Uj∗ < Uτ+1, then
Uτ+1 remains blocked at t3 when E5 occurs, and therefore (note that when j∗ leaves,
some gaps may merge, but not two initial gaps),

G(t3) ≥ Nj∗,2 + k′ ≥ k/τ + k′ ≥ (
k + k′)/τ ≥ K ′/τ.

Now we proceed as before to obtain

Ex

(
�σ(t4)

) ≤ ξ + 1 − Ex

(
D0(t4) + D1(t4);E5

)

and, using the Markov property at time t3,
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Ex

(
D0(t4) + D1(t4);E5

) = Ex

(
EX(t3)

(
D0(t1) + D1(t1)

);E5
)

= Ex

(
(N0 + N2)(t3)

R(t3)
;E5

)

≥ Ex

(
(K ′/τ − 1)+

r + τ − 2
;E5

)

since R(t3) = r + τ − 2 in E5. The same kind of reasoning as before then leads to

Ex

(
(K ′/τ − 1)+

r + τ − 2
;E5

)

≥ K ′

r5
f (η,h + si∗ − αη) − 1

with the function f (η, ·) defined for y > 0 by

f (η, y) = E
((

1 + τ(y)
)−5;B(η,y)

)

with τ(y) = inf{n ≥ 1 : U1 + · · · + Un ≥ y} and

B(η,y) = {
Ui < ηα, i = 1, . . . , τ (y) and Uτ(y)+1 > 2ηα

}
.

It is not difficult to show that γ (η) = inf0<y<1 f (η, y) > 0, which then gives the
result.

It remains to prove (15). One only needs to assemble the various bounds, taking
into account that Ex(�σ(ti)) ≤ ξ + 1 for any x ∈ S and i ≥ 0, to arrive at 4 separate
bounds on Ex(σ (t4)−σ). For example, using the former bound for the first two terms
and the last term of Ex(σ (t4) − σ) = ∑

1≤i≤4 Ex�σ(ti) and then the bound in (13)
for the third term, we find that one of the four bounds, which applies when x satisfies
the inequalities of the fourth case, is

Ex

(
σ(t4) − σ

) ≤ 4ξ + 5 − (1 − η)K ′

r5

Computing the minimum over these bounds with η = 1/4 and ε = 1/r2, one ob-
tains (15) after setting ξ = 4ξ + 5 and

ψ(r) = ϕ(r)

r6
× (

(1 − η) ∧ γ
)

with ϕ(r) = 1 − 2r−2. This concludes the proof. �

The bound (15) gives a negative drift for σ when the term Kψ(R(0)) is large
enough. But ψ(r) vanishes when r goes to infinity, and so this bound cannot yield a
drift uniformly negative, the problem occurring when R(0) is large. For this reason
σ is not a Lyapunov function but the simple modification σκ = σ + κR introduced
earlier is. The purpose of the additional term κR is precisely to give a negative drift
when R(0) is large.
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5.3 Construction of a Lyapunov function

Since the variation �R(tk) in the number of channels at a departure is exactly equal
to A(tk) − 1, one readily gets that

σκ(t4) − σκ = (
σ(t4) − σ

) + κ
(
A(t1) + · · · + A(t4) − 4

)

with σκ = σ +κR. In particular, if x ∈ S is such that σ ≥ 2K +1 and r = R(0) ≤ K1
for some K1 ≥ 0, then (from now on, we assume without loss of generality that the
function ψ given by (15) in Lemma 5 is decreasing)

Ex

(
σκ(t4) − σκ

) ≤ ξ − Kψ(K1) + 4κ(ξ − 1)

whereas if r ≥ K1,

Ex

(
σκ(t4) − σκ

) ≤ 4(ξ + 1) + κEx

(
r(t4) − r

)

and so we see that we only need to control Ex(R(t4) − r) for r large. In this case,
the negative drift comes from the fact that, except perhaps at t1, with high probability
there is no admission at a departure, since the channel that leaves is small with high
probability.

Lemma 6 There exist K1, γ1 > 0 such that if x ∈ S is such that r = R(0) ≥ K1, then
Ex(R(t4) − r) ≤ −γ1.

Sketch of Proof The proof of this inequality is easier than the proof of Lemma 5, we
only give a sketch of it. From s1 + · · · + sr = 1 − h ≤ 1 one gets #{i : si ≥ γ } ≤ 1/γ ,
and therefore, Px(si1 ≥ 1/

√
r) ≤ 1/

√
r with Li1 , i1 ∈ {1, . . . , r}, the channel that

leaves at t1. Thus, when r is large, with high probability a small channel leaves.
If h − u is away from α, then the event {u1 > h − u + si1 + · · · + si4} (with ik

defined similarly) has high probability, and in this event A(t1) + · · · + A(t4) ≤ 1. If
in contrast h − u is large, then with high probability U1 is admitted and with high
probability h−u−U1 is away from α; hence we can do the same again, and get that,
with high probability, A(t1) + · · · + A(t4) ≤ 2. �

Gathering Lemma 6 and the bound (15) we can now prove that for κ suitably
chosen, the function σκ = σ + κR is indeed a Lyapunov function.

Proposition 1 (Lyapunov function inequality) There exist κ and K > 0 such that if
x ∈ S is such that σκ ≥ K , then Ex(σκ(t4) − σκ) ≤ −1.

Proof Let K1 and γ1 be given by Lemma 6, and take κ and K as follows:

κ = 4ξ + 5

γ1
and K = 8ξ + 2ξ + 2

ψ(K1)
+ κK1 + 1.

Assume that σκ ≥ K . If r = R(0) ≥ K1, then

Ex

(
σκ(t4) − σκ

) ≤ 4(ξ + 1) − κγ1 = −1.



Queueing Syst (2012) 71:293–320 313

Otherwise, r ≤ K1, and since σκ ≥ K , this necessarily gives σ ≥ K − κK1 = 2K̂ + 1
with K̂ = (K − κK1 − 1)/2. Thus,

Ex

(
σκ(t4) − σκ

) ≤ ξ − K̂ψ(K1) + 4ξ = −1

and the proposition follows. �

5.4 Proof of Theorem 2

Theorem 4 and Lemma 3 applied to the Markov chain (X(t4n), n ≥ 0), and the func-
tion σκ show that for some η > 0 and some constant 0 ≤ C < +∞,

sup
n≥0

Ex

(
eησκ (t4n)

) ≤ eησκ + C.

Then the Markov property gives for any i ≥ 0

sup
n≥0

Ex

(
eησκ (t4n+i )

) ≤ Ex

(
eησκ (ti )

) + C < +∞

from which (7) follows readily.

5.5 Proof of Theorem 3

In the following discussion, no conceptual argument is missing, only some formalism
needed to handle the continuous state space S . These details are routine and left to
the interested reader. In the analysis below, requests are said to be big if their size
exceeds 1/2.

We argue that (X(t)) visits infinitely often a state in which there are no fragmented
channels, and such that all size distributions remain the same at all visits. This is
enough to show Harris recurrence; see for instance Asmussen [2]. For this purpose,
it is convenient to pick a simple regeneration set E ⊂ S in which (i) the spectrum
is being used by a big request, alone and with an unfragmented channel of the form
(0, b), and (ii) the request U waiting at the head of the queue is also big. Each of these
has the conditional request-size distribution given that its size is larger than 1/2, i.e.,
the uniform distribution on (1/2, α), see [13].

To verify that E is visited infinitely often, consider the process (R(t),U(t)) with
R(t) the number of requests allocated a channel at time t and U(t) the size of the
request at the head of the queue; the process (R(t),U(t)) is simply the process (X(t))

when the data on fragmentation is ignored. This process is positive Harris recurrent,
as shown in Kipnis and Robert [13]. In particular it visits infinitely often states with
R(t) = 1 and U(t) > 1/2; one can add U1(t) > 1/2 as well (i.e., the first request
in line behind the head of the queue request is also big), since this happens with a
geometric probability. Then when the only channel leaves, the process (X(t)) enters
E, since there is exactly one channel, it is big, it is necessarily unfragmented and
of the form (0, b), and a big request is waiting at the head of the queue. Moreover,
this argument shows that the time between visits to E is integrable, which in turn
establishes positive Harris recurrence. This completes the proof.
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6 Algorithms

Although the focus so far has been on measures of fragmentation as a function of α,
algorithmic issues are also of obvious interest. For example, more uniform patterns
of gaps might be an advantage. The linear scan LS discussed in the previous sec-
tions, tends to push the gaps towards the end of the spectrum, particularly when the
spectrum is viewed at random times in steady state. Interestingly, our experiments
have shown that, for all α < 1/3, the starting position of the first gap in the spectrum
remains very close to 0.64.

To uniformize gap locations, an alternative gap scan resembles the circular-scan
sequences of dynamic storage allocation [14]. In our case, circular scan (CS) uses
a gap list, in which the successor to the last gap in [0,1] is the first gap in [0,1].
The scan is still linear like LS, but the starting gap of the scan moves as follows: if
the last fragment of a channel is placed in gap g, then the residual gap of g is the
first gap scanned in constructing the next channel. Clearly, although CS will tend to
uniformize gap sizes as a function of position, boundary effects will persist so long as
the spectrum itself is not circular, i.e., gaps and fragments are not allowed to overlap
the end of the spectrum, a restriction that would likely be dictated in practice.

The average number of fragments per channel is a direct measure of gap-search
times, and one that we use here. For values of α expected to be of interest in applica-
tions, the effects of a circular scan on gap-search times are only within a few percent
relative to LS, as can be seen in Fig. 7. The figure also shows the average number of
fragments per channel for LFS. This algorithm is designed to speed up the process
of finding a set of gaps sufficient to create a new channel. It selects available gaps
in a decreasing order of their sizes and allocates them to a request, thereby greed-
ily minimizing the number of gaps needed to fulfill a request. The extra mechanism
needed for such a search will of course tend to reduce overall performance gains.
The results in Fig. 7 for LFS show a surprisingly large improvement in the average
number of fragments per channel—as can be seen, a reduction by a factor more than
3 is achieved for even moderately small α.

The Probability Mass Functions (pmf’s) of the number of fragments per channel
are shown in Fig. 8. Notice that while all probabilities are small under LS and CS, the
largest applies to the case of no fragmentation at all. The much more peaked distribu-
tion for LFS has both much smaller mean and variance: The standard deviation under

Fig. 7 Average number of
fragments per channel
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Fig. 8 Distribution of the
number of fragments per
channel for α = 0.1

Fig. 9 G/R → 1/2 as α → 0
under LS, LFS, and CS

the linear algorithms is approximately 1.5 to 2.0 times that under LFS. The same
limiting behavior called for by the 50 % law holds for CS and LFS, which was to be
expected, as the arguments supporting the 50 % law did not depend on the sequence
in which gaps were scanned. But an interesting result of our experiments with CS is
that the 50 % approximation to expectation of the ratios is within a couple of percent
even when the maximum request size is as much as one fifth of the spectrum size. This
is easily seen in Fig. 9. The convergence rate of LFS to 50 % is intermediate between
LS and CS.

7 Normal approximations

After the usual scaling (i.e., first centering then normalizing by the standard devi-
ation), the scaled version of the number of channels, R, tends in probability to the
standard Normal, N (0,1), as M → ∞, where M = �1/α� (it is convenient to ex-
press the asymptotics in this section in terms of M). This result follows easily from
the corresponding heavy-traffic limits in [4, 5], and the ergodicity of (R(t)).

Interestingly, it was discovered in the experiments that a normal-limit law also
appears to hold for the total number F of fragments as M → ∞ (see for example
Fig. 10). This is not surprising, since F is the sum over all requests in system of
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Fig. 10 Distributions of the
total number of fragments and
corresponding normal fits

the numbers Fi, 1 ≤ i ≤ R, of fragments allocated to requests. The requests have a
mutual dependence, but one whose effect can be expected to weaken for large M . As
illustrated in Fig. 7, the mean of Fi is proportional to M . Our experiment indicate
that the standard deviation of Fi is also approximately proportional to M . Hence, if
p→ denotes convergence in probability as M → ∞, then

F − βM2

θM3/2

p→ N (0,1) (18)

with β ≈ 1.5 and θ ≈ 0.9 formalizes the normal-limit law suggested by our experi-
ments.

Note the two departures from the standard Central Limit Theorem set-up. First,
consistent with the linear fragmentation observation, individual request fragmenta-
tion scales linearly in M , so that the total number of fragments scales as M2. Restat-
ing the limit law in terms of the sums of random variables (Fi/M) clearly eliminates
this discrepancy. Second, the number of channels (R) is random and satisfies the
normal-limit law discussed above. Thus, the plausibility of (18) requires an appeal
to Central Limit Theorems for random sums (e.g., see [9, p. 258], for an appropriate
version). Finally, Fig. 10 gives some idea of the convergence of the fits to the normal
density; as can be seen, fits for α ≤ 0.1 are indeed close to the simulation data.
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Fig. 11 Distributions of the
total number of fragments for
α = 0.1 and the corresponding
normal fits

Fig. 12 Distributions of the
number of gaps at different
epochs for α = 0.01

We note that the normal approximations shown for the total number of fragments
under LS were also found to hold under CS and LFS. This is illustrated in Fig. 11.

The distributions of the number of gaps at different epochs are shown in Fig. 12.
The distribution at a random time shows a decreasing pmf. What appeared to be yet
another normal approximation was discovered when looking at the first-admission
pmf in Fig. 12; this is the distribution as seen by the first admission immediately after
a departure at just those epochs when there is at least one admission. The third curve
is the pmf of the number, G−, of gaps as seen right after departures, but before deter-
mining whether or not the head of the queue fits in the total available bandwidth. The
fit to the Normal density is also illustrated in the figure. The proof of a similar limit
law for Renyi’s space-filling problem can be found in [6], but extension of known
techniques once again faces the difficult challenges posed by our more difficult frag-
mentation problem.

8 Conclusions

The results of this paper prepare the ground for further research on several fronts. Be-
fore listing a number of the more important ones, we review what we have learned.
Our experiments brought out first an unexpected reappearance of a 50 % rule relating
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the expected numbers of gaps and channels in the limit of small request sizes relative
to the spectrum size. In our case, we were able to prove the limit law. Also, exper-
imental results described a linear relationship between the inverse of the maximum
request size, α, and the expected number of fragments into which a request was di-
vided at the time of allocation. Interestingly, the smaller α was taken, the greater was
the resulting fragmentation of requests.

Our stability results established the beginning of a mathematical foundation of
fragmentation processes. Particularly, we showed that for α > 1/2, the fragmen-
tation process is Harris recurrent. For general α, we proved that the total num-
ber of fragments is bounded in expected value. We examined alternative algo-
rithms for sequencing through the available gaps and showed that using the largest-
first-scan algorithm leads to significantly less fragmentation than using the linear-
scan and circular-scan algorithms. Finally, we exhibited experimentally a limiting,
small-α behavior in which, with appropriate scaling, distributions tend to the nor-
mal.

A broad direction for further research is in extending the parameters of our math-
ematical model. For instance, while Uniform distributions are generally the assump-
tion of choice in fragmentation models, it would be interesting to see what new effects
are created by other distributions of request size, e.g., by varying a in the generalized
uniform distributions on [0, α], with densities xa/αa+1. The exponential residence-
time assumption is likely to yield simplifications to analysis, but changes in behavior
resulting from other distributions are worth investigating. Moreover, instead of a sys-
tem operating at capacity, in which there is always a request waiting, one could adopt
an underlying, fully stochastic model of demand; e.g., a Poisson arrival process, as
found in [13].

More realistic, but in all likelihood significantly more difficult models, would
relax the independence assumptions. A prime example appropriate for Dynamic
Spectrum Access applications would be allowing residence times to depend on
fragmentation, the greater the fragmentation of a request, the longer its residence
time.

The results regarding the performance of the different algorithms imply that the
algorithms’ design should also be considered carefully. Some examples of algorithms
that come to mind will aim to better fit the fragments into the available gaps. A more
challenging objective would be to develop algorithms that take into account spectrum
sensing capabilities during the gap allocation process.

Finally, another broad and very important avenue of research that introduces more
realistic models discretizes request sizes and the bandwidth allocation process (as is
being done while allocating OFDM subcarriers). As in other models of fragmenta-
tion, the continuous limit represented in this paper may conceal important effects, or,
conversely, it may introduce effects not present in discrete models. We are actively
pursuing this avenue of research.
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Appendix: Tool validation

In the first test of the simulation tool, we allowed arrivals, discretized the spectrum
size, and fixed the requested bandwidth, in such a way that the system reduced to a
conventional M/M/k queue. We then matched simulation results with those obtained
from classical formulas. In all cases checked, the error compared to the exact results
was negligible.

Keeping with our continuous model operating at capacity with random bandwidth
requests, one finds that there are very few explicit results for measures of interest,
even for the process R(t) for the number of channels in the system. Those that do
exist can be found in [13] along with the elegant formula below, which unfortunately
requires calculations that are rarely tractable.

Theorem 5 (Kipnis and Robert [13]) Let Sn denote the sum of n i.i.d. request sizes.
Then, the maximum throughput (expected number of requests in the system) is

E(R) = 1
∑+∞

n=1(1/n)P(Sn ≤ 1 < Sn+1)

= 1
∑+∞

n=2

(
1/n(n − 1)

)
P(Sn > 1)

.

A system with requests that are uniformly distributed on [0,1] is one case that
admits of a simple formula. Here, the density of Sn on [0,1] is zn−1/(n − 1)!, and so
an easy calculation gives

E(R) = 1

e − 2
= 1.392 . . . .

Transform methods are used in [13] to evaluate E(R) for other values of α. In par-
ticular, computations are based on the (numerical) inversion of a Fourier–Laplace

Table 1 Averages R, computed from our experiments, vs. the corresponding values E(R), obtained from
the numerical computations in [13], for various values of α. Except for the case α = 1, the latter results
were given to two decimal digits only

α E(R) R

0.05 39.51 39.325

0.1 19.4 19.317

0.15 12.69 12.653

0.2 9.34 9.306

0.25 7.32 7.303

0.3 5.98 5.961

0.35 5.01 5.003

0.4 4.28 4.275

0.45 3.71 3.709

0.5 3.29 3.281

α E(R) R

0.55 2.9 2.892

0.6 2.54 2.541

0.65 2.26 2.261

0.7 2.04 2.039

0.75 1.87 1.868

0.8 1.73 1.731

0.85 1.62 1.621

0.9 1.53 1.531

0.95 1.45 1.456

1 1.392 1.392
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transform. To evaluate the accuracy of our simulator, we checked our experimental
results against the computations for the values of α shown in Table 1. As can be seen,
the numerics agree well with simulations.
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