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Résumé

Le but de cette thése est de traiter quatre problémes motivés par les réseaux
de communication modernes ; les outils appropriés pour résoudre ces problémes ap-
partiennent a la théorie des probabilités. La résolution de ces problémes améliore la
compréhension des systémes physiques initiaux, et contribue en méme temps a la
théorie puisque de nouveaux résultats théoriques, intéressants en soi, sont prouvés.

Deux types de réseaux de communication sont considérés. Les réseaux mobiles
sont ces réseaux ou les clients se déplacent dans le réseau indépendamment du
service qu’ils regoivent ; contrairement aux réseaux de files d’attente classiques, les
transitions des clients ne sont pas liées aux fins de service. Dans les réseauzr pair-
a-pair, la distinction entre client et serveur est abolie, puisque dans ces réseaux un
serveur est un ancien client qui offre le fichier aprés 'avoir téléchargé. Ces derniers
réseaux sont particuliérement efficaces pour disséminer des fichiers gros ou popu-
laires.

Dans les Chapitres I et II, le comportement stationnaire de tels réseaux est
considéré. Dans chaque cas, le réseau est décrit par un processus de Markov a espace
d’état discret et a temps continu, et I’'on s’intéresse a son ergodicité ou au contraire
a sa transience. Une spécificité de ces deux modéles est que les taux de transition
des processus de Markov correspondants sont non bornés : dans le cas du réseau
mobile du Chapitre I ceci est dii au fait que les clients bougent indépendamment
les uns des autres, alors que pour le réseau pair-a-pair du Chapitre II, cela tient au
fait que la capacité du systéme est proportionnelle au nombre de clients.

Habituellement, I’analyse de la stabilité d’un réseau stochastique se fait par
I’étude des limites d’une suite de processus de Markov correctement renormalisés,
appelées limites fluides. Cette procédure est bien adaptée pour les processus “locale-
ment additifs”, i.e., les processus qui se comportent localement comme des marches
aléatoires ; cette propriété disparait quand les taux de transition sont non bornés.
Ces techniques sont néanmoins adaptées pour étudier la stabilité du réseau mobile
du Chapitre I : utiliser des limites fluides pour étudier la stabilité de processus de
Markov avec des taux de transition non bornés représente I'une des contributions
de ce travail.

Le réseau pair-a-pair du Chapitre II ne se préte quant & lui pas a ces tech-
niques, et la stabilité découle alors de I'existence d’une fonction de Lyapounov. Un
autre ingrédient clef est lié & une classe spéciale de processus de branchement. Ces
nouveaux processus de branchement sont définis et étudiés dans le Chapitre II, et
des estimations sur leur temps d’extinction permettent, avec des arguments de cou-
plage, d’établir des résultats de stabilité du réseau stochastique.

vii



viii Résumé

Outre le comportement stationnaire des réseaux pair-a-pair, leur comportement
transient peut aussi étre étudié : ce comportement est ’objet du modéle simple du
Chapitre III. Ce modéle se concentre sur 'initialisation d’un réseau pair-a-pair dans
un scénario d’arrivée en masse : au temps ¢ = 0, un pair propose un nouveau fichier
que N autres pairs veulent télécharger. Contrairement au modéle du Chapitre II,
ici le flot d’arrivée de nouvelles requétes n’est pas stationnaire, il est initialement
trés intense puis le devient de moins en moins. Bien que le systéme démarre avec un
serveur et beaucoup de clients, le nombre de serveurs disponibles augmente avec le
temps et 'on s’intéresse au temps nécessaire pour que le réseau se mette a niveau
avec la grande demande initiale. Ce probléme engendre un probléeme de boules et
d’urnes intéressant en soi, qui est traité dans le Chapitre IV.

Dans ce probléme de boules et d’urnes, la distribution de probabilité qui décrit
la maniére dont les boules sont jetées est aléatoire : il s’agit donc d’'un probléme
de boules et d’urnes en environnement aléatoire. De plus, les boules sont jetées
dans un nombre infini d’urnes. Les problémes de boules et d’urnes avec une infinité
d’urnes sont bien étudiés, mais les résultats sur les problémes de boules et d’urnes
en environnement aléatoire sont peu nombreux. Quand il y a une infinité d’urnes,
on peut s’intéresser & des quantités géométriques telle que 'emplacement de la
premiére urne vide. De telles quantités ont parfois été étudiées dans des travaux
antérieurs, en environnement déterministe : ici, grace a 'utilisation de processus
ponctuels, nous décrivons d’un coup tout le paysage des premiéres urnes vides, ce
qui différe des travaux précédents.

En résumé, cette thése contribue a la modélisation des réseaux mobiles et pair-
a-pair ; d’un point de vue technique, des problémes liés & la stabilité des processus
de Markov, aux processus de branchement et aux problémes de boules et d’urnes
sont résolus.



Summary

The goal of this thesis is to solve four problems motivated by modern com-
munication networks; the appropriate tools to solve these problems belong to the
theory of probability. Solving these problems gives insight into the original physi-
cal systems, and contributes at the same time to the theory since new theoretical
results of independent interest are proved.

Two kinds of communication networks are considered. Mobile networks are
these networks where customers perform trajectories within the network indepen-
dently of the service they receive; in contrast with classical queueing networks,
transitions of customers are not triggered by service completions. In peer-to-peer
networks the distinction between clients and servers is abolished, since in these net-
works a server is a former client that offers a file once it has downloaded it. These
last networks are especially efficient in spreading large or popular files.

In Chapters I and II, the stationary behavior of such networks is considered.
In each case, one describes the network through a discrete state-space, continuous
time Markov process, and establishes its ergodicity or transience. A specificity of
these two models is that the transition rates of the corresponding Markov processes
are unbounded: in the case of the mobile network of Chapter I this is due to the
fact that customers move independently of one another, while for the peer-to-peer
network of Chapter II this is because the capacity of the system is proportional to
the number of customers.

Classically, to analyze the stability of a stochastic network, one can study the
limits of a sequence of suitably rescaled Markov processes, the so-called fluid limits.
This scaling is well suited for “locally additive” processes, i.e., processes which lo-
cally behave as random walks; this is however not the case when the transition rates
are unbounded. These techniques are nonetheless adapted to study the stability of
the mobile network of Chapter I: using fluid limits to study the stability of Markov
processes with unbounded transition rates represents one of the contributions of
this work.

The peer-to-peer network of Chapter II is not amenable to the same techniques,
and Lyapounov type arguments are used. Another additional key ingredient is re-
lated to a special class of branching processes. These new branching processes are
defined and studied in Chapter II, and estimates on their extinction time make it
possible, thanks to coupling arguments, to derive stability results on the stochastic
network.

In addition to the stationary behavior of peer-to-peer networks, their transient
behavior can also be studied: this is the object of the simple model of Chapter III.



X Summary

It focuses on the initialization of a peer-to-peer network under a flash crowd sce-
nario: at time ¢ = 0 a peer proposes a new file that N other peers are interested
in downloading. In contrast to the model of Chapter II, here the flow of incoming
requests is not stationary, it is initially very intense and then becomes sparser and
sparser. Although the system starts with one server and many clients, as time
goes by there are more and more servers available and one is interested in the time
needed for the network to cope with the initial high demand. This problem triggers
a bins and balls problem of independent interest, which is treated in Chapter IV.

In this bins and balls problem, the probability distribution that describes how
balls are thrown is random: it is therefore a bins and balls problem in random
environment. Moreover, balls are thrown in an infinite number of bins. Bins and
balls problem with an infinite number of bins are well-studied, but results on bins
and balls problems in random environment are scarce. When there are infinitely
many bins, one can be interested in geometric quantities, such as the index of
the first empty bin. Such quantities were sometimes studied in earlier works and
in a deterministic environment; here, using point processes, we could describe at
once the whole landscape of the first empty bins, which differs from previous works.

In summary this thesis contributes to the modeling of mobile and peer-to-peer
networks; from a technical standpoint it solves problems related to the stability of
Markov processes, to branching processes and to bins and balls problems.



Since applications inevitably involve simplifying
assumptions that focus on some features of a problem
at the expense of others, it is advantageous to begin
by thinking about simple experiments, such as tossing
a coin or rolling dice, and later to see how these
apparently frivolous investigations relate to important
scientific questions.

— Encyclopadia Britannica, article Probability Theory

Basic research is like shooting an arrow into the air
and, where it lands, painting a target.

— Homer Burton Adkins, American chemist
(1892-1949)






Introduction

Foreword

“Really, there are new things to discover in mathematics?”: since I started
my Ph.D., T have been faced many times in casual conversations with this simple
question. Although the general public is probably convinced that mathematics is
useful, this recurrent question makes me believe that they need to be convinced
that current mathematical research is relevant as well. This is maybe due to the
way everyone is exposed to mathematics in early education, which can give the
impression that it is carved in stone.

Actually, mathematics is a very lively field, and one of the reasons for that is
that it is derived from real-world problems. If a (necessarily fuzzy) line had to be
drawn between pure and applied mathematics, one could probably say that pure
mathematics studies abstract objects in their own right, whereas in applied math-
ematics one usually has a concrete motivation in mind, however remote.

Within this definition, the area of applied mathematics would for instance
include the fields of optimization and of numerical analysis, as well as another field
most important here, namely probability theory.

Interest in probabilistic questions arose in connection with games of chance. In
the 17th century, Pascal tried to answer to the following problem asked by Chevalier
de Méré: suppose two players play a certain game, whose winner is the one who wins
at least four out of seven series, and are interrupted before they can finish. How
should the stake be divided among them if, say, at the time they are interrupted one
has won three series and the other one? It is clear that the player who has already
won three series is more likely to end up winning, and should therefore get a larger
share of the stake; however the possibility that the other player eventually wins
cannot be completely ruled out. Intuitively, the stake should be divided according
to the probability of each player of winning the game, given the current situation
when the game was interrupted. Probability theory makes it possible to evaluate
this probability, but only within a well-defined mathematical model.

Indeed, to answer to this question a probabilist needs to make mathematical
assumptions. For instance, one can assume that the game is memoryless and fair,
i.e., the results of two different series are independent and each time each player
wins or loses with equal probability; one can then compute that the player who
has already won three games will win with probability 7/8. However this answer
heavily depends on the assumptions made, and the model can be refined to ac-
count for the fact that the players can learn from the previous series, or that one
player is better than the other, etc... Although games of chance, and related fields
such as insurance or finance, provide a natural framework for probability theory,
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2 Introduction

probabilistic models appear in many other settings as well, such as engineering,
chemistry, biology, physics, ....

In the engineering for instance, one is interested in the failure of machines
in supply chains, and a good understanding of these events makes it possible to
efficiently dimension the supply chain, e.g., the number of spare machines. In
chemistry, molecules in a medium move randomly and interact when they meet, so
that the frequency of chemical reactions is governed by the concentration of each
component: a probabilistic model can for instance give insight into the time needed
for some rare reaction to occur, or into the time needed to exhaust all the com-
pounds and the state of the system at that time. Similar events occur in the cells
of living beings, where RNA strands and ribosomes interact when they meet —
RNA is then translated into proteins. In biology again, different probabilistic mod-
els can be used to shed quantitative light into the qualitative behavior predicted
by the theory of evolution, considering mutations in DNA sequences as random
events. Another example comes from physics: there an important problem con-
sists in understanding how water percolates through a porous medium, such as a
stone, and this simple problem has given birth to the domain of probability called
percolation theory. In this setting one typically assumes that holes are randomly
located within the porous medium, and the amount of water that can go through
then depends on their frequency, shape, etc... Finally, a striking example comes
from the study of the human brain, called brain mapping. Modern machines make
it possible to know which parts of the brain respond to a given stimulation, and
so a biologist is given the values of some measurements defined over the surface
of the brain. However one needs to discriminate in these measurements between
the signal statistically meaningful and the noise: although very abstract in the first
place, probabilistic models — called Gaussian random fields — turned out to be
efficient tools to answer this question.

This eclectic list of problems shows that probability theory is encountered in
many different situations, which reflects the fact that randomness is an intrinsic
component of many physical systems. A common feature of the above problems is
that they represent a great source of inspiration for probabilists. Most of the time
new questions triggered by concrete real-world problems cannot be directly dealt
with existing results, and one needs to extend the theory to cover these new cases.
The implications of these advances are then difficult to predict: although initially
motivated by physical considerations, percolation theory is now an essential tool for
the analysis of some communication networks. Moreover, the interactions between
concrete problems and probability theory are two-sided: in the example of the brain
mapping, the biological motivations triggered tremendous advances in the area of
Gaussian random fields, which allowed in return a better understanding of concrete
questions.

The job of an applied probabilist is therefore twofold: on the one hand he or
she has to find relevant and interesting models to study; on the other hand he or
she needs to prove rigorous mathematical results on these models. This second
point is really a bottleneck, since usually, only “simple” mathematical models are
tractable, e.g., models which are not too general, or with few parameters. But
from a modeling point of view, the model studied needs to be representative of the
physical system: to borrow a saying from one of my former professors, the goal is to
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study “the simplest model which is not simplistic”. In other words, one is interested
in studying the simplest model which both exhibits mathematical difficulties, and
is at the same time relevant for the initial physical problem.

In this thesis models motivated by communication networks are considered; the
main contribution is however mathematical, insofar as the results only provide a
limited insight into concrete networks. Each model sets the focus on an impor-
tant characteristic of the network, which makes it possible to carry on a thorough
mathematical analysis.

Outline of the Introduction. The next section is intended to introduce some
key concepts, related to the modeling of communication networks, to non-experts:
due to their importance throughout this thesis, the two notions of mathematical
queues and of stability are discussed from a general perspective. The goal is to give
a compelling — though very subjective — rationale to explain why such questions
are both interesting and challenging. It must be emphasized at this point that
stability issues play an important role in this thesis, since two out of the four
chapters are devoted to them.

Because of the audience targeted by this first section, the reader already familiar
with queueing theory and stability of stochastic networks may wish to directly
proceed to the second part of this introduction, on page 9. There the two types
of communication networks that have kept me busy for three years are presented,
namely wireless and peer-to-peer networks. This section gives an overview of the
rich variety of problems dealt with in the existing literature, which gives a natural
opportunity to introduce the models constitutive of this thesis.

The last section is devoted to the mathematical content of the different chapters.
A large part of this section is concerned with stability questions, and discusses
renormalization techniques which allow the analysis of complex stochastic networks.
Other techniques are discussed as well, namely branching processes and bins and
balls problems. These two models are classical tools in applied probability and are
used in a wide variety of settings; here they (surprisingly) appear when studying
peer-to-peer networks.

Finally, a detailed presentation of the four different chapters of this thesis
follows. A reader eager to know precisely which probabilistic models are studied
here is referred to this part of the introduction, which starts on page 18.

Modeling of Communication Networks

Communication networks have a huge impact on every aspect of modern so-
cieties, and constitute an interesting and stimulating domain of application for
mathematics. In the Paris area, a recent survey has exhibited an average of 1.2 cell
phones per inhabitant: since their appearance, mobile phones have been adopted
by the vast majority of the population, representing both an important change in
people’s way of life and the development of a new and major economic sector. A
similar observation goes with the Internet: email, e-commerce, social web sites, to
name only a few, are now part of the daily life of hundreds of millions of users. In
the corporate world as well, the rapid growth of the Internet has changed firms’
business models, internal organization, etc. ..

Due to this prominent impact, communication networks are the focus of a strong
research and development activity, which aims at defining more efficient networks,
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as well as offering new services to users. Communication networks thus constitute
a lively field which evolves rapidly, and every innovation represents a new and
potentially challenging mathematical problem. The scope of these problems is very
large, ranging from physical considerations — how is information transmitted? — to
economic ones, such as the pricing of service. Among these possible questions, the
focus of this thesis is set on performance analysis. This encompasses the analysis of
various characteristics of a network, such as the transmission time of a message, the
number of customers in steady state, etc... Of course not all of these aspects are
treated in this thesis, and it will become clear later on in this introduction which
are.

Peer-to-peer technologies and web surfing on PDAs are among the recent tech-
nological advances that we have investigated. Although many other innovations
offer interesting mathematical problems, it must be noted that every technological
advance does not necessarily yield interesting mathematical questions. For instance,
two different versions of the Wi-Fi protocol 802.11, such as 802.11a or 802.11b, do
not necessitate two different mathematical treatments, at least for us. However,
wireless Internet networks and networks of mobile phones are fundamentally differ-
ent: for the former, any number of users can connect to a hotspot, at the expense
of experiencing a slow connection, whereas for the latter, only a given number of
users per base station can have simultaneous conversations, whose transmission rate
is fixed. Such a qualitative difference between these two behaviors indeed neces-
sitates two different mathematical models. Similarly, peer-to-peer networks offer
distinctive characteristics.

Erlang. The first communication network that was the object of careful mathe-
matical analysis is arguably the telephone. The birth of queueing theory is indeed
quite unanimously attributed to Erlang, who published in 1909 a celebrated pa-
per [Erl09], “The theory of probabilities and telephone conversations”. Together
with his second seminal paper [Erl17| published in 1917, Erlang investigates the
problem of dimensioning a telephone network.

Basically, a telephone network is a collection of telephone lines, to which users
access and which they keep busy for the duration of their conversation. The same
description applies to more modern networks of cellular phones, where it is a com-
mon experience to initiate a call that is rejected because the network is busy; in
other words, all lines are occupied, and one must try again later and hope that a
conversation has ended in the meantime. Setting asides physical considerations such
as the quality of the communication itself, the quality of service perceived by the
customers is measured through the frequency at which this event happens, which
is called the blocking probability; a good quality of service means a low blocking
probability. The primary wiggle room for a network operator is the total number
of available lines: more lines mean a better quality of service but obviously a more
expensive network as well. Thus the operator needs to tune the trade-off between
the quality of service perceived by the users and the cost of the network.

Although evaluating the cost of a network is probably not a difficult issue (by
which we mean that it does not require sophisticated mathematical reasoning),
the blocking probability represents on the other hand a more challenging task.
It is important to note that given the network, the blocking probability is solely
determined by the customers’ behavior, i.e., the frequency and the duration of
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their calls. As an illustrative example, imagine that one wants to dimension a
network for 1,000 customers who make, on average, 4 calls a day of mean duration
5 minutes. The number of customers being large, the law of large numbers predicts
that random fluctuations around the mean values will average out, so that finally,
around 20,000 minutes of communication will be generated during a typical day.
One single line providing 3,600 minutes of communication a day, a rule of thumb
advocates the use of 6 telephone lines. However, this result does not say anything
about the blocking probability, and for a good reason: the law of large numbers
tells about the long term behavior of the network, while a call is rejected when a
customer initiates a call and all lines are busy. Thus the blocking probability is
determined by the instantaneous state of the network, which cannot be taken into
account by law of large numbers type of arguments; it is intrinsically of a different
nature. These events largely depend on the random behavior of the customers: thus
as indicated in the title of Erlang’s first paper, probability theory is the natural
framework in which to cast this problem.

The problem can then be formulated as follows: given customers who originate
calls at random times, each call being itself of a random duration, what is the
probability that a call finds all lines busy? A fundamental and natural assumption
is to assume that customers behave independently of one another: under this as-
sumption, Erlang argues that calls arrive in the network at the epochs of a Poisson
process. As for the call duration, fields measurements performed by Erlang show
that they follow the exponential distribution. These different assumptions define
completely the problem from a mathematical standpoint, which Erlang solves to
prove the famous Erlang B formula. It gives a flavor of the kind of results encoun-
tered in queueing theory: if p > 0 is the traffic intensity — equal to A x r where A
is the mean number of calls arriving in a unit of time and r is the mean duration
of a call, measured in the same units — then the blocking probability P(p,n) when
there is a total of n lines is given by

p" /n!
Plp,m) = L+p/U 4.4 pn/nl’

Plugging in the values of the above simple example, one finds a blocking proba-
bility of 23% with six lines, so that the random fluctuations can hardly be neglected.
Conversely, this formula can be inverted to find that twelve lines are needed to en-
sure a blocking probability of less than 1%: having a closed form formula allows
such manipulations, which is one of the strength of this theoretical approach. The
Erlang B formula was moreover shown to hold even if call durations are not dis-
tributed according to the exponential distribution, see for instance Takacs [Tak69].
Although traffic patterns in telephone networks have changed drastically since Er-
lang, the robustness of this formula probably explains its enduring success; it is still
used by today’s network operators.

Queues. In a telephone network, customers finding all lines busy will retry later
on. Another possibility would be to queue these customers, so that the earliest
customer that arrived and found all lines busy could use the first line to get free; this
mechanism describes for instance the operation of a call center, or of a supermarket
with several cashiers and a single queue. These two simple examples illustrate the
concept of mathematical queue, and already show that a single mathematical model
can be representative of different physical systems.
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In a supermarket, customers are served based on their order of arrival, and we
say that the service discipline is FIFO or FCFS, for First-In First-Out and First-
Come First-Serve, respectively. Other service disciplines could make sense: if one
knew the service required by a customer, i.e., the amount of time this customer
will keep a cashier busy, then it could be efficient to determine the order in which
to serve customers based on this information — e.g., by treating preferentially
customers with only few items. Last-In First-Out (LIFO) is another example of a
simple service discipline, it models for instance a stack of items, which is a common
object, for instance in computer science. When a new item arrives, it is placed on
top of the stack, so that the first item to be processed is the last one to have arrived.
Similarly, the processor of a computer can be seen as a queue with a special service
discipline: the processor divides time into slots, devotes its computing power during
one slot to one application, and successively inspects the running applications slot
after slot. This gives the user the impression of parallelism and indeed enables
him to launch several applications simultaneously. Each application creates an
incoming flow of jobs that the processor needs to handle, and each job necessitates
more or less computation from the processor. When the length of a time slot is
very small, a reasonable modeling assumption amounts to suppose that jobs are
treated simultaneously, and so the service discipline is not FIFO, it is a well-known
discipline called Processor-Sharing.

These different examples illustrate the different parts that define a queue from
a mathematical standpoint. First there is indeed a queue — e.g., the customers
placed on hold in a call center or the jobs waiting to be treated by a processor.
Then there are servers, which serve the customers — e.g., the call operators or the
processor. And finally there is a service discipline, which determines in which order
customers are served — e.g., FIFO or Processor-Sharing. Finally, to fully define
a mathematical queue, one needs to specify the statistical hypotheses concerning
the customers’ behavior, namely call arrivals and durations. In the queueing ter-
minology, the duration of a call is often called the service requirement, because this
corresponds to the amount of time it keeps a server busy.

Queues are fundamental objects to model communication networks. The ex-
ample of call centers has already been given, but the Internet provides a much
more important and richer example. The Internet can indeed be seen as a network
of FIFO queues, which gives a good idea of modeling of communication networks.
Due to the Transfer Control Protocol (TCP), which plays a fundamental role in the
stability of the Internet, it can also be partially modeled as a network of Processor-
Sharing queues, but this is a more delicate story.

The Internet is the network of computers that communicate using the Internet
Protocol (IP), which, broadly speaking, defines the address of a computer, the fa-
mous IP address. It is not to be mistaken with the Web, which is the network of
web pages, and as such a “subnetwork” of the Internet; for instance, peer-to-peer
networks use the Internet but have nothing to do with the Web. To communicate
over the Internet, two computers send packets to each other: these packets are
relayed from the source to the destination through a series of dedicated machines,
called routers. The route — i.e., the sequence of routers — taken by a packet is
not known in advance: each router has a buffer, where incoming packets are stored.
The router inspects the packets buffered sequentially, and decides, based on the
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destination IP address, the router to which to forward the packet. If a router is
seen as a server, its buffer as a queue and packets as customers, then the Internet
can naturally be seen as a network of FIFO queues, where a customer goes from one
queue to another until it exits the network; under particular statistical hypotheses,
such networks are called Jackson networks.

The above examples show that mathematical queues provide a flexible frame-
work to model a great variety of physical systems. Yet because of this versatility,
queueing theory lacks of a unified theoretical framework. When one gets interested
in a new class of network, it is illusory to think that it will readily fall within the
range of some existing theorem, as well as it seems illusory, for now, to try to for-
mulate and prove a theorem that would encompass many different networks. So the
corpus of queueing theory consists essentially (although not only) in results about
various network models, and this partly explains the global structure of this docu-
ment, where different chapters essentially correspond to independent problems. It
seems all the more hard to unify different results under general theorems that even
two close models can exhibit radically different behaviors.

For instance, although the behavior of two queues in tandem is well under-
stood — this can model the waiting time at some furniture shops, where one first
has to queue at the cashier, and then a second time to retrieve the item — Bram-
son [Bra94a| studies a close model where customers can re-enter the network after
being served the second time. This slight difference yields a different and counter-
intuitive behavior, related to the fundamental notion of stability.

Stability. The simplest way to think of stability is the following: imagine a net-
work is a black box that transforms an input flow into an output flow. Clearly the
output flow cannot be larger than the input one — at least in the long run — and
we say that the network is stable if the output equals the input. Otherwise, the
output is strictly smaller than the input and some flow necessarily accumulates in
the network, which is then said to be unstable. Studying the stability properties of
a network can therefore be thought of as studying its capacity, i.e., the maximal in-
put rate it can accommodate; we discuss below why the situation is (un)fortunately
sometimes not that simple, and in order to illustrate the subtlety of this notion, we
spend some time discussing some surprising results.

But before that, note that the notion of stability is not always appropriate:
since the total number of customers in a telephone network is upper bounded by
the number of lines, customers cannot accumulate indefinitely and so it is always
stable. As discussed before, the relevant question in that case concerns the block-
ing probability. In contrast, in the previous simple model of the Internet, packets
can accumulate in the buffers of the different routers, and the network can then be
stable or unstable. To each case corresponds different questions: Under stability
conditions, one wants to know more about the steady state, for instance the average
number of packets that remain in the network or its fluctuations in time; when it is
unstable, it can be interesting to characterize the rate at which packets accumulate,
or where and how in the network do these packets aggregate.

Stability properties of the single-server queue have been understood in a fairly
general setting since 1962 with Loynes [Loy62]|. If the server works at rate u, then
the queue is stable if and only if the arrival rate A is smaller than pu, i.e., A < pu.
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In other words, the queue is stable if and only if the server can output more fluid
than what enters. Under stability conditions, although the instantaneous output
rate is p > A when the server is busy, the long-term output rate from the queue is
exactly equal to A due to idling periods of the server. The condition A < p is often
rewritten p < 1, where one defines p = A/p as the traffic intensity.

For networks of queues, one can still define the traffic intensity: the input rate
to a queue is for instance given by the rate of exogenous arrivals plus the rate of ar-
rivals due to inner transitions of customers, which themselves depend on the arrival
rates into the other queues; thus the arrival rates are usually determined through
fixed point equations. In view of Loynes’ results, a natural idea is to think that a
network of queues will be stable if and only if the traffic intensity at each node is
smaller than one. One way is correct: if the traffic intensity at some node is greater
than one, then the network is unstable, since customers will necessarily accumulate
at this node. The converse has been the object of intensive investigations in the
early '90s. Because of Loynes’ results, the simplest setting where this conjecture
could fail is when the network consists of at least two queues. And indeed, Rybko
and Stolyar [RS92] in 1992, and Bramson [Bra94a] two years later, came up with
counter-examples for this yet appealing conjecture with networks consisting of only
two queues. In both examples, the customers accumulate within the network as
follows: one of the two queues is large and the other empty, and then the large
queue empties while the empty queue builds up. Although each queue is empty
infinitely often, the amplitude of the oscillations are larger and larger.

Such situations naturally appear in multiclass queueing networks, where cus-
tomers are of one out of several possible types, or classes. Different classes (may)
differ by their arrival processes or the routes of their customers within the net-
work, and more importantly because servers can prioritize customers based on their
classes. Rybko and Stolyar’s counter-example [RS92] indeed relies on a two-node
queueing network with two classes of customers, where each server gives strict pri-
ority to one class of customer over the other. This results in an unstable network
which nonetheless satisfies the condition p < 1 at each server. In a similar vein, Du-
mas [Dum97] exhibits a three-node network with two classes of customers where
the stability region is non-linear, non-convex and non-monotonous. This means in
particular that the network may be unstable for some arrival rate A and still stable
for some larger arrival rate \’ > X. Thus the concept of maximal input rate that a
network can accommodate does not always make sense.

In each of the two above counter-examples, servers give strict priority to one
class of customers, which can seem artificial. To compensate for this unsatisfactory
situation, Bramson [Bra94a] built an unstable two-node FIFO queueing network
with only one class of customers where the usual conditions p < 1 are satisfied. And
still in 1994, Bramson exhibited an even more striking behavior in [Bra94b|: He
built a class of networks such that if the traffic intensity p at each node is smaller
than some threshold p* < 1, and then it may be arbitrarily small, then the corre-
sponding networks are unstable.

In conclusion, the question of stability represents both an important and chal-
lenging issue. Although the above various counter-examples highlight some possible
subtleties, there are nonetheless many networks where the usual conditions p < 1
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give the correct stability region; this is for instance the case for Jackson networks,
mentioned previously. This is also the case for the network models investigated in
this thesis, which we now introduce.

Wireless and Peer-to-Peer Networks

Two types of networks are studied in this document: wireless and peer-to-peer
networks. The goal of this section is to give a broad overview of the issues raised by
these networks, and to explain the models and questions studied in related works.
In doing so, the models studied therein are naturally introduced, and the issues
addressed and models considered are positioned. As mentioned in the beginning
of this introduction, the reader is referred to the next section for details on the
technical (i.e., mathematical) content of this thesis.

We first introduce wireless networks, and then peer-to-peer networks. Since the
latter are built on top of the Internet, a quick overview of the wide range of prob-
lems raised by the Internet is done before introducing peer-to-peer networks. As for
wireless networks, the two different types of wireless networks, namely ad-hoc and
infrastructure wireless networks, are introduced. It must be stressed at this point
that this thesis does not contribute to the field of ad-hoc wireless networks; never-
theless, the range of issues raised by such networks is wider, in my opinion, than the
issues raised by infrastructure wireless networks. For this reason, time is spent in
introducing some interesting issues specific to ad-hoc wireless networks. Note that
although ad-hoc wireless networks seem richer from a mathematical standpoint, the
vast majority of real-life networks have a fixed infrastructure.

Wireless Networks. Plainly, these are networks where communication between
two nodes is carried by electromagnetic waves, propagated in the air. We sometimes
use the generic term of node, since as will be seen, users can communicate directly
with one another, but communication can also occur between a user and a base
station; a node can be a sensor too, in the case of sensor networks. Because they
exhibit original features compared to wired networks, such as the Internet or the
telephone, wireless networks have triggered a large amount of work in various fields,
such as information theory, algorithmic, random geometry or scheduling.

Ad-Hoc Wireless Networks. These are wireless networks where any two nodes
can directly communicate with one another, without resorting to a fixed infrastruc-
ture. Since information is transmitted through the air where the signal fades away,
communication between two nodes is possible only if they are within transmission
range, i.e., close enough. In multihop networks — a hop informally refers to the
transmission of a message from one node to another — nodes that are further apart
can communicate by using other nodes as relay. The message is then forwarded
from node to node until it reaches its destination. It is usually not possible to
restrict the direction in which the radio signal is emitted, so that the drawback
of allowing any two nodes to directly communicate is that, when they do so, they
create a zone of interference where other nodes’ communication is hindered. Two
models for this interference zone are equally prevalent in the literature, and most
of the following references consider both of them.
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On the one hand, one can consider that every communication is strictly pro-
hibited in this zone. Then as soon as a node receives a signal from another node, it
does not emit itself; because the situation is binary — a node either receives a signal
or not — such models are called boolean models. It is usually assumed that any
node has a fixed transmission range, thus prohibiting communications in a given
radius: the interactions are short-range. On the other hand, in the physical model,
a node can separate the signal it is interested in from the other signals it is exposed
to — the noise — as long as the power of the signal of interest is larger than the
power of the noise: the signal-to-noise ratio needs to be larger than some thresh-
old for the communication to be successful. It is usually assumed that the power
decays smoothly with the distance, so that any node influences every other node,
however weakly: the interactions are long-range. In this setting, power control is
an important issue: it determines the range of a signal as well as the strength of
the interference created. Power control is moreover a critical issue for autonomous
devices, since it determines their life span.

In either model, interference has an adverse impact on the network’s capac-
ity, which is defined as the maximal rate at which nodes can transmit messages.
Imagine for instance that each node has a buffer, where messages waiting to be
transmitted are stored. If new messages appear at a rate higher than the network’s
capacity, then the number of queued messages will become larger and larger, and
the network will be unstable. With a low density of nodes, interference does not
play a significant role, and all communications will essentially be accepted. But
as the density increases, more and more communications will be inhibited and an
interesting question is to quantify this impact. Information theory sheds light on
these questions by providing theoretical upper bounds on the network’s capacity;
an algorithmic issue then consists in designing algorithms that reach, or get close
to, this theoretical upper bound. For instance, Gupta and Kumar [GKO0O] have
shown in 2000 that if n» nodes are arbitrarily located in a network of fixed area,
then the throughput of any node vanishes like 1/1/n as n gets large; they moreover
exhibited a deterministic scenario where this bound is reached. This scenario is
nonetheless unrealistic — nodes need to be regularly spaced — and they comple-
ment their study by looking at the situation where nodes are randomly spread over
the network. They found that the capacity of each node vanishes like 1/v/nlogn in
this case. Although information theory does not preclude the capacity of reaching
1/4/n, the additional factor 1/y/logn was seen as the price to pay for randomness.

The main point in the case of randomly located nodes is to define a routing
algorithm, i.e., an algorithm that determines how to forward a message from the
source to the destination. The routing algorithm originally proposed by Gupta and
Kumar [GKOO] tries to connect two nodes by a straight line, and its analysis relies
on random geometry. Seven years later, Franceschetti et al. [FDTTO07] showed that
the factor 1/4/logn was actually due to this particular choice of routing algorithm,
and proposed another routing algorithm that reaches the information theoretic
bound 1/y/n in the case of randomly located nodes. This new algorithm is based
on the existence of a particular configuration of nodes. Namely, Franceschetti et
al. show that the network can organize a highway of nodes, in charge of relaying
the long-distance information transmitted over the network.
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This example illustrates the interplay between the connectivity properties of
the network and its capacity. The right mathematical tool for formalizing this in-
terplay is the percolation theory, which is indeed the cornerstone of the arguments
of Franceschetti et al. [FDTTO7]|. See for instance the first chapter of Grim-
mett [Gri99] for an introduction to this theory, where some physical motivation is
given. This mathematical framework turned out to be very fruitful in the context
of wireless networks. In addition to the aforementioned results of Franceschetti et
al., Dousse et al. [DFTO06] give an explanation to the fact that the throughput seen
by any node vanishes as the number of nodes increases: using percolation theory,
they prove that this is actually the price to pay to get the full connectivity of the
network. If a fraction of nodes cannot communicate with each other, then the net-
work can be designed in such a way that the throughput does not vanish in the
limit.

The above mentioned results concern ad-hoc networks where users do not move,
and a natural extension consists in allowing mobility. In this case the connectivity
properties of the network evolve over time, so that the results in the fixed setting
need to be revisited. A first difficulty consists in designing efficient routing algo-
rithms, see, e.g., Tschopp et al. [TDGO8| and the references therein. An interesting
discovery of Grossglauser and Tse [GT01] is that the situation under mobility can
be much more favorable than in the fixed setting: although in the fixed setting the
network’s capacity decreases like 1/4/n, they show that the throughput can be kept
constant if users move. The underlying idea is that mobility represents an oppor-
tunity for the network to increase its capacity by devoting its resources to nodes
that are in a good state; we will shortly come back to this interesting property in
the context of infrastructure wireless networks.

Infrastructure Wireless Networks. Ad-hoc wireless networks are those wireless
networks which can operate without fixed infrastructure. In wireless networks with
a fixed infrastructure, be it a hotspot in the case of the Wi-Fi or a base station in the
case of cell phones, communication is always between a user and this infrastructure,
say a base station for simplicity; such networks are sometimes called infrastructure
wireless networks, a terminology that we use here. This communication is directed,
from the users to the base station (many-to-one), or from the base station to the
users (one-to-many), but we will not enter this level of details. Since several users
can connect simultaneously to a base station, this latter needs to divide its capacity
according to some scheduling policy; these problems are sometimes referred to as
bandwidth-sharing problems.

In the case of cell phones, the data transmitted is the voice, which is sent at
a fixed rate determined by the data compression scheme used. In particular, users
require the same transmission rate — the traffic is said to be inelastic — so there
is a simple way for the base station to divide its bandwidth. Imagine for instance
that every user requires 13 kbit/s, and that the base station’s capacity is equal
to 100 kbit/s: then the base station will divide its capacity into 7 slots of equal
capacity of 13 kbit /s, thus being able to serve a maximum of 7 users simultaneously.
In the case of the Wi-Fi, this question is more complex, since now users are happier
if they can get a faster connection. A simple approach is to serve all the users
simultaneously and equally, i.e., if there are 10 users connected, then each user
would receive one tenth of the base station’s capacity.
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This answer is satisfactory in a fixed setting, when users’ capacity — the
amount of data they can send or receive in a second — does not evolve over time.
Knopp and Humblet [KH95| investigate the situation in a dynamic setting, where
users have a time-varying capacity. They show that under power constraints, the
base station should at any time serve only one user, the one with the best capacity,
in order to maximize the network’s throughput. This scheduling induces delay in
message transmission, because a user will not be served until its state is favorable,
and so the information relayed needs to be delay-tolerant. Users have similar be-
havior, so that any user will indeed be served after some time, but in general, one
must be careful that such policies are fair and do not induce starvation of a category
of users.

The case of time-varying capacity is not just an intellectual game, it naturally
arises in the context of mobile users. The capacity of a user connected to a base
station indeed depends on how the user “sees” the base station, determined by the
distance between the base station and the user, the presence of obstacles between
them, etc... Thus under mobility assumption, users’ capacity will naturally vary
over time. Knopp and Humblet’s results suggest that the optimal scheduling policy
then consists in serving the user with the best capacity. This observation motivated
the above mentioned result of Grossglauser and Tse [GTO01] in the case of ad-hoc
wireless networks, while the situation has been extensively investigated in the case
of a single-cell network with a base station, see for instance Bonald et al. [BBP04]
and the references therein. Knowing the users’ capacity implicitly assumes that the
base station is aware of the channel conditions, and these scheduling disciplines are
called channel aware scheduling disciplines; the above mentioned works of Bonald
et al. [BBP04| and other results have shown that such algorithms improve sig-
nificantly the throughput. In practice a network consists of more than one base
station: with several stations, new problems appear due to the fact that customers
move from one cell to another, and also because neighboring cells can interfere.
Interference problems are not discussed here.

The situation then depends on whether the traffic is elastic or inelastic: for
inelastic traffic such as the voice, the capacity of each cell is finite, i.e., there is
a maximum number of users per cell. A user moving to a cell with already the
maximum of users will see its service interrupted, and such events need to be
controlled since they are worse than a call simply being rejected initially. When
several types of users coexist, which may typically correspond to different traffic
patterns, Antunes et al. [AFRT06, AFRTO08] exhibit a stability problem: the
system spends a long time in a certain state — e.g., favoring a certain class of users
— and then switches for another state, where again it stays for a long time. This
is a bad property from an operator’s perspective, since one wants to be able to
guarantee some quality of service.

For elastic traffic, any number of users can be simultaneously in a cell: again
problems of interference and power control are important, but also the problem of
bandwidth sharing. The base station needs to decide which users to serve, and how
to divide its capacity. This question, investigated in depth for the single cell, was
extended by Borst et al. [ BPHO06| by considering inter-cell mobility: the model of
this paper is of primary interest for us.
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This paper considers a network of base stations, where users enter the network
with some service requirement, and then move within the network independently of
the service they receive until their initial service requirement has been met. Along
their route, they share the capacity of the cell they are in with the other customers
simultaneously present. This model is very flexible: Borst et al. consider different
classes of customers (corresponding to different service requirements and routes),
each cell is divided into regions corresponding to different radio conditions, and base
stations implement sophisticated scheduling disciplines. Their primary objective is
to characterize the stability region of the network for different scheduling disciplines.
They use fluid limit techniques to identify this region — these are discussed in the
next section — but their analysis is not completely rigorous. A serious technical
difficulty arises because of the coexistence of two different time scales, one for the
variation of the total number of customers in the network, and the other for the
movements of customers within the network.

Chapter I of this thesis is devoted to fixing this problem. In order to do so we
had to develop a technical approach completely different from theirs, which in the
end rigorously justifies the use of fluid limits to characterize the stability region.
The model of this chapter is simpler than the one of Borst et al. insofar as there
is only one class of customers, and more importantly the base stations implement
the simplest possible scheduling discipline. The conclusion of this analysis is that
thanks to the users mobility, the stability region is as large as it can be; similarly as
in the above mentioned results, the mobility has a positive impact on the network’s
capacity. Note that although the model studied in this chapter finds its motivation
in the modeling of infrastructure wireless network, its contribution is in the end
essentially technical, as is explained in the next section.

In contrast to the model studied in Chapter I which contributes to the field of
wireless networks, Chapters II and III are motivated by the modeling of peer-to-
peer networks. These are particular networks built on top of the Internet, which
we introduce first before going into the details of peer-to-peer networks.

Internet. Although any two computers communicate over the Internet using IP
addresses, the medium as well as the content of the communication are varied. The
medium can be the air, optical fibers, ADSL or even electric lines, whereas the com-
munication taking place over this versatile medium can be file sharing, telephony,
parallel computing, etc... In the Web, a communication takes place between a user
and a web server, which hosts the web site of interest, using the HT'TP protocol.
More generally, every type of communication is usually associated with one or more
protocols, e.g., web browsing with HT'TP and HTTPS, file sharing with FTP and
BitTorrent, telephony with Skype, etc. ..

These many different mediums of communication each offer specificities worth
investigating. To name only a few, we have already discussed in length the case
of the wireless Internet as a special case of wireless networks; due to their physical
nature, optical communications raise new problems, especially in routing [ZJMO0O];
ADSL lines carrying domestic traffic exhibit peculiar patterns due to peer-to-peer
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or video streaming traffic, and their analysis is a subject of utter interest for network
operators since they carry a majority of the current Internet traffic [bAGP105].
In addition to these problems, the many different protocols each trigger new prob-
lems as well. BitTorrent and peer-to-peer protocols in general have been intensively
studied in the past years (see below); TCP is the cornerstone that makes the In-
ternet work, but its modeling is a challenging question that has yielded different
studies [DGR02, CMPO09]; widely used access protocols such as Aloha or Ether-
net present mathematical peculiarities, such as the instability of Ethernet [Ald87],
and are still intensively investigated currently, see the recent work of Bordenave et
al. [BMPO8] on the stability of Aloha; some attempts have been made to define
efficient admission control protocols at the router level, such as RED [FJ93]. And
more generally, many aspects of the Internet can be optimized or enhanced. Just to
name a few, Appenzeller et al. [AKMO4] try to dimension the size of the routers’
buffer, and Benameur et al. [ BFOBRO2| are interested in introducing admission
control and quality of service in the Internet.

The modeling of the whole Internet at once is a tantalizing task that reveals
many challenges; some respectable researchers think that the behavior of TCP is
well understood only for networks with one node. The interaction between several
nodes indeed induces a high degree of complexity. Massoulié and Roberts [MIR99]
recently introduced a popular model for elastic flows, which sees TCP as a black
box which divides the bandwidth of each router among the different flows that
traverse it according to some optimization problem. This model has found some
justification thanks to a recent work of Walton [Wal09], which shows that this
bandwidth sharing model can be obtained by a scaling procedure starting from a
rather general class of networks. Let us close this long and eclectic list of problems
related to the Internet by mentioning a recent and innovative work of Bonald et
al. [BFPO9], in which they question the very need of a control protocol such as
TCP, and suggest that an efficient use of source coding could do the job.

This list of problems is very far from being exhaustive — for instance, we did
not discuss insensibility issues or graph-related problems such as the structure of
the Internet or the PageRank algorithm — but just gives an idea of the wide range
of problems triggered by the Internet. Every level of the Internet, from the physical
to the application layer, raises many problems. Among these problems, we have
decided to focus on peer-to-peer networks.

Peer-to-Peer Networks. A typical situation in the Web is that of a communica-
tion between a user and a web server, the former requesting a file, e.g., the HTML
code source of a web page, from the latter. If several users connect simultaneously
to the same server, then it needs to divide its capacity between the different users.
The most common sharing policy is the Processor-Sharing discipline, where every
user receives only a small fraction of the server’s capacity when many of them are
connected. This is not a problem if the file requested is small — a web page for
instance — but if a user is interested in downloading a larger file, it may then expe-
rience a large delay. Another observation is that since the server is the only source
where the file is available, the time needed to download it is essentially proportional
to its size. For these two reasons, the Web and the HTTP protocol are not suited
for sharing large or popular contents, such as, respectively, a Linux distribution or
a movie. Although some protocols were specifically developed to address this issue,
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for instance FTP, the Web was still widely used at the end of the 90’s to exchange
large files.

Peer-to-peer networks have been designed to provide an alternative way of
sharing large or popular files. The simple yet fundamental idea of peer-to-peer
networks is the following: once a user has received a file, he offers it in turn, thus
acting like a server. If many users want the file, many users will offer it after some
time, and so it seems reasonable to expect that such networks will cope with a high
demand. Note in particular that in contrast to classical web architecture, under
certain conditions, the higher the demand and the better the network’s capacity.
The vast success of these technologies is reflected in recent figures that show that a
large portion of the Internet traffic originates from peer-to-peer applications. These
figures are however to be taken with some care, since measuring peer-to-peer traffic
proves to be a difficult issue, see Saddi and Guillemin [SGO7].

Another crucial idea that dramatically speeds up the dissemination of a large
file consists in splitting it into small pieces, called chunks; a movie will typically be
cut into a couple of thousands of chunks. This strategy has numerous advantages:
first of all, the user can download different chunks simultaneously and from differ-
ent sources, thus both speeding up the downloading process and balancing the load
over different peers. Another key advantage is that a peer can start sharing the file
as soon as he has a chunk: in particular, he can quickly participate in increasing the
network’s capacity, instead of having to wait to have the whole file in his posses-
sion. This idea is key in BitTorrent, one of the most popular peer-to-peer networks
nowadays. The drawback is that it increases the complexity of the algorithm, and
the system’s performance is very sensitive to the policy that rules out which chunks
are exchanged between two peers. More generally, peer-to-peer networks are chal-
lenging networks to operate, since now the information is no longer centralized but
disseminated all across the Internet.

Peer-to-peer networks have to provide peers information on how to find chunks
they are interested in. Not only are these chunks spread over the entire network,
but the topology of the network evolves dynamically over time, when peers enter
or leave the network, propose a new content or get some old one. Providing the
relevant information to the peers is thus a difficult issue, and largely determines
the network’s (in)efficiency.

One approach consists in trying to maintain a fixed structure on the network’s
topology, e.g., organize the peers into a ring. Omne can then exploit properties
of this topology to optimize the lookup of information. Some attempts in this
direction consider de Bruijn graphs for the overlay topology, and rely on the use of
distributed hashtables, see for instance Gai and Viennot [GV04] and the references
therein. Due to the dynamically evolving topology of the network, maintaining a
fixed structure turns out to be a difficult issue in practice. Instead, recent algorithms
such as BitTorrent rely on random graph. Broadly speaking, a peer in BitTorrent
connects to a random set of peers, from whom he will try to obtain interesting
chunks. The set of peers a peer communicates with then slowly evolves over time,
see |[Bit] for more details.

Once peers have decided to communicate with one another and exchange chunks,
another crucial question concerns the chunks that should be exchanged. The policy
chosen in this respect has a great impact on the downloading time of the full file, as
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well as on the scarcity of chunks in the network. Because peers leave the network
after some time once they have completed the download, it can indeed happen that
some chunks disappear, or are rarer than others.

A related problem concerns the time needed to download the first and last
chunks. It has been argued, e.g., in Tian et al. [TWNO6], that peers spend most
of their time downloading their first and last chunks. For the first chunks, this
comes from the fact that initially, a peer does not have chunks to exchange, and
thus other peers do not have a strong incentive to communicate with him. On the
other hand, the last chunk problem comes from the fact that getting one precise
chunk can be difficult. To circumvent this problem, solutions implying network
coding have been proposed [GMRO6|, as well as exchange policies that favor the
exchange of rare chunks, see for instance Bharambe et al. [ BHPO0G6|.

We now introduce models closely related to the ones studied in Chapters I1
and ITI. The discussion is twofold, depending on whether the system is studied in
stationarity, or if the focus is rather set on the initialization of the network.

Performance Analysis in Stationarity. The key idea in peer-to-peer networks
is that each peer participates in increasing the network’s capacity: not surprisingly,
this powerful and generic idea has spread beyond the limited scope of file shar-
ing. Skype is a good example of the use of a peer-to-peer network in a real-time
context, and such applications are an active topic of research. Recently, Bonald
et al. [ BMMT08| and Massouli¢ and Twigg [MTO8| have investigated the per-
formance of a peer-to-peer system used to broadcast real-time data, such as a
television show. The case of live streaming presents new constraints compared to
file sharing: it is not mandatory that each peer receives exactly every packet of the
stream, but the delay is critical. In [BMM™ 08|, Bonald et al. compare different
chunk exchange policies and analyze their impact on the system’s performance,
while Massoulié and Twigg [MT08] establish the network’s capacity under various
scenarios. One limitation of these works is that they consider a static context, i.e.,
the network’s topology is fixed and does not evolve in time. One of the motivation
of our own works on peer-to-peer systems was to try to analyze in some way the im-
pact of the evolving topology. The price to pay is twofold: the multichunk scenario
is much more difficult to analyze, and it is hard to consider a realistic topology for
the overlay network.

In addition to the above live streaming scenario, file-sharing peer-to-peer net-
works have been extensively studied: these are complex networks where several
aspects can be considered. A popular model introduced by Massoulié and Vo-
jnovié [MVO05] neglects the time needed to download a particular chunk, and puts
the emphasis on the process of contacts between peers. In these models, at random
times, each peer contacts another randomly selected peer and tries to exchange
some chunks with him. It is assumed that once a contact is made, the peer takes a
chunk uniformly at random among the chunks that the contacted peer has and that
the initial peer does not have; the exchange is one-sided. Kesidis et al. [KKS09|
consider a model with two-sided exchanges upon contact. In both cases, the initial
stochastic system is studied by means of a deterministic approximation involving a
system of differential equations, and the stability of this system is the primary con-
cern. In contrast to the aforementioned papers on live streaming, in these models
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the overlay topology is complete, i.e., any peer can contact any other peer.

If chunks are indeed small in practice, it is however not clear that their down-
loading time can be completely neglected. Qiu and Srikant [QS04] investigate a
simple queueing model for BitTorrent-like peer-to-peer networks. Their model con-
sists of two queues in tandem, where peers in the first queue do not have the file, and
peers in the second queue have it. The peer-to-peer dynamics then dictates that
the first queue behaves as a queue with a varying and random number of servers,
where a server is precisely a peer in the second queue. This model again implicitly
assumes that there is a complete overlay topology. Because peers who do not have
the file are impatient, the queueing system they propose is always stable, but when
this assumption is removed, such as in Susitaival et al. [SAV06], then the stability
needs to be studied. The stability criterion involves a comparison between the input
rate and the mean number of peers in the second queue, which determines the mean
output rate of the system. Susitaival et al. derive such a stability condition from
a heuristic standpoint, and this intuitive result is proved in Chapter II under more
general hypotheses. A remarkable feature of these networks is that when peers who
have the file are patient enough (i.e., stay long enough once they have downloaded
the file), then the network is always stable and can accommodate any input rate.

These two models do not take into account the multichunk situation, and there
is a good reason for that. Although with a contact process perspective, the com-
binatorial problems induced by several chunks can be handled — with n chunks,
each peer is characterized by one of the 2™ possible subsets of chunks — the situ-
ation is much more challenging with a queueing perspective. Indeed, the subset of
chunks then not only characterizes the peers, but the servers as well. When a peer
has k£ chunks, then its capacity, as a server, needs to be divided in some way among
these k chunks. To the best of my knowledge, there is no good queueing model that
correctly handles this difficulty. A possibility to circumvent it is to restrict the sets
of peers that can interact. For instance, Parvez et al. [PWMCO08]| consider the
possibility to parse a file while downloading it. The chunks of the file then need
to be downloaded in order, what reduces the dimensionality of the problem since
now a peer can be characterized by the number of chunks it has. A further simpli-
fication amounts to impose that a peer with k& chunks always asks the next chunk
from peers with k41 chunks; in particular, a peer is a server for only one chunk,
the last one it has downloaded. This architecture can be justified by load balancing
arguments: without this constraint, peers with the whole file would receive more
requests than other peers, and more generally the more chunks a peer would have,
the more requests it would receive. These two assumptions lead to a simple net-
work model with n+1 queues in tandem, if n is the number of chunks, and where
the dynamics between two successive queues is similar to the model of Susitaival
et al. [SAVO06]. It can therefore be seen as a generalization of their model, that is
analyzed in some particular situation in Chapter II. One would ideally like to study
the case where chunks have identical size, but, among other results, we prove that
if chunks are smaller and smaller (i.e., a peer starts by downloading the biggest
chunk, etc...) and if customers are patient enough, then a similar phenomenon as
in the single-chunk case holds, i.e., the system is stable for any input rate, which is
in sharp contrast to classical queueing networks.
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Flash Crowd. All the above models consider peer-to-peer systems in a stationary
regime, with a continuous flow of incoming peers (or chunks in the case of live
streaming), for which the problem of stability makes sense. Another opposing
situation is the flash crowd phenomenon: this corresponds to the initialization of
a peer-to-peer network upon the release of a popular file. If many peers were
awaiting this release, then there will be a sudden burst of incoming peers shortly
following the release. This phenomenon has been observed in real-world networks,
see for instance Pouwelse et al. [PGESO05] for measurements of the flash crowd
effect corresponding to the “release” of the movie “Lord of the Rings III".

As long as the flash crowd effect prevails, the system is in a transient regime.
An interesting question concerns the time needed to reach the stationary regime,
or, put otherwise, the time needed for the system to cope with the initial high
demand. Yang and de Veciana [YdVO06] look at this question, but their analysis
remains a first-order one, and basically amounts to say that the number of servers
grows exponentially. Indeed, the system begins with one server (the one initially
offering the file), which is replicated after the first customer finishes downloading
the file; at this time, the system consists of two servers working in parallel, so
the next server is created twice faster, etc... This dynamics is analog to the dy-
namics of a population of cells, where each cell splits into two identical cells after
some time. This analogy with this kind of biological processes, called branching
processes, makes it possible to carry out a more detailed analysis of the transient
phase of the peer-to-peer systems, which is the object of Chapters III and IV. This
analysis makes it possible to get a deep understanding of the system’s behavior
and, as a simple consequence, to justify the first-order approach used by Yang and
de Veciana [YdVO086].

So far, we have not entered the technical content of our works on mobile net-
works or peer-to-peer systems, in order to focus on the modeling problems; the next
section introduces it.

Mathematical Framework

In this section, an overview of the mathematical tools used is given. All the
works contained in this thesis were motivated by the modeling of communication
networks, and the choice has always been made to use simple Markovian assump-
tions: the section starts with a few words on this topic. Since two chapters are
devoted to the study of the stability of Markov processes, we then present renor-
malization techniques which are modern tools designed to address such issues. Fi-
nally, we conclude this section with the introduction of two common probabilistic
models which naturally appeared along way, namely branching processes and bins
and balls problems.

Markovian Modeling. Although seemingly simple, the memoryless property of
the exponential random variable has a crucial technical impact on modeling ques-
tions. If one is interested in the evolution of a single-server queue, the number of
customers in the queue forms a Markov process only when the arrivals of customers
in the queue are Poisson and the service requirements are exponentially distributed.
If these assumptions are not met, one can still describe the evolution of the queue
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as a Markov process if more information is added to the description of the process:
if the queue implements the FIFO discipline, it is usually enough to add to the
number of customers the residual service time of the customer being served as well
as the time till the next arrival; if the queue is Processor-Sharing, then one needs
to keep track of the residual service time of each customer, etc. ..

Although the process giving the number of customers in the queue lives in a
countable state space, this is no longer the case when the state descriptor has a
continuous component, such as some residual service time. The theory of Markov
processes living in an uncountable state space is well developed, but compared to
the countable case, the new difficulties introduced are, often, essentially technical.
Numerous examples deal with systems with almost arbitrary service distribution,
arrival process or even service discipline, but often the high level of technicality
introduced obfuscates the main message. In my view it is very valuable to have
such examples at hand, since they justify making exponential assumptions, but
given a system, one must have a good motivation in order to tackle the problem
in all generality. In addition, two other arguments are in favor of the exponential
distribution.

First of all, the exponential distribution is met in practice. We have already
mentioned the works of Erlang [Erl09, Erl17|, where incoming calls are modeled
as a Poisson process, and call durations are assumed to follow the exponential dis-
tribution. The Poisson approximation essentially comes from the independence of
the users who originate the calls, whereas the statistical model for the call durations
followed from field measurements. The Poisson approximation turns out to be a
very good model for the telephone network, and more generally for most arrival pro-
cesses which stem from human activity. Sometimes however the Poisson assumption
does not apply: In a paper with an enticing title, Paxson and Floyd [PF95] look
at the arrival process of packets at a router, and found that it sharply differs from
a Poisson process. There is a simple explanation for that, namely that packets
in the Internet are generated by computers, so that even if the users’ actions are
Poisson, each action generates a burst of packets; Paxson and Floyd argue that for
different traffic types, the burstiness of the traffic observed cannot be modeled with
models derived from Poisson. Another serious problem comes from the long-range
dependence of Internet traffic, since long flows induce a correlation of packets over
long periods of time. The Poisson process nonetheless remains a realistic model for
many arrival processes.

On the other hand it seems harder to justify the exponential assumption when
it relates to call durations or more generally to service requirements. Brown et
al. [BGM™T05] for instance investigate in depth the case of a call center, where
they conclude that the service times are lognormal. Surprisingly, there exists a
remarkable case when this does actually not matter: A network is said to be insen-
sitive when the number of customers in steady state at the different nodes depends
on the service time distribution only through its mean. For such networks, one can
solve the problem for any suitable service distribution, and usually the exponential
one is the simplest. A typical example is the aforementioned Erlang B formula: pro-
vided calls arrive according to a Poisson process, the number of customers in steady
state — and so the blocking probability — only depends on the first moment of
the service time distribution, see Takacs [Tak69] and the references therein. This
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fundamental property is without any doubt responsible for the enduring success
of this simple formula. Insensitivity results were later established for networks of
queues by Schassberger [Sch77]| and Burman [Bur81], see also the more recent
works of Bonald and Proutiére [BP02, BP03].

Renormalization Techniques. Even in the “simple” case of the exponential dis-
tribution, it is usually challenging to give a simple description of a network’s dy-
namics. Either the network is stable, in which case one wants to know how it
stabilizes, or it is unstable, and one wants to know details on the transient paths
that lead to infinity. Renormalization techniques aim at providing such a descrip-
tion. The general idea is to take a sequence of suitably renormalized processes that
converges: the limiting process then gives insight into the original network’s dy-
namics. We discuss in detail two fundamentals models, the M/M/1 and M/M /oo
queues, which correspond to two different scalings. These two models are central
building blocks in the different problems studied therein.

M/M/1 and Fluid Scaling. The M/M/1 queue is the single-server FIFO queue
which works at speed one, with Poisson arrivals at rate A and i.i.d., exponentially
distributed with parameter u, service requirements. To describe this system, one
can consider the process (L(t)) that gives the number of customers in the queue;
under the above exponential assumptions, this is a Markov process. It lives in
the space of non-negative integers N = Z, = {0,1,...}, and its dynamics in the
region N* = {1,2,...} is simple to describe. On the one hand, it can be seen as the
difference of two independent Poisson processes (N (t)) and (N, (t)) with respective
parameter A and p: if Tp = inf{¢t > 0 : L(¢) = 0} denotes the hitting time of 0, then

(1) L(t) = L(0) + Na(t) — N,(t), 0 <t <Ty.

An equivalent way of describing the dynamics in N* is to see (L(t)) as a
continuous-time random walk: after a time exponentially distributed with param-
eter A + p, the process goes up with probability A/(A + u), and otherwise it goes
down. As will be discussed below, this analogy is important.

When it hits 0, (L(t)) jumps to 1 after a time exponentially distributed with
parameter A: then using either one of the two descriptions together with the Markov
property, it is easy to see that if A > u, then (L(t)) goes to infinity; if on the other
hand A < p, then it will hit O infinitely often. One would like to have a simple
description of the dynamics of (L(t)): Equation (1) strongly suggests that starting
from L(0) = ¢, then L(t) ~ ¢ + (A — p)t, at least for some ¢ > 0. We want to
explain how this approximation can be made rigorous. This explanation relies on
the estimation of certain important hitting times.

Since the dynamics of (L(t)) is discontinuous at 0, the hitting time Ty of 0
naturally plays a key role, as Equation (1) highlights. Of course Ty is random, but
if there are many initial customers in the queue, then its behavior can be described
with deterministic quantities: if L(0) = n, then as n gets large, Ty is infinite with
high probability if A > pu, whereas Ty /n converges to to = 1/(u—A) if A < . Hence
assuming n large, the approximation L(t) ~ n + Ny (t) — N, (t) holds for all ¢ > 0
if A > pu, and for 0 <t < ntg if A < p.

Two important remarks should be derived from this simple heuristic. First of
all, taking a large initial state makes it possible to give a simpler description of the
process; second, in the case A < p, the relevant time scale is linear in the size of
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the initial state. This second point is natural in view of (1): when starting with
L(0) = n customers, one will see significant fluctuations in the number of customers
when the Poisson processes will have reached values of order of n, which takes a
time of order of n as well since a Poisson process grows linearly.

These remarks lead to the so-called fluid scaling: consider a sequence (L,,n >
0) of processes such that, for n > 0, the nth process (L, (t)) is an M/M/1 queue
starting with n customers, i.e., L, (0) = n. Because the time scale is linear in n, and
because one needs to rescale in space by n as well in order to avoid a trivial limit
as n gets large, it is natural to consider the renormalized process (L, (t)) defined
as follows:

(2) Ln(t) =

,t>0, n>1.

Because time is sped up by n, the time scale of the renormalized process (L, (t))
is the normal time scale, i.e., for this process, one sees significant fluctuations on
[0,t] for any ¢ > 0. Because of the above mentioned behavior of T as the size
of the initial state gets large, one can prove the following result (see for instance
Robert [Rob03, Chapter 5] for this and the following results): as n goes to infinity,
the sequence of processes (L,,n > 1) converges in some sense to the deterministic
process, called fluid limit, (x(t) = 1+(A—p)t, t > 0) when A > p; when A < p, then
the same convergence holds but only for times ¢ < #g, i.e., the sequence of processes
(Ln,n > 1) restricted to the time interval [0,%o] converges to (z(t), 0 < t < to).
This restriction comes from the fact that (1) is only valid for ¢ < Tj, which corre-
sponds to t < tg on the fluid scale. An interesting question concerns the behavior
of the fluid limit when ¢ > #( in the case A < p: once again important hitting times
need to be discussed.

Assume A < p: at time tg = 1/(u — A), the fluid limit hits 0, i.e., z(tg) = 0.
Interpreting the fluid limit as the nth system for large n, this means, since space
has been scaled by a factor n, that the number of customers in the nth system is
much smaller than n, it can even be thought of as being 0. Similarly, because of
the time and space scaling, the fluid limit will take off from 0 at some time ¢ > g
only if there are of order of n customers in the nth system at a time ¢ > Tj still of
order of n. In other words the hitting time 7, (u) = inf{t > 0 : Lo(t) > un} of level
un, for u > 0, starting from 0 (using implicitly the Markov property) is central. If
Tn(u) is of order n, this means that one should see the fluid limit reaching u after
time tg.

Not surprisingly, since the queue is subject to a negative drift when A < p,
Tn(u) for u > 0 is much larger than n: 7,(1) is of order (u/A)™ > n. Thus the time
scale of the fluid scaling does not make it possible to capture such events: on the
fluid scale, the process stays stuck at 0. In particular, the sequence of processes
(L) restricted to [tg, +00) converges to the process identically null. Gathering the
above observations, one can formulate the fluid approximation in a unified formula
for the two cases A > pand A <

(3) Lot~ (1+A—pwt)", vt >0,

where 7 = max(z,0) for any x € R. This approximation captures the first-order
behavior of the process (L(t)): since this comes from the averaging behavior of
the large number of initial customers, such approximations are often referred to
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as functional laws of large numbers. The M/M/1 queue provides a simple and
insightful example of such techniques, which are applied in more complex cases, see
for instance the book by Bramson [Bra08] which studies fluid limits of complex
queueing networks; the end goal of this book is the analysis of stability. As will be
highlighted later, the fluid scaling plays a special role compared to other scalings
due to its importance with respect to stability issues. Other scalings indeed exist:
although the fluid scaling of (2) is appropriate for the M/M/1 queue, the right
scaling procedure depends in general on the system of interest. For the M/M /oo
queue for instance, the right scaling is Kelly’s scaling.

M/M/x and Kelly’s Scaling. The M /M /oo is the Markovian queue with an
infinite number of servers; in particular, arrivals occur at times of a Poisson process,
say with parameter \, and the process (L(t)) that gives the number of customers is
a Markov process. Since there are infinitely many servers, each customer is served
immediately upon arrival, and leaves after a time exponentially distributed with
parameter u. The behavior of this queue is radically different from the behavior of
the M/M/1: a first and comfortable difference is that the dynamics is continuous
at 0. For instance, Kolmogorov’s equation has a nice and simple expression,

4
dt
which can be solved to give E(L(t) | L(0) =€) = p+ (£ — p)e” ** with p = \/p.

[E(L(t) | L(0) = )] = A — pE(L(t) | L(0) = 0),

Besides, the main difference is that the output rate from the queue is not
constant nor bounded, since it is proportional to the number of customers in the
queue; in particular, and in contrast to the M/M/1, the M /M /oo cannot be seen
as a random walk. Moreover, this new behavior makes that starting from a large
initial state L(0) = n, the departures largely outpace the arrivals: in [0,¢], the
number of arrivals is of order of one (the mean number of arrivals is exactly equal
to At), whereas the number of departures is already of order of n since each one of
the n initial customers may have left with positive probability. Thus in contrast
to the M/M/1 queue where arrivals and departures occur at the same pace, here
there is a different time scale for the arrival and departure processes.

A possibility to get round this problem is to scale the input rate A by n: then
the mean number of arrivals in [0,¢] is equal to nAt, and is therefore comparable
with the number of departures. This simple idea leads to Kelly’s scaling, introduced
by Kelly [Kel86]. Again we consider a sequence (L,,,n > 1) of processes such that
the nth system represented by (L, (t)) starts with L,,(0) = n customers; in contrast
to the fluid scaling however, the input rate A is scaled by n as well, i.e., the input
rate into the nth system is equal to nA. The rescaled process (L, (t)) is obtained
by rescaling in space only:

Ly(t)

Lo(t) = L t>0, n> 1.
n

Again, note the difference with the fluid scaling (2) in that time is not sped up. Simi-
larly as for the M /M1, it can be proved that the sequence of renormalized processes
(Ln,n > 1) converges to the deterministic process (z(t),t > 0) which is the unique
solution of the following differential equation (see for instance Robert [Rob03,
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Chapter 6]):
dx(t)
dt
This equation is exactly Kolmogorov’s equation, which shows that this scaling pro-
cedure indeed highlights the first-order behavior of (L(t)). To complete the compar-
ison with the fluid scaling, it is interesting to look at the fluid limit of the M /M /co.

=A—px(t), t >0, and z(0) =1.

Imagine one applies the fluid scaling given by (2) to the process (L(t)): note
(Ln,n > 1) the resulting sequence. Similarly as for the M/M/1, the behaviors
of Ty, the hitting time of 0, and of 7,,, the hitting time of n starting from 0, are
key to understand the fluid scaling. Because of the exponential decay of (L(t))
reflected by Kolmogorov’s equation, it can be proved that T} is of order of logn
when L(0) = n gets large. On the other hand the M /M /oo queue is extremely
stable, and not surprisingly, 7,, is very large, it is of order of (n — 1)!(u/A)™. Since
the time scale of the fluid scaling is given by the size of the initial state n, one sees
the following: for any t > 0, at times of order nt the process (L,(t)) has already
reached 0 and did not have time to bounce back to reach levels of order of n. What
this means is that the sequence of processes (L,,,n > 1) converges on (0, +-00) to the
process identically null. Note that the time ¢ = 0 is excluded from this convergence,
since by definition the sequence (L,,(0)) converges to 1; in particular, the fluid limit
of the M/M /oo exhibits a discontinuity at 0+.

Kelly’s scaling can be applied in various settings: Ethier and Kurtz [EK86,
Chapter 11] provide some multi-dimensional examples in chemistry and popula-
tion dynamics — they call these processes density dependent population processes.
Broadly speaking, Kelly’s scaling is suited when events happen at rates which are
proportional to the number of customers, so that starting from a large population
automatically speeds up time. This is the case for peer-to-peer systems as well, see
Massouli¢ and Vojnovié [MV05] or Kesidis et al. [KKS09] for instance.

As concluding remark for these two simple yet fundamental examples, note
that the fact that the scalings discussed for the M/M /1 and M /M /oo queues are
deterministic and governed by differential equations is quite common. The differ-
ential equations usually translate the network’s first-order dynamics; the limits are
deterministic in “good cases” where the system’s main behavior is relatively simple.
This is nevertheless not always the case, see for instance Fayolle et al. [FIMM91]|
or Dantzer et al. [DHROO| for examples where the limiting process keeps some
randomness. In these two examples the process is essentially deterministic, but has
from time to time to make a deterministic choice. For instance in [DHROO], the
process is piecewise linear, and the slope of each line is randomly chosen when the
process hits some boundary.

Fluid Scaling and Stability Analysis. If various scalings can shed light into
a system’s dynamics, the fluid scaling corresponding to Equation (2) nonetheless
plays a special role with respect to stability analysis. In the sequel, the word “stable”
refers to a positive recurrent Markov process, when this process lives in a countable
state-space; in general, the correct notion of stability is the one of positive Harris
recurrence.

Proving the stability of a Markov process usually represents a challenging is-
sue, even for seemingly simple processes and especially for multi-dimensional ones.
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One approach consists in finding the expression of the stationary distribution: this
computational approach is usually intractable, since in most cases there is no closed-
form formula for the stationary distribution. A noticeable exception is when the
stationary distribution has a product-form, which is true for the large class of re-
versible or quasi-reversible networks, see the book of Kelly [Kel94] on this subject.

For more complex networks however, it is hopeless to get a hand on the expres-
sion of the stationary distribution, and approaches which are more qualitative and
less computational are thus needed. Fluid limits provide such an approach, and
it is not fortuitous that they were introduced earlier on the simple example of the
M/M/1 queue. Indeed, a key feature of the M/M/1 queue, mentioned previously,
is that it behaves as a simple random walk in the interior of R, ; its dynamics is
nonetheless discontinuous at 0. Many networks can actually be seen this way: for
instance, in Jackson’s networks the transition from x € N™ to x — e, + ey occurs
at rate pgpr el (s, >0y for some py > 0, where py ¢ is the probability for a customer
to go from queue k£ to queue ¢ upon completion of service. It is apparent that this
dynamics is that of a random walk in N whose dynamics is characterized by the
set of empty queues.

This simple observation motivates Malyshev [Mal93]| to study a general class
of random walks: the two main conditions satisfied by these random walks is the
boundedness of the size of their jump and another homogeneity property, namely
that the probability to go from one state to another depends only on the distance
between these two states and also on the set of empty queues. As any Markov
chain, the stability properties of a random walk only depends on what happens
far from the origin; moreover, a random walk is a sufficiently nice object so that
its long-time behavior is governed by its mean drift. Hence the fluid scaling of
Equation (2) is a natural renormalization procedure to apply to a random walk:
the nth system starts from a large initial state, i.e., far from the origin, and time
is sped up in order to bring out the drift. Hence the fluid scaling describes the
macroscopic behavior of a random walk started from a large initial state, and so
captures the essential features that characterize its stability.

However, not every continuous-time Markov process can be described by means
of a random walk: one must be able to go from the continuous time-scale of the
Markov process to the discrete one of the random walk, and vice-versa. This es-
sentially depends on the transition rates of the Markov process. When they are
bounded, then one can find a universal Poisson process such that transition epochs
of the continuous-time Markov process occur at times of this Poisson process: the
imbedded Markov chain therefore provides a precise description of the original
continuous-time Markov process since they only differ by a time scale which, al-
though random, is smooth. This property is no longer true when transition rates
are unbounded: think for instance to the M/M /oo queue, for which it is not pos-
sible to find a Poisson process with a finite intensity that serves as universal clock.
This simple remark shows a limitation to this “random walk” approach.

Rybko and Stolyar [RS92]| develop this approach on an interesting two-node
model: they study a multiclass network where they make the connection with fluid
limits clearer. Under some static priority rule, their model provides one of the
first examples of a stochastic network unstable under the usual conditions p < 1.
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Dai [Dai95] then studied a general class of networks, which can be thought of as
Jackson’s networks allowing various service disciplines, with several classes of cus-
tomers, and where service requirements and arrivals follow general distributions.
A contribution of this paper is to develop a systematic method to make the link
between the stability of the fluid limit and the stability of the original stochastic sys-
tem, which was already underlying Rybko and Stolyar’s analysis. The introduction
of this paper provides a good introduction to these questions and to further refer-
ences. Among others, Dai motivates his work by a previous paper by Dupuis and
Williams [DW94]| where a reflecting Brownian motion in an orthant is studied.
This connection is not surprising in view of the aforementioned results of Maly-
shev [Mal93]. A recent book by Bramson [Bra08] provides an extensive account
on similar models.

In view of the random walk’s analogy, a key feature of these models is that the
“transition rates” (which make sense under exponential assumptions) are bounded,
since transitions of customers within the network are governed by service comple-
tion. There are at least two interesting cases which do no fit directly into this
framework. A first one concerns the Processor-Sharing discipline, or more gener-
ally service disciplines that can serve an unbounded number of customers. There
a technical difficulty appears, mentioned by Bramson [BraO8], namely that one
needs to control the number of customers finishing their service in any time inter-
val. In such cases it can be convenient to adopt a different technical approach by
describing the network with measure valued processes, see for instance Doytchinov
et al. [DLSO01] and Gromoll et al. [GPWO02] in the case of heavy traffic.

This is nonetheless a rather technical limitation, and another, more natural case
is that of systems whose dynamics intrinsically yields unbounded transition rates.
This is the case for the M/M /oo, and also for the two models studied in Chap-
ters I and IT which indeed inherit salient features of the M /M /oc. In Chapter I the
transition rates are unbounded because customers move within a network indepen-
dently of the service they receive. In this model, motivated by mobile networks, the
network’s capacity is bounded. In contrast, Chapter II considers a network where
the customers act as servers so that, similarly to the M /M /oo, the service capacity
is proportional to the number of customers in the network. In this last example, a
phenomenon that does not occur in classical queueing networks happens: one needs
to deal with time interval of integrable size on which a non-integrable number of
events occur.

Since the models studied in Chapters I and II escape the classical framework
of queueing networks, it is not possible to directly use fluid limits techniques as
developed earlier. In Chapter I these techniques are nonetheless adapted to give
stability results on a model for mobile network; the peer-to-peer model of Chapter I1
is not amenable to such techniques, and Lyapounov type arguments are used. To
make these arguments work, a detailed analysis of some branching processes is
carried out.

Branching Processes. Branching processes are very generic models in applied
probability which are used in a wide range of settings: historically they were intro-
duced to study the survival of family names of noble families, but more generally
their most natural framework is to represent the evolution of a population.
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The Galton-Watson branching process is the simplest branching process: it is
a discrete-time Markov process that can be thought of a as a random tree which
represents the genealogy of individuals. Imagine a (unisexual) population where
independent individuals give birth to a random offspring according to a common
offspring distribution. If Z,, is the number of individuals in the nth generation for
n > 0, then the sequence (Z,,) satisfies the following recursive equation:

Z’n,
ZnJrl = ng,na n 2 07
k=1

where (., k,n > 0) are i.i.d. random variables distributed according to the com-
mon offspring distribution; £ ,, represents the offspring of the kth individual of the
nth generation. The comprehensive book by Athreya and Ney [ANT2] presents
many results on this process.

A fundamental property of Galton-Watson processes is called the branching
property: at any time n > 0, the population starting with x + y individuals can
be thought of as coming from two independent branching processes, one starting
with z individuals and the other with y individuals. This can be written down
as follows: if (Z,(z),n > 0) is a Galton-Watson process started with Zy(z) = =
initial individuals, and (Z](z),n,z > 0) follows the same law and is independent
of (Z,(z),n,z > 0), then the following distributional equality holds:

Zn(z +y) dist. Zn(z)+ Zl(y), n>0, z,y€N.
Although seemingly simple, this fundamental property makes it possible to prove
many results on Galton-Watson processes; it is even so fundamental that it is the
only property (in addition to the strong Markov property) required to define the
most general class of branching processes, called continuous-state branching pro-
cesses and introduced by Lamperti [Lam67].

From a modeling standpoint, the Galton-Watson process is limited in that it
does not incorporate time: an easy way to add this component is to assign to
each edge of the tree representing the branching process i.i.d. labels. Each label
then stands for the life of the corresponding individual. In other words, there
is a common distribution, say X, such that each individual lives for a duration
distributed like X: upon death, the individual splits and gives birth to a random
number of new and independent individuals, where the number of new individuals
follows the offspring distribution. Such models are called Bellman-Harris branching
processes following the paper by Bellman and Harris [BH52]. They are not so
different from Galton-Watson processes in that the time structure is essentially
decoupled from the genealogy.

Although more general branching processes exist, such as Crump-Mode-Jagers,
Jirina or continuous-state branching processes, Bellman-Harris processes are gen-
eral enough for our purposes. A Yule process is a special kind of Bellman-Harris
processes: this is the branching process where particles live for a duration expo-
nentially distributed, and split upon death into exactly two particles; they were
initially motivated by the fission of particles.

Due to their intrinsic dynamics, branching processes appear naturally in sys-
tems where individuals act identically and independently: this is the case for in-
stance in epidemic models, see for instance Barbour [Bar09| where the early stages
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of an epidemic process is coupled with a branching process. More surprisingly,
branching processes appear in other settings as well: in queueing theory they turn
out to be useful tools to study the single-server Processor-Sharing queue, see for
instance Yashkov [Yas83|.

Similarly as epidemic and branching processes are related, Yang and de Ve-
ciana [YdVO06] point out that early stages of a peer-to-peer system under a flash
crowd scenario behave similarly as a branching process. This analogy is the starting
point of Chapter III, where Yang and de Veciana’s ideas are exploited more deeply.
Imagine a system that consists, at any time, of a certain number of servers. Each
time a customer finishes its service, then it becomes a server in turn, so that there
is an increasing and random number of servers; see the previous section presenting
peer-to-peer systems for a motivation for such a dynamics. Under a flash crowd
scenario, many peers request the file and so servers will not be idle. Under this
assumption, servers are independent and each one acts as follows: after a random
duration given by the service time of the current customer, it gives birth to a new
server — equivalently the server dies and gives birth to two new servers. In other
words, the number of servers evolves exactly like a binary Bellman-Harris process,
where the life duration of an individual is precisely given by the service time; when
this service time is exponentially distributed, then Yule processes naturally appear.

More surprisingly, branching processes turn out to be essential tools in Chap-
ter I where the stationary behavior of a peer-to-peer network is studied. In par-
ticular, branching processes are used to study a system which, in contrast with
epidemic models or peer-to-peer networks under flash crowd, does not exhibit an
exponential growth. The analogy is however slightly too complex to be explained
here.

We now conclude this section on the mathematical content of this thesis by
introducing probabilistic models which, similarly as branching processes, appear
naturally in many different problems. Here they appear in connection with the
model for a peer-to-peer system under a flash crowd scenario.

Bins and Balls Problems. These problems make it possible to cast many dif-
ferent problems within a somehow unified framework. In the classical version of
this problem, n balls are thrown independently into m identical bins: each ball
falls in any given urn with probability 1/m. Various asymptotic quantities may
be investigated: choosing m as a function of n and letting n go to infinity, one
can look at the number of bins which receive at least one ball, or at the number
of balls in the bin that receives the most balls; one can wonder how n should be
chosen in function of m so that as m goes to infinity, with high probability no bin
is empty; etc... These simple models are motivated by classical problems such as
the coupon collector’s problem or the birthday paradox. The book by Johnson and
Kotz [JK77] offers a comprehensive account on these questions, see also Chapter 6
of Barbour et al. [BHJ92] for a recent presentation of these problems.

An extension of these models is when there is an infinite number of bins and
a probability vector (p,) on N describing the way balls are sent: for n > 0, p, is
the probability that a ball is sent into the nth bin. In one of the first studies in
this setting, Karlin [Kar67] analyzed the asymptotic behavior of the number of
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occupied bins. An interesting difference then is that geometrical quantities such as
the location of the first empty bin or of the last non-empty one can be investigated.
In [FM85], Flajolet and Martin propose a probabilistic algorithm to estimate the
cardinality of a multiset: the analysis of this algorithm turns out to be equivalent to
estimating the index of the first empty bin when (p,,) is the geometric distribution.
The same problem when (p,,) decays as a power law was investigated by Cséaki and
Foldes [CF76], while Hwang and Janson [HJO08| look at the number of occupied
bins for essentially arbitrary (py).

A further extension of these stochastic models consists in considering random
probability vectors (P,). These problems have only been investigated recently, and
the literature is rather scarce on this topic. A noticeable exception concerns the
series of papers of Gnedin et al. [Gne04, GINR09, GIRO08]: motivated by the
problem of integer composition, they analyzed the case where (P,) decays geometri-
cally fast according to some random variables, i.e., forn > 1, P, = H?;ll Yi(1-Y,)
where (Y;) are i.i.d. random variables on (0,1). Various asymptotic results on the
number of occupied bins in this case have been obtained. The random vector (P,)
can be seen as a “random environment” for the bins and balls problem, and it com-
plicates significantly the asymptotic results in some cases. In particular, the indices
of the bins in which the balls fall are no longer independent random variables as
in the deterministic case, and Chen-Stein’s inequality, which makes it possible to
tackle many problems in the deterministic setting, does not apply anymore.

Here a bins and balls problem appears in connection with peer-to-peer systems:
as explained above, and under certain hypotheses, the population of servers evolves
similarly as a Yule process with sequence of split times (¢,). A sequence (B;) of
i.i.d. exponential random variables describes the times at which customers enter
the system, and from a modeling perspective, the first time when two servers are
created in a row and no customer arrived in between is important; see Chapter III.
Seeing the intervals (¢;,%;+1) as random bins and the points (B;) as balls, this is
exactly a bins and balls problem in random environment. One of the distinctive
feature of this work is that using point processes, we are able to describe not only
the location of the first empty bin, but the locations of all the first empty bins at
once.

Presentation of Chapters

Each chapter of this thesis corresponds to a paper (one of them, corresponding
to Chapter II, being at the time of the printing under review):

Chapter I: Florian Simatos and Danielle Tibi. Spatial homogenization in
a stochastic network with mobility. To appear in the Annals of Applied
Probability.

Chapter II: Lasse Leskeld, Philippe Robert, and Florian Simatos. On the
stability properties of file-sharing networks. Submitted to Advances in
Applied Probability, June 2009.

Chapter III: Florian Simatos, Philippe Robert, and Fabrice Guillemin. A
queueing system for modeling a file sharing principle. In Proceedings of
SIGMETRICS 08, pages 181-192, New York, NY, USA, 2008. ACM.
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Chapter IV: Philippe Robert and Florian Simatos. Occupancy schemes
associated to Yule processes. Advances in Applied Probability, Vol. 41,
Number 2, Pages 600-622, June 2009.

For the sake of completeness, another work that was carried out during my
Ph.D. is cited below: the subject is different from the problems treated here, and
is therefore not included.

e Florian Simatos. A variant of the Recoil-Growth algorithm to generate
multi-polymer systems. DMTCS Proceedings, Al:283-294, 2008.

Chapter I: a Model for Mobile Networks. This chapter deals with a sto-
chastic model for mobile networks first investigated by Borst et al. [BPHOG].
The network consists of n nodes; p; > 0 is the service capacity of node ¢, which
serves customers according to the Processor-Sharing service discipline. New cus-
tomers arrive at node 7 according to a Poisson process of intensity A;, and then
move independently of one another within the network according to a Markov pro-
cess with Q-matrix @ = (g;;). In particular, their movements are not governed
by the service they receive. Upon arrival, customers generate a service require-
ment exponentially distributed with mean 1, and are then served according to the
Processor-Sharing discipline at each node they visit. Customers leave the net-
work once their service requirement has been fulfilled. The n-dimensional process
(X(t) = (X1(t),...,Xn(t)),t > 0) where X;(t) is the number of customers at node ¢
at time t is then a Markov process whose non-zero transition rates are given, for
i£j€{l,...,n}, by

n(z,x+e;) =N

an (T, + €5 — €;) = Tig;j

an(z, 0 —e;) = Lz, >0y i
In these equation e; denotes the n-dimensional vector with every coordinate equal
to 0, except the ith one equal to 1. The first rate corresponds to an arrival at
node 7; the second one to a transition of a customer from node i to node j; the last
one to a departure from node i. The arrival and departure rates are reminiscent of
the M/M/1 queue, and the rate for inner transitions of the M/M /oo queue. This
model can be seen as an interacting particles system; with respect to the number
of customers, the Processor-Sharing discipline has no impact, but it has nonethe-
less an appealing queueing motivation. The intuition on this system is the following.

First of all, when no node is empty, the total number of customers locally
evolves as an M/M/1 queue with input rate A = Ay 4+ --- + A, and output rate
=1+ + pp. Thus in view of the fluid approximation (3) of the M/M/1, and
as long as there are no empty nodes,

(4) in(t) ~(1+N—pi)"

Secondly, imagine that there are many customers in the network. Because the
maximal output rate if of order of one — it is bounded by p — most customers
will stay for a long time in the network before leaving. Now assume that () admits
a stationary distribution 7, defined by 7@ = 0: since customers stay a long time
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in the network, each customer gets close to stationarity and so will after some
time be at node ¢ with probability m;. Since customers’ trajectories are moreover
independent, the law of large numbers suggests that the fraction of customers at
node ¢ at time t is m,;, i.e.,

Xi(t)

Hence in view of approximations (4) and (5) and of the above discussion, the
following approximation is tempting, say when the networks starts off with a large
number of customers:

Xi(t) = m(l+\—pt)t.

Chapter I essentially aims at justifying this approximation, which requires a fine
control on the network’s behavior. The main idea is that in the fluid regime,
customers are instantaneously spread in the network according to 7, i.e., approxi-
mation (5) indeed holds for ¢ > 0. On the normal time-scale, the time needed to
reach this homogenized state is of order of one when there are many customers in
the network. Because time is sped up in the fluid regime, this implies that cus-
tomers are indeed instantaneously homogenized in the fluid regime. On the other
hand it is not easy to control that customers stay homogenized for a long time: in
the supercritical case A > p, this is indeed the case thanks to the following almost
sure limit that controls the long-term behavior of (X (t)):

t——+o0

In the subcritical case customers stay homogenized as long as there are still many
customers in the network, which corresponds to say that customers stay homog-
enized in the fluid regime as long as fluid limits have not hit 0. After this time,
fluid limits stay stuck at 0, which implies stability of the original stochastic system
for A < p.

Although these results seem rather natural, they are actually technical to ob-
tain, and Chapter I is the most technical chapter of this thesis. One of the reasons
for that is that we need to control some specific stopping times, typically the time
needed by the network to homogenize, starting from an arbitrary state. We control
these stopping times thanks to a martingale, whose sole construction is actually one
of the achievements of this chapter. Starting from a space-time harmonic function,
we show that for some functions F' and G, and for any parameter o > 0

n ~ N\ Xi(t)
o U o
1= [y TH(Z) T G@P@™

. i
and Y7 us<1 =1

stopped at some suitable stopping time T} is a local martingale, see Theorem 3.1 in
Chapter I for the precise notations. The main property of this martingale is that it
decouples the time and the state of the system, i.e., it is of the form e #*V (X (t))
for some function V' : N* — R,. This form is suitable to yield Laplace transforms
of stopping times after using optional stopping arguments.
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Chapter II: a Stationary Model for Peer-to-Peer Networks. In Chapter II,
the stability of another model with two different dynamics is investigated. This
(n+1)-dimensional model consists of n+1 queues in tandem, labelled from 0 to n,
and corresponding to the following non-zero transition rates, for any ¢ = 1,...,n
and any x = (zg,...,7,) € N*TL

q(z,x +eg) =\
g,z +e—ei—1) = pi(z; V1)L, >0y
q(z,x —ep) = vay,.

Arrivals occur at rate A to the first queue, customers stay for an exponential dura-
tion in the last queue, and customers in the ith queue act as servers for customers
in the (i—1)th queue; the boundary condition z; V 1 is a technical condition that
prevents the existence of absorbing states. This Markov process can model a peer-
to-peer system for a file with n chunks where peers download the chunks sequentially
(in order), ask for the next chunk to peers who have one more chunk, and stay for
an exponential duration once they have the complete file; this model was motivated
by Parvez et al. [ PWMCO8].

In the special case n = 2, more general interactions are considered: we find
the stability region when the transition rate corresponding to a transition from the
first to the second queue is given by

q(xﬂ T +ex— 61) = MT’(.’K)(CKQ \ 1)]1{.’£1>0}7
where 7 : N2 — R, is any function satisfying the condition:

(©) lim r(zy,22) =1, Vay>0.

1 —+0o0

Considering such functions makes it possible to study variations of the model which
offer different insight, for instance:

Case r(z) = 1 A (z1/(z2 V 1)): customers in the second queue act as servers
for customers in the first one, but having more servers than customers
makes no difference (a customer cannot be served by more than one
server).

Case r(z) = x1/(x1 + 22 V 1): each customer in the first queue initiates con-
tacts at rate p, and polls a customer from the first or the second queue
uniformly at random. With probability (z V 1)/(z1 + 22 V 1) the cus-
tomer polled has the file, which the first customer gets instantaneously;
downloading times are neglected.

For this system there exists a capacity threshold A\*: the Markov process is stable
if A < A* and unstable for A > A\*. Using Foster’s criterion, we prove that \* is
given by:
. Joo if p>v
pv[(v — ) (1= log(L — p/w)] " if p<v.

In other words, the system can accommodate any input rate if customers share the
file long enough (i.e., v is small); otherwise it can only accommodate a finite input
rate.

The technical reason for this dichotomy is the following: broadly speaking, one
needs to compare the input into the system to its output, i.e., A to vxy. Thus the
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case T2 > 1 is a good situation with respect to stability, and so the real bottle-
neck — when there are many customers — corresponds to z; > 1 and z, =~ 1.
This intuitively explains why the stability region does not depend on the specific
function r provided it satisfies Condition (C). If 4 > v, then the second queue is
unstable and grows exponentially fast until it exhausts the first queue; after that,
the system essentially resembles an M /M /oo queue until both queues are almost
empty. In the other case p < v, then the second queue is stable, and the mean
transition rate from the first to the second queue is then pE(Xs5 V 1) if E(-) refers
to the expectation with respect to the stationary distribution of X5. Hence the
system can only accommodate this much throughput.

In the general case n > 3, it seems difficult to explicitly exhibit the stability
threshold. We prove the following result: if

(6) p1 > pig > e > iy, — v >0,

then the (n+1)-dimensional Markov process is stable for any value of A > 0. This
case is the equivalent of the good case u > v in dimension two: informally, cus-
tomers can be carried over the network very rapidly because all the queues can be
build up, thus providing a high throughput. We conjecture that when the above
condition fails, then the capacity threshold is finite, and we prove this conjecture
in dimension n = 3. In higher dimension similar techniques could work but one
needs to face more serious combinatorial problems. Although rather intuitive, the
proofs of these results rely on involved couplings with branching processes. Among
other results, we need to study a new class of branching processes that we introduce
below in order to give the flavor of results encountered in this chapter.

To construct this process, one starts with a Yule process with parameter u
and with a deterministic sequence (o,,) increasing to infinity. The killed process
(Z(t),t > 0) is defined by killing a particle of the initial Yule process, and therefore
its future progeny with it, at each time o,,: thus the sequence (Z(c,,)) satisfies the
following recursion:

Z(U'n)

Z(opy1) = Z &k — 1| Liz(s,)>0}
k=1

where for each n > 1, (g n,k > 1) are i.i.d. random variables distributed like
Y(opt1 — on) where Y(+) is a Yule process with parameter p and starting with
one particle. For k,n > 1, { ,,, which is actually a geometric random variable with
parameter e #(7n+1=9) represents the offspring of the kth particle alive at time o,
in the time interval (o, 0,41). Then the killed process Z(-) can survive if and only

if
Z e HIn < too.

n>1

This result is then applied to the model with n queues in tandem to show, in
conjunction with Foster’s criterion, that it is stable for any input rate A > 0 when
Condition (6) is satisfied. In dimension n = 3, estimates of the extinction time of
this process when Condition (6) fails are performed, which makes it to possible to
find the stability region.
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Chapters I and II: a Mixture of Two Dynamics. The two models con-
sidered in the two first chapters have characteristics both from the M/M/1 and
the M/M /oo queues. Because the transition rates of such Markov processes are
unbounded, they do not fit in the usual framework of fluid techniques, see the
discussion on fluid limits in the previous section.

A challenging problem in these cases is to decouple the two dynamics: the
M /M /1 dynamics is responsible for the stability of the system, while the M /M /oo,
which acts on a faster time scale, dictates in some sense how the customers are
spread within the network.

Chapter III: a Flash Crowd Scenario. To complement the study of Chapter 11
on the stationary behavior of file-sharing peer-to-peer networks, we have studied a
very simple model for a flash crowd phenomenon. The system starts with one server
that offers the file, and N peers that want to download it. Each time a peer finishes
downloading the file, it offers it in turn: thus the number of servers increases in
time. At time ¢ = 0, every peer initiates an exponential clock with parameter 1/p:
when its clock expires, the corresponding peer “wakes up” and enters the system.
It is then queued at the server with the smallest number of queued peers, where
it is served according to the FIFO discipline and requests a service exponentially
distributed. Once served, it becomes a server; thus each time a peer downloads the
file, a new server is created where further incoming peers can be queued.

The system starts from a highly overloaded state (N peers want the file, one
server offers it); eventually, the situation is reversed, with many servers offering the
file and only few peers not awake. The question addressed in Chapter IIT concerns
the time needed for the system to cope with the initial high demand, or equivalently,
the time needed to pass from one equilibrium to the other. A first-order approach
to this question is the following.

The number P(t) of peers not awake at time ¢ decays exponentially fast, i.e.,
P(t) ~ Ne *. On the other hand, the number S(t) of servers grows exponen-
tially fast, at least when the system is still overloaded: S(t) ~ e'. The system
shifts from one equilibrium to the other when the input rate, proportional to P(t),
equals the output rate S(t), i.e., when S(t) ~ P(t), which leads to a time of order
(log N)/(p+1). Our conclusion is that this heuristic approach is valid: we neverthe-
less provide a justification and a more detailed explanation for this approximation.
The approach itself is interesting and yields theoretical questions of independent
interest, which are treated in Chapter IV.

As a first guess on the time when the system’s equilibrium shifts, one can
consider the time Ty defined by the first time when two successive servers are
created while no peer arrived in between. Intuitively, this amounts to compare the
speed at which new peers enter the system to the speed at which new servers are
created: Ty corresponds to the first time when servers are created faster than peers
arrive.

The time Ty is solely determined by the comparison between two random
sequences: note (A4;,1 < i < N) the times at which the N peers wake up (this
is a vector of N i.i.d. exponential random variables) and (7,,n > 0) the sequence
that describes the times at which new servers are created, with 7p = 0. Then Ty
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is defined by
(7) Ty =inf{n>0:A4; ¢ (T, Tny1), i =1,...,N}.

It can be argued that before the time T, empty servers can be safely neglected:
a key observation is that if servers were never empty, then their number would
evolve exactly like a Yule process, since each server would give birth to a new
server after a time exponentially distributed. Hence to get an insight into T, one
can consider the same problem as (7), but where the sequence (7,,) is replaced by
the sequence (t,) of split times of a Yule process; for n > 1, t, is an accurate
approximation of 7,,. One then defines Ty r as the first time that an interval
(tn,tn41) contains no point (A4;):

TN,R = 1nf{n Z 0: Ai ¢ (tn,tn+1), L= 1,...7N}.

Then as N gets large, Ty, r is a very good approximation of Ty. It turns out that
estimating Ty g is not easy — Chapter IV is devoted to solve this problem — and
that T'v, g is actually not a good indication on the global equilibrium of the network.

Indeed, the first interval (¢, t,+1) that contains no point does not have a global
significance, it is rather due to a rare event, namely that this interval is very small
compared to what it ought to be. In terms of peers and servers, this means that
the first time that two servers are created in a row and no peer arrived in between
is due to the fact that at some point, a server is created very quickly. In particular,
around T, there are still a great number of peers arriving in between the creation
of two successive servers.

Hence Ty does not capture the shift in equilibrium, and this is due to the
stochastic fluctuations of the sequence (¢,). To get rid of this effect, a natural
idea is to consider the same problem defining T’y r, but instead of looking at the
random sequence (i, ), look at the deterministic sequence (E(t,,)); thus the irrelevant
stochastic fluctuations will be avoided. This leads to define the first time T p when
an interval (E(t,),E(t,+1)) contains no point (A;):

TN,D = 1nf{n Z 0: Ai ¢ (E(tn),E(tn+1)), 1= 1, .. ,N}

This problem was already investigated in 1976 by Cséki and Foldes [CF76], but
we revisited their answer with a modern tool in applied probability, namely Chen-
Stein’s inequality. This approach gives a more precise answer as well as an indication
on the speed of convergence. It is shown that the quantity

(p+1)Tnp —logN +loglog N

converges in distribution as N goes to infinity to some non-trivial random variable;
in particular T, p is of order of (log N)/(p+1). Simulations show that this answer
is rather good, and gives a good idea of the time when the system’s equilibrium
shifts. We finally argue, based on simulations, that empty servers cannot be ne-
glected anymore after time T, p. This significantly complicates the analysis since
approximating the population of servers with a Yule process is the key idea that
allows to derive analytical results.

Chapter IV: Bins and Balls in Random Environment. This chapter is de-
voted to the study of the bins and balls problem that naturally arises in Chapter III.

A convenient way to describe this bins and balls problem is to consider a random
sequence (t,,n > 0), strictly increasing from ¢, = 0 to +oco, that divides the positive
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half real line R into random intervals; these intervals play the role of bins. Balls
are represented by i.i.d. exponential random variables with parameter p > 0: the
ith ball B; falls in the nth interval (¢,-1,t,) if t,—1 < B; < ty.

Because the sequence (¢,) is random, the locations of the balls — i.e., the bins
in which they fall — are independent only conditionally on this sequence. Hence
conditionally on (¢, ), this is a usual bins and balls problem where the probability P,
for any ball to fall in the nth bin is given by

P, = IP)(tnq < Bi < ty] (tk)) = e Pln-t _ g7l — gPln—a (1 — e_p(t"_t"*)) .

Because the sequence (¢,,) is random, so is the probability distribution (P,): this
is a bins and balls problem in random environment. The random number of balls
that fall in the ith bin when n balls are thrown is denoted 7; j,,

n
Nin = E ]l{ti—1<Bj<ti}'
Jj=1

Gnedin et al. [Gne04]| look at the case where (t,,) is a renewal process; due
to our motivation coming from Chapter III we investigate the case where the se-
quence (t,) is the sequence of split times of a Yule process, i.e.,

n
E
=Y —&
k
k=1
where (Ej, k > 1) are i.i.d. exponential random variables with mean 1. With this
choice of (t,), he random probability distribution (P,,) can be written
1
n — Tlp+1

WkZ,,

where the sequence (W,,) converges almost surely to some random variable W, and
(Z,,) converges in distribution to an exponential random variable with parameter p.
The variable W, induces a global randomness that affects the whole process, while
the variables (Z,,) induce some randomness at the local level only, i.e., at the level
of each bin.

Our primary functional of interest is the random point process {i > 1;7;.,, = 0}
that describes the indices of empty bins: the correct scaling factor — i.e., the order
of magnitude of the first empty bin — is n'/(°*2) so that we are interested in the
convergence of the sequence of point processes (N;,) where

1 )
Nn_{nl/(wilzl,ni’n_o}‘

It is shown that the sequence (N;,) converges in distribution as n goes to infinity
to the point process

(Wp/<p+z>a_1/<p+2>)

where (0;) is a standard Poisson process with parameter [p(p + 2)]~%/(#*+2). The
random variable W, that induces a global randomness therefore affects the distri-
bution of the limiting process as well. This result follows from the convergence in
distribution of the sequence of the two-dimensional point processes (P,) where

{ ,
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Let us explain why P, is a natural object to study. Conditionally on the environ-
ment (tx), the average number of balls that fall in the ith interval when n balls are
thrown is given by E(n; »|(tx)) = nP;. Thus the first empty bins will be the bins
with index ¢ such that nP; is of order 1, which is precisely the indexes on which P,
sets the focus. Hence P,, indeed provides a more detailed description of the loca-
tions of the first empty bins than N, does. Moreover, and perhaps surprisingly, it
is technically slightly easier to study the convergence of the sequence (P,,) than the
convergence of (Ny,).

An interesting phenomenon is studied in conclusion of Chapter IV: due to the
non-integrability of W for p < 1, the following fact happens for p < 1. For a > 0,
define N by

(A
J\fff:{a:z>1, ni’n:O}.

n
Informally, A% focuses on empty bins which have indices of order n®. The conver-
gence of the sequence (V) implies that for any = > 0, the sequence (N([0,x]))
converges in distribution to 0 for any o < 1/(p + 2). This suggests that the mean
number E(N#([0,x])) of empty bins with index between 0 and xn® should converge
to 0 as well, but actually, we have that for p < 1 and any 1/(2p+1) < o < 1/(p+2):

lin E (VN ([0,2])) = +o0, Vz >0.

For 1/(2p+1) < a < 1/(p+2), the discrepancy between the behavior in distribution
of the two sequences (N2([0, z]),n > 1) and (E(N¥([0,x])),n > 1) is due to events
which, however of vanishing probability, make the expected value diverge. These
rare events are explicitly exhibited and discussed.

Link between Chapters III and IV. These two chapters correspond to two
different papers and were written separately, which explains the slight discrepancy
in notations between them; for instance, the number of balls is noted N in Chap-
ter III and n in Chapter IV. We hope that this will not hinder their readability.
Since these are the most correlated chapters of this thesis, we wish to make clear
the connection between them by quickly summarizing their technical content.
Chapter III deals with a bins and balls problem in a deterministic environment:
the analysis of the index of the first empty bin relies on Chen-Stein’s method, which
requires analytic estimates of first and second moments of some random variable.
Chapter IV investigates a bins and balls problem in random environment and uses
tools from the theory of point processes to describe the locations of the first empty
bins. It is mentioned in Chapter IV how the main result obtained in Chapter III
can be revisited to give results on point processes, and results from Chapter IV are
used in Chapter III to gain some insight into the peer-to-peer model considered.

Organization of References and Citations. We use the following labels. Ro-
man numbers refer to chapters, arabic numbers to statements (lemma, proposition,
corollary, theorem, ...) and numbers between parentheses to equations or formulas.
For instance, Proposition II1.4.1 refers to the proposition with label 4.1 in Chap-
ter III, and Equation (IV.6) to the equation with label (6) in Chapter IV. Since
chapters are essentially independent, only few references will be made from one
chapter to another and so for simplicity the roman number referring to a chapter
is omitted within the same chapter.
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At the end of each chapter, the reader will find the list of references used solely
in this chapter. A comprehensive list of all the references used in this document
can be found on page 163.
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1. Introduction

Recent wireless technologies have triggered interest in a new class of stochastic
networks, called mobile networks in the technical literature [BPH06, GTO01]. In
contrast with Jackson networks where users move upon completion of service at
some node, in these mobile networks, transitions of customers within the network
occur independently of the service received. Moreover, at any given time, each node
capacity is divided between the users present, whose service rate thus depends on
the capacity and on the state of occupancy of the node. Once his initial service
requirement has been fulfilled, a customer definitively leaves the network. In Borst
et al. [BPHOG6|, complex capacity sharing policies are considered, but in the sim-
plest setting, which will be of interest to us, nodes implement the Processor-Sharing
discipline by dividing their capacity equally between all the users present. Previous
works [BPH06, GT01]| have mainly focused on determining the stability region
of such networks, and it has been commonly observed that the users’ mobility rep-
resents an opportunity for the network to increase this region. Indeed, because of
their mobility, users offer a diversity of channel conditions to the base stations (in
charge of allocating the resources of the nodes), thus allowing them to select the
users in the most favorable state. Such a scheduling strategy is sometimes referred
to as an opportunistic scheduling strategy, see Borst [Bor05] and the references
therein for more details.

In the present chapter, we investigate from a mathematical standpoint a basic
Markovian model for a mobile network, derived from Borst et al. [BPHO6].
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this simple setting, customers arrive in the network according to a Poisson process
with intensity A, and move independently within the network, according to some
Markovian dynamics with a common rate matrix (). Service requirements are
exponentially distributed with mean 1, and customers are served at each node they
visit according to the Processor-Sharing discipline, until their demand has been
satisfied. The total capacity of the network, defined as the sum of all the individual
capacities of the nodes, is denoted by p. It corresponds to the instantaneous output
rate of the network when no node is empty, i.e., when there is at least one customer
at each node.

It is of particular interest to note that, even if () is reversible, because of the
arrival and departure processes, the system is not reversible. This contrasts with
earlier works in which particle systems with similar dynamics have been investigated
under reversibility assumptions. In Caputo and Posta [CPO07], the authors look at
a closed system (i.e., with parameters A\ = p = 0) where transition rates are chosen
such as to yield a reversible dynamics. In this case, the stationary distribution of
the system has a product form, and the authors are interested in showing that the
convergence to equilibrium is exponentially fast. Their approach essentially relies
on logarithmic Sobolev type inequalities.

In our case however, a different set of questions is addressed, involving different
tools. Since the system under consideration is open, it may be unstable, so that
a natural issue is to determine the stability region. We prove, as was conjectured
in Borst et al. [BPHO06], that the intuitive, simple condition A < p is indeed the
stability condition (the critical case A = p is not considered). In contrast with
Jackson networks for which the stability condition is local, in the sense that each
node has to satisfy some constraint, here only the global quantities A and u matter.
This shows that mobility allows to make the most of the potential service capacity
of the network, corroborating the results previously mentioned. Note that A < p
being a necessary condition is obvious, since p is the maximal output rate. But
surprisingly, proving that it is sufficient requires very technical tools, among which
the use of fluid limits and martingale techniques. In particular, the long and tedious
Appendix A of this chapter is solely devoted to the construction of a martingale
which provides key estimates for showing that A < p corresponds to a stable system.

This martingale is a multidimensional (therefore complicated) generalization of
the martingale built in Fricker et al. [FRT99]| for the M/M /oo queue, and this is
not completely surprising, since as will be seen, the model inherits salient proper-
ties of the M/M /oo queue. Besides, the construction of a martingale associated
to a multidimensional process represents one of the technical achievements of this
chapter: such examples are indeed pretty scarce in the literature. Similarly as in
Fricker et al. [FRT99], the approach relies on building a family of space-time har-
monic functions indexed by some parameter ¢ € R™, and then on integrating over ¢
in such a way as to preserve the harmonic property.

Through studying both the stability region and the unstable regime, a detailed
description of the behavior of the system is given, resulting in two versions (sta-
ble and unstable) of the following rough property: When many users are present
in the network, they get approximately distributed among the nodes according
to the unique invariant distribution 7 associated to @), the latter being assumed
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irreducible. It must be emphasized that yet, contrary to Borst et al. [BPHO6],
customers’ movements are not assumed stationary.

As a first argument for this spatial homogenization, the law of large numbers
suggests that, when the total number of users initially present in the network is
large, the proportions of users at the different nodes should be close to 7 after some
time, related to the convergence to 7 of the Markov process associated to ). The
more delicate question, that next arises, of how long these proportions stay close
to 7w constitutes the main challenging issue of the chapter, that requires martingale
techniques for estimating the deviation time from .

The short term reach of 7 is understandable from an analogy with the M /M /oo
queue: indeed, independence of the customers’ trajectories yields that, similarly to
the M/M /oo queue, the output rate from any node due to inner transitions is
directly proportional, through @, to the number of customers at this node. When
the network is overloaded, the relative occupancies of the nodes should then, after
a while, be close to the internal traffic balance ratios, given by .

A more explicit analogy with another classical queueing model is provided by
the following simple but crucial observation: As long as no node is empty, the total
number of customers simply evolves as an M/M/1 queue with input rate A and
output rate p. And this is in particular the case when the distribution of customers
is close to w. This interplay between, on the one hand, the proportions of customers
at the different nodes, and on the other hand their total number, will underly the
analysis all along the chapter.

While the short term behavior, which results in the spreading of customers
according to 7, is dominated by the M/M /oo dynamics, the long term behavior
is essentially driven by the M/M/1 dynamics of the total number of customers.
This naturally suggests that two different scalings have to be considered: one,
corresponding to the M /M /oo dynamics, where only space is scaled, and not time;
and a second one, where both space and time are scaled, corresponding to the
fluid scaling of the M /M /1 queue. Note that the natural scaling for the M/M /oo
queue is the so-called Kelly scaling, in which space and input rate are scaled. Here,
since the input rate at each node due to inner transitions is a linear function of
the numbers of customers at the different nodes, there is no need to scale the
external input rate A. Inner movements dominate the dynamics and the space
scaled process converges, analogously to the M /M /oo queue under Kelly’s scaling,
to some deterministic trajectory, with limit point at infinity here given by .

The coexistence of these two different scalings makes the use of fluid lim-
its both original and challenging. Fluid limits are a standard tool in the anal-
ysis of complicated stochastic networks. Rybko and Stolyar [RS92] is one of
the first papers using this technique together with Dai [Dai95|. Dupuis and
Williams [DW94| presented similar ideas in the context of diffusions. In a se-
ries of papers Bramson [Bra96a, Bra96b| describes the precise evolution of fluid
limits for various queueing networks. See also the books by Chen and Yao [CY01]
and Robert [Rob03]. In the context of networks, fluid limits have been used mainly
for Markov processes which behave locally as random walks. For this reason, re-
sults related to fluid limits are sometimes presented as functional laws of large
numbers. Because of the mixture of two different dynamics, given by the M/M/1
and M/M /oo models, our framework is somewhat different. A second important
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difference with the existing literature concerns tightness results which are usually
easy to obtain, mainly because transition rates are generally bounded: this not the
case here.

The long term analysis is twofold. Deriving fluid limits requires a control on
the process over time periods of the same order as the initial number of customers
(since the fluid scaling parameter is the same for time and space). In the stable case
this is obtained by showing that the deviation time from 7 is essentially larger than
the time for the underlying M/M/1 queue to empty. The unstable case exhibits
a more striking behavior: the deviation time from 7 is not only large compared
to the initial number of customers, but is even infinite with high probability. This
amounts to a control of the whole trajectory: the distribution of users among nodes
stays trapped in any neighborhood of 7 with high probability as the initial state
is large. This result is related to a strong convergence result stating that, for any
fixed (non scaled) initial state, the system almost surely diverges along the direction
of 7. A similar phenomenon has been exhibited in Athreya and Kang [AK98], in
the context of branching Markov chains, i.e., Galton-Watson branching processes
where individuals located at some countable set of sites move at their birth time.

These various remarks and outline of results lead to the following organiza-
tion for the chapter. Section 2 gives a precise description of the stochastic model
and introduces the notations that will hold throughout the chapter. We have al-
ready mentioned the construction of a martingale which gives important estimates
through optional stopping techniques: Section 3 introduces this martingale, and
provides the main estimate that will be used. Due to its technicality, the construc-
tion of the martingale is postponed to the Appendix A.

Section 4 establishes a decomposition of the process as, mainly, the difference
between two processes of the same type but with no departures. For such a process
(with null service capacity), a representation involving labelled particles is given.
Both representations will help derive the almost sure convergence result of Section 6.

The three last sections are devoted to analyzing the behavior of the system.
Section 5 deals with the short term behavior, thus studying the only space renor-
malized process. Section 6 studies the supercritical case A > pu, establishing among
other results the almost sure convergence of the proportions to the equilibrium dis-
tribution 7 as t — oo. Finally, Section 7 proves the stability of the system in the
subcritical case A < p.

2. Framework and Notations

This section gives a precise description of the model under consideration and
introduces the main notations. The network is described by a Markov process
X = (X(t),t > 0) characterized by its infinitesimal generator, given by (1) below.

Section 6 will make use, in the particular case of null service capacity, of a more
explicit representation of X involving a sequence of Markov jump processes that
represent the trajectories of the successive customers entering the network. The
general description of the system through its Markovian dynamics provided in the
present section is however sufficient for most results of the chapter, especially for
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building a family of martingales and for determining the stability condition.

The network consists of n nodes between which customers perform independent
(continuous time) Markovian routes during their service. In this setting, transitions
of customers from one node to another are driven by some rate matrix @ = (¢;5,1 <
1,7 < n) and are thus not triggered by service completion.

New customers arrive at node ¢ = 1,...,n according to a Poisson process with
intensity A; > 0, and then move independently according to the Markovian dynam-
ics defined by . The arrival processes at the different nodes are independent, so
that the global arrival process is Poisson with intensity A = Y1 A;. The case A =0
corresponds to a system with only initial customers, and no new arrivals.

Upon arrival, or at time ¢ = 0 for those initially present, customers generate
a service requirement which is exponentially distributed with mean 1. All service
requirements, arrival processes and Markovian routes are assumed to be mutually
independent.

Node i, 1 < i < n, has service capacity u; > 0, which is divided at any time
between the customers present, according to the Processor-Sharing discipline: If V
is the number of customers present at node 4, then each of these N customers is
served at rate p;/N. The service rate of a given customer thus evolves in time,
depending on his current position and on its occupancy level. Once a customer has
received a service that meets his initial requirement, he leaves the network.

The total service capacity of the network is defined as = > ;. Notice that,
due to the exponential nature of the services, the mechanism of departure from one
node by completion of service does not distinguish the present Processor-Sharing
discipline from the FIFO discipline: the instantaneous output rate from the system
at node ¢ is p; provided that node 7 is not vacant. The total output rate is then p
when no node is empty.

The process of interest is X = (X (¢),t > 0) defined by

X(t):(Xl(t)w"vXn(t))v t >0,
where X;(t), fori = 1,...,n, is the number of customers present at node 7 at time ¢.
The Markovian nature of the movements together with the exponential assumption
for the service distribution imply that X is a Markov process in N” with infinitesimal
generator ) given, for any function f:N" — R and any « = (z1,...,z,) € N”, by
n n

(1) )@ =Y N(fla+e) = f(@) + Y Uasoyus(fl@—e) = f(2))

i=1 i=1
+ > ggri(fate—e) — f(2),

1<i£j<n

where e; € N™ has all coordinates equal to 0, except for the ith one, equal to 1.

The introduction has highlighted that this system is a mixture of two classical
models in queueing theory, the M/M/1 and the M /M /oo queues. This is readable

in the expression of the generator given in (1), where the two first sums are remi-
niscent of the M/M/1 queue, and the last one of the M /M /oo queue.

The rate matrix @ is assumed to be irreducible, admitting 7 = (m;,1 < i < n)
as its unique stationary distribution, characterized by the relation

@ = 0.
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For technical reasons related to the construction of the martingale introduced in
Section 3 (see the Appendix A), we require the additional assumption that @ is
diagonalizable. This assumption is satisfied if ) is reversible with respect to 7, but
it is in general a much less restrictive constraint.

For any ¢ > 0, the random vector X (¢) will often be described in terms of the
total number of customers L(t) and the proportions of customers at the different
nodes x(t) = (xi(t),1 <i <n). More formally, define

L(t) =Y X;(t) = |X(1)] and xi(t) = i((tt)) 1<i<mn, t>0,
j=1

with the convention that x(¢) = e; when L(¢) = 0. Here, and more generally for
any r = (1,...,2,) € R", |z| denotes the ¢! norm in R"™: |z| = Y"1 |x;].

The vector x(t) can be identified with a probability measure on {1,...,n}:
namely, the empirical distribution of the positions of the L(t) customers present in
the network at time t. Denote by

P= {pe [0,+oo[":§n:m = 1}

the state space of x(t). The interior set of P is P = {p €]0, +oo[": 327 p; = 1}.

As emphasized earlier, the deviation of x(¢) from 7 will be of particular interest
in the forthcoming analysis. It will be measured, depending on circumstances, by
the £°° distance ||x(t) — 7|

H.’L‘H :1rgia§Xn|xi|7 T = (xlw-'vxn) € R",

or by the relative entropy H(x(t),7), where H(-,7) is defined on the set P of
probability measures on {1,...,n}, by

n
Pi
H(p, ) ;pz log - € 0,4+, peP.
For t > 0, the quantity H(x(¢),7) will also be more simply denoted H(t). The
process (H(t),t > 0) will spontaneously appear in the expression of the key mar-
tingale J, introduced in the next section.

The different deviation times of x(¢) from 7, or conversely, the time needed
for x(t) to reach a given neighborhood of 7, will be of particular interest. For
any € > 0, T, (resp. T¢) denotes the first time when the ¢>° distance between x(t)
and 7 is smaller (resp. larger) than e:

T.=inf{t > 0:||x(t) — 7| < e} and T° = inf{t > 0: ||x(¢t) — 7| > €}.

Most results will be written down in terms of these two stopping times, but it will
be sometimes more convenient to work with the deviation time T'7; from 7 in terms
of the relative entropy:

Th =inf{t >0: H(t) > ¢}

All results on deviation times of x(¢) from 7 defined in terms of the £°° dis-
tance ||x(t) — 7| can be translated into analogous estimates in terms of the relative
entropy H (t) thanks to the following classical result:
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LEMMA 2.1. There exist two m-depending positive constants C1 and Cs such that,
forall p e P:
Cillo - 7l < H(p,7) < Callp— 7%

. Cie? € Cae®
In particular, for any e >0, Ty'® <T° < Ty .

Another stopping time will play a central role: namely the first time, denoted
by 7o, when the system has an empty node. Formally,

To=inf{t >0:3 e {1,...,n}, X;(¢t) =0}.

Indeed, the martingale property for the family of integrals presented in Section 3
will hold only up to time 7, i.e., as long as the output rate at each node i is exactly
equal to p;. In the same way, it will be easily shown that, for ¢ < 7y, L(t) behaves
exactly like the M/M /1 queue with input rate A and output rate p.

A last useful remark concerning these stopping times is that, when 7 is finite,
IIx(79) — 7|| > minm; (> 0). Together with Lemma 2.1, this immediately gives the
following result:

LEMMA 2.2. There exists eg > 0 such that T¢ V T < Ty holds for any ¢ < gp.

3. Martingale

The results of this section are twofold: Theorem 3.1 gives the (almost) explicit
expression of a local martingale J, (- A 7p), indexed by some positive parameter «,
and Proposition 3.2 derives the main estimate on deviation times Tj; of x(¢) from ,
that will be used in Sections 6 and 7. Concerning the construction of J,, the present
section only aims at giving the main lines. The (numerous) technical details are
postponed to the Appendix A.

The approach for constructing the martingale J,, is similar to the approach used
in Fricker [FRT99] for the M /M /oo queue. The idea is to first exhibit a family of
space-time harmonic functions (h,(t,z),v € R™) for the generator Q given by (1),
and then to integrate h, (¢, z)f(v) with respect to v for some suitable function f, on
some well chosen time dependent domain. The last step is then to make a change
of variables so that the new harmonic function is split into two factors, respectively
depending on time and space. The resulting local martingale is then adapted for
an optional stopping use, leading to hitting times estimations.

Some notations are required at this point. Denote by (Pt € R) the Q-
generated Markov semi-group of linear operators in R": P, = '@, extended to
all real indices ¢ into a group. For v € R™ and ¢ € R, define

o(v,t) = (¢i(v,1),1 <i<n)=P_v.

Theorem 3.1 below requires the technical assumption that @ is diagonalizable. Let 6
be the trace of —@Q, so that § > 0, and let S C R"~! be the projection of P C R"
on the n — 1 first coordinates, i.e.,

n—1
S:{u:(ul,...,un_l)ER"_lz Vi=1,...,n—1, u; >0 and Zui<1}.

i=1
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For any u € S, denote by u € P the nth dimensional vector which completes u into
a probability distribution, i.e., #; = u; forany 1 <¢<n—1and @, =1— 71171 U;.

The following proposition describes a family of space-time harmonic functions.

PROPOSITION 3.1. Let v € R™ be fized and let p(v,-) be any primitive of

n

Z( Ty o)

=1

on any open subset V of {t > 0: 1+ ¢;(v,t) £0 fori=1,...,n}. The function
hy(t, x —e“" H + ¢i(v,t))"", teV,xeN",
i=1

18 space-time harmonic with respect to Q in the domain V x N*™,

PROOF. It must be shown that Oh,(t,z)/0t + Q(hy(t,-))(z) = 0 on the above
domain. For z € N*" and t € V, h,(t,z) # 0, and one easily computes:

1 Oh, — O¢i(v,t)/0t
hv(t,x)ﬁ(t @) = +Z "1+ ¢5(v,t)

¢i(v,t)
RO ZWZ o) Z T on(0,0)

(V1) — di(v,t)
+1<;<nx2% L+ ¢i(v,t)

The last term in the right-hand side is equal to

n

Z m (Qo(v, 1)), -

By definition ¢ satisfies ¢ (v,t)/0t = —Q¢(v,t) and the result follows. |

REMARK 3.1. The product form of these space-time harmonic functions is quite
similar to that of the harmonic functions introduced in Fricker [FRT99] for the
M /M /oo queue.

In addition, it is easily checked that, choosing v = (v — 1,...,u — 1) for some
u # 0, so that v is some eigenvector of P;, t € R, associated to eigenvalue 1,
yields hy(t, X (t)) = ut®PA-w+n=1/Wlt " ghich is the martingale associated
to an M/M/1 queue L with arrival rate A and service rate p (see for example
Robert [Rob03]).

Starting from h,(¢,x), two steps lead to J,: (i) integration of h,(t,x) over v
against some function f(v) on a suitable time-dependent domain D(t); (ii) change
of variables. These two steps are detailed and justified in the Appendix A, yielding
the following family of local martingales:

THEOREM 3.1. There exist two positive, continuous, bounded functions F and G
on P such that for any o > 0, u — F (@)~ ! is integrable on S and (Jo(tATp),t > 0)
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is a nonnegative local martingale, where J,(t) is defined for a > 0 and t > 0 by:

n ~

Ja(t) = e*a%/s 11 (?)Xi(t) G(a)F (@) ‘du,

i=1 ¢

or equivalently:
(2) J., (t) _ e—a&t / eL(t)(H(t)_H(X(t)’ﬁ))G(ﬁ)F(ﬂ)O‘_ldu.
s

Moreover, F satisfies

(3) sup (a” /S F(a)“_ldu> < +oo.

0<a<1

The advantage of J,(t) (as compared to h,(t, X (t))), is that the dependence
in time is there splitted into two factors: e~ % is a direct function of time, and
the integral is a function of the state of the system at time ¢, X (¢) or equivalently

(L(t), x(t))-
The next proposition gives the fundamental estimate obtained through optional
stopping and used several times throughout the chapter.

PROPOSITION 3.2. For any § such that 0 < § < €, where gg is given by Lemma 2.2,
there exists some constant Cs such that

E, (efaeT;,;L(Tg) > 5) < Oy ael#lH @/ lelm)—(=0)t
holds for any initial state x € N™ and any € €]9, o[, £ > 0 and « €]0,1].

Proposition 3.2 is derived from the two following lemmas by choosing T' = T
(so that, by Lemma 2.2, T A7y = T when € < gg). Note that only Lemma 3.1 uses
the fact that J, is a local martingale, whereas Lemma 3.2 stems directly from the
expression of J, provided by (2).

LEMMA 3.1. There exists some constant C5 > 0 such that, for any a €]0,1], any
initial state © € N™ and any stopping time T, the following inequality holds:

B [Jo(T ATp)] < Cyamel@H(@/1zlm)
PrROOF. Fix a €]0,1] and z € N™. Since J,(-A7p) is a nonnegative local martingale,

it is a supermartingale, and so is (J, (¢ AT A7), t > 0) by Doob’s optional stopping
theorem. In particular, for any ¢ > 0:

Es[Ja(0)] = Ep[Ja(t AT A Tp)],
and Fatou’s lemma gives:
> Timi - - _
E, [JQ(O)] > 1t11_>n_:£10f E, [Ja(t/\T/\’ZB)] >E, [ltan_g&f Ja(t/\T/\']E))] E, [JQ(T/\’ZB)],
(where Jo(T' A Tp) makes sense a.s. when T'A 7y = +o00 since any nonnegative

supermartingale almost surely converges to some variable at infinity).
From the definition of J, given by (2), using e”¥ <1 for y > 0, one gets

E, [Jo(0)] < sup(G) el®!H @/lzl.m) / F(@)* tdu < Cyel®lH(@/|zlm) g —n
P S

where C3 = sups(G) supgc < (oz” Js F(ﬂ)o‘fldu> is finite by (3), which proves
the lemma. ]
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LEMMA 3.2. For any positive §, there exists some positive constant Bs such that
the following implication holds for any « €]0,1], £ >0, e > § and t > 0:

L(t) > 0 and H(t) > &€ = Jo(t) > By - e~ 010,

PRrROOF. Fix e > §, a €]0,1], £ > 0 and ¢ > 0. A lower bound on the integral part
of (2) is obtained when L(t) > ¢ and H(t) > e. For v € P, define the set Ss(v) C S
by

Ss(v)={ueS:H(,u) <d}.

If H(t) > e and L(t) > ¢, then

/eL(t)(H(t)—H(x(tm»G(ﬂ)p(ﬁ)a—ldu > ﬁee(e—&/ G(@)du,
s S5(x(1)

where = min{(sup F)~11}. Indeed, a being smaller than 1, 3 is a lower bound
for F(@)*~! on 8. Consider now the function ®;5 : P — R* defined by

Ds5(v) = G(a)du.
Ss(v)
Since G is bounded, ®5 can be shown to be continuous (using for example Lebesgue’s
theorem). Moreover, ®5(v) > 0 for any v € P (because G > 0 and the interior of
Ss(v) is not empty), and since P is compact, infp &5 > 0. Setting Bs = Binfp P4
achieves the proof. [ ]

4. Two Key Representations

The Markov process (X (t),t > 0) with infinitesimal generator Q defined by (1)
can be seen as a particle system involving three types of transitions: births, deaths
and migrations of particles from one site to another. The main purpose of this
section is to show that X can be decomposed into the difference of two pure birth
and migration processes, up to some reflection term (Theorem 4.1). A simpler result
(Proposition 4.1) tells that, as long as X does not hit the axis, the process L of
the total number of particles just behaves as a random walk (or equivalently as an
M/M/1 queue). Finally, a representation of process X involving labelled particles
is given in the case of null death rates.

Theorem 4.1, together with the latter representation, will be crucial for de-
scribing the unstable regime in Section 6, while Proposition 4.1 will be repeatedly
used in the study of both the super and subcritical regimes.

The idea for decomposing X is the following: when p = 0, the system con-
sists of immortal particles generated at rate A\ and performing independent Markov
trajectories. Introducing a death procedure, i.e., some positive p, amounts to elim-
inating particles (at rate p; at site i) if possible. Up to some correction due to
the fact that no death can actually occur at an empty site, this is equivalent to
subtracting some analogous process with birth rates p; (1 < ¢ < n), zero death
rates and migration rate matrix Q.

This can be formalized by introducing an enlarged Markov process involving
three types of particles. Define (X,Y, Z) as a Markov process in N3" with genera-
tor I' characterized by the following transitions and rates: for any (z,y,z) € N3"
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and 4,5 € {1,...,n} such that i # j,

(x + ey, 2) at rate  \;

(x —ei,y+ei,z2) ilgz,>1y
(LL', n Z) _ (x7 Y,z + ei) Mi]l{a:i:O} )

(r —ei+ej,y,2) QijTi

(z,y —e; +ej,2) QijYi

(z,y,2 —ei +e;) Qij%i

The process X keeps track of the “real” particles, Y of the killed ones and Z of
virtual particles generated at some site when no particle has been found to be
killed.

It is clear from these transitions and rates that, indexing generator €2 by its
birth and death rate vectors: A = (A;;1 < i < n) and p = (4,1 < i < n)
(A, i € [0, +00[™) and denoting by 0 the null vector in R™:

(i) X is a Markov process in N™ with generator Q)

(i) X +Y is also Markov in N™, with generator Q, o,

(ili) Y + Z is Markov in N™ with generator €, o,

(iv) |X + Y] — (]X(0) + Y(0)|) is some Poisson process with intensity A,
(v) Y + Z| - (JY(0) + Z(0)]) is some Poisson process with intensity u,
(vi) these two Poisson processes are independent.

Now from (i), any process X with generator Q can be considered as the first
component of some Markov process with generator I' and initial state (X (0),0,0).
The two next results are easily derived from this construction and from re-
marks (i) to (vi). In order to state the main theorem, it is convenient to index the
process X both by its initial state and by its birth and death parameters, writing
X3 ,, for the process X with initial state z € N", migration rate matrix @ and birth

and death parameters A = (A\;,1 <i<n)and p = (s, 1 <4 < n) respectively.

THEOREM 4.1. For any x € N and A, i € [0, +00[", there exist versions of X§

A’
X‘ig and Xig such that

0
Xip=X00 = Xpo+ 2

where Z is an N™-valued process such that |Z| is nondecreasing, initially zero, and
increases only at times when some X;(t) is zero.

PROOF. Write X = X +Y — (Y + Z) + Z, where (X(0),Y(0),Z(0)) = («,0,0)

and (X, Y, Z) is Markov with generator I, so that X is some version of X§ , and

by (ii) and (iii), X +Y is some version of X{ , and Y + Z some version of XI%Q'
The theorem is proved, since |Z] has the stated properties as can be seen on I'. W

REMARK 4.1. The process Z in Theorem 4.1 appears as a reflection term: it guar-
antees that X stays nonnegative, compensating by adding some virtual particle for
a jump of X%O that would get some X; to the value —1.

However, contrary to usual multidimensional Skorokhod reflection terms, here,
due to the movements of particles, components Z;’s are not necessarily nondecreas-

ing in time: only their sum is; also Z; can increase at times when X is not zero.
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Theorem 4.1 and its proof, together with properties (iv), (v) and (vi), give the
following proposition, which constitutes one of the key ingredients for deriving the
fluid limits in Sections 6 and 7.

PROPOSITION 4.1. For all t <7y, the following equality holds:
L(t) = L(0) + Nx(t) = Nu(t),

where Ny and N, are independent Poisson processes with respective intensities \
and pr. Moreover, L(t) > L(0) + Nx(t) — N,(t) holds for any t > 0.

We conclude this section with a representation of process Xy 2.0 that will notably
be used in Section 6, in conjunction with Theorem 4.1, for analyzmg the unstable
regime. The process XY, is here obtained as functlon of a Poisson process with
intensity A and a sequence of Markov processes with infinitesimal generator @
(representing the trajectories of the successively generated particles).

More precisely, X iO admits the following representation:

(4) X)\ 0 (Z ]l{ﬁk(t or)=t, o <t}> 1< < TL) t> Oa
k>1

where
e o, =0for 1 <k<|z,
e Ny = (ok,k > |z| + 1) is a Poisson process with parameter A,
e &, k> 1, are Markov jump processes in {1,...,n} with generator Q and
initial distribution
- Z?:l(/\l/)‘) 51' for k > |1‘| + 1,
— 0; for z; arbitrarily chosen indices k € {1,...,|z|} (1 <i<n),
e N, and the &, k > 1, are mutually independent.
The vector (§,1 < k < |z|) holds for the trajectories of the initial particles and
(&, k > |z|+1) for those of the successive newborn particles; the Poisson process N
holds for the global birth process. For & > 1, particle k is in the system from time oy,
with o, = 0 for k < |x|.

Similarly as in the previous construction, a formal proof of Equation (4) can
be provided by constructing XY , as function of a more complete process (that also
contains N and the &’s, k > 1) characterized through its infinitesimal generator
and describing the list of current positions of particles present in the system, ordered
according to their birth rank.

5. The Space Renormalized Process

The stability property of the system for A\ < p will be derived in Section 7
from a fluid scaling analysis, that is, from the study of the space-time renormalized
process
X (|| £)

t>0
||

X'(t) = , t=0,
as |x| goes to infinity, where X* is the Markov process X initiated at x. It will be
underlain by the M /M /1 behavior of the total occupancy process L (only valid as

long as no X; is zero, hence the intricacies of the analysis).
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The particular behavior of X" at t = 07 will result from the short term behavior
of the only space renormalized process X, defined as the the family of processes
PN X®(t
X*(t) = |(|)7 t>0, forxzeN"\{0}.
x
The simpler notation X (t), where X (£) = X (£)/|X(0)|, will also be used in situa-
tions where | X (0)] is clearly non zero.
As highlighted in the introduction, this scaling is natural and analogous to
the Kelly scaling for the M /M /oo queue. This analogy appears in Proposition 5.3

below, that states convergence of X? as |x] — 400 to some dynamical system hav-
ing 7 as its limiting point. In particular, for large ||, X2 reaches any neighborhood
of w in a quasi-deterministic finite time. And this will show (Sections 6 and 7) that
asymptotically, X is instantaneously at 7.

The results of this section are quite standard, essentially based on law of large
numbers principles. The simple underlying idea is that, as far as X7 is only observed
over a finite time window, since the number |z| of initial particles goes to infinity
while the numbers of births and deaths within the given window remain of the
order of 1 (time is not rescaled here), the initial particles asymptotically dominate
the system and mostly stay alive all along the time window, thus behaving as |z
independent Markov processes with generator Q.

For the same reasons, the process X is not different, in the limit |z| — 400, from
the process x = X/L of the spatial distribution of particles: The same convergence
results hold for both processes; once proved for X , they easily extend to .

Formalizing the above argument, the following coupling is intuitively clear. It
compares the general model to the “closed” one (with no births nor deaths, but only
initial particles). As in Section 4, generator 2 is indexed by its birth and death
parameters A and pu.

LEMMA 5.1. For any x € N*, there exists a coupling between the process X* with
initial state x and generator Qy ,, and the process U” with initial state x and
generator Qg o , such that, fort >0 andi=1,...,n:

U (t) = Nu(t) < X7 () < UF (1) + Na(b),

where Ny and N, are two Poisson processes with respective parameters X and p.
The process X* moreover satisfies

2] = Nu(t) < [X7(8)] < [z + Na(t), ¢>0.

PROOF. The case p = 0 is a straightforward consequence of the representation (4)
of X from Section 4. Indeed if g = 0, then (4) gives for 1 < i < n,

U < XP W) = Y. Tgw=in+ Y. Lewt—on=i, ooty < UF () + NA(1),

1<k<|a| k>[z|+1

where U®(t) is constructed as Zfil Tie,(t)=iy and Ny = (0%, k > |z +1).

One moreover gets [U%(t)| < | X#(t)| < |U*(t)| + Na(t) by summing up over i
the previous first inequalities. The lemma is proved in this case since |[U*(t)| = |z|
forany t >0 .

The general case is then derived, using the first part of Section 4. Indeed,
consider X® as the first component of a random process (X?,Y,7) in N3 such
that Y(0) = Z(0) =0, X* + Y is some process with generator Q¢ and |Y + Z| is
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some Poisson process NV, with intensity 1 . The first part of the proof then applies
to X* +Y and gives, for t > 0:

U (t) < X*(t) + Y (t) SU"(t) + Na(t)

componentwise, as well as |z| < | X®(¢) + Y (t)| < |z| + Na(t).
The lemma follows by noticing that

0 < Yi(t) < V()] < V(1) + Z(t)] = N (1)
holds for any 1 < i <mn. |

The two main results of this section concern the hitting time of some neighbor-
hood of 7 by the space renormalized process X: namely, for any positive 4,

Ts :inf{tZ(): H)?(t) 77‘(” < 5}.
Recall that the analogous time with x in place of X is denoted by Ts.

PROPOSITION 5.1. For any positive &, there exists some deterministic time tg > 0
such that

lim ]P’x(f(; >ts) =0.

|z|—+o00

The same result holds for the stopping time Ty.

PrOOF. We refer to the proof of Proposition 5.2 below. Proposition 5.1 is obtained
in the same way, just changing dy, sy and ¢y into §, s = —(1/n)log(6/2B) and
t=—1/nlog(6/4B). |

The following more accurate result will be required for analyzing the subcritical
case A < L.

PROPOSITION 5.2. There exist two positive constants A and n such that, for any
sequence of positive numbers (0, N > 1) satisfying

lim 6y =0 and lim dyVN = +oo,
N—+o00 N—+oco

then
ON

~ 1
I P (T ) - = Zlog 2N
Nl»rfrloo LeNrgzaﬁN s ( Ts5y > tN } 0, wherety ” og 1

The same result holds for the stopping time Ts, .

ProoF. First consider a closed system, i.e., assume A = p = 0; the general case
will then be deduced from Lemma 5.1. As in Lemma 5.1, let U be the closed
process with initial state € N, where |z| = N. In this case (4) becomes

N

UF(t) =Y Mieum=iy, 1<i<n, t>0,

k=1
where &, 1 < k < N, are independent Markov processes with the same generator )
and different initial conditions: for any 4, 1 < i < n, £(0) = i for z; of the N indices
k=1,...,N.

As introduced in Section 3, let (P, ¢ > 0) denote the transition semi-group

associated to Q. The exponentially fast convergence of any irreducible finite state
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space Markov semi-group to its stationary distribution, tells existence of B > 0
and 7 > 0 such that

max |Pt(J7 ) —mi| < Be ", t>0.
1<4,5<

In particular, for sy = —(1/n)log(dn/2B),

CN | < .
12’3{}S{n|PsN (],Z) 7Tz| >~ 5N/2

The outline of the proof for the closed case is the following: At time sy, all tra-
jectories &, 1 < k < N, are very close to 7 in distribution (by the order of dy).
Since U *(t) represents the empirical distribution of the N particles at time ¢, the
law of large numbers shows that for large N, U%(sy) is also close to 7 (by the same
order), because dy tends to 0 not too fast

Precisely, for any N > 1 and « € N such that |z| = N

I8 (5%(om) - wl= [ (S0 ) - - NZ( (E(sw) =) ~7)

Thus, for any N > 1, using Chebychev’s inequality for the last step:

P (0% (sn) = 7l| > o) SP(Hﬁ%N) & (o) > >
< é]}” (j Oz (sn) — E (T (sn))| > 5;) < ;W'

Independence of the processes (§,1 < k < N) yields
N

Var (U (sv) = ) Var (Lig(sx)=i}) <
k=1

N
4
(bounding the variance of any Bernoulli random variable by 1/4). Finally

(5) max (HUI(SN) _al > 5N)

zENm:|z|=N

n
S®N
Now consider the process X* associated to any family (A;, ;1 < i < n) of
parameters and any initial state x such that |z|] = N. Still denote by U* the
associated closed process with the same initial state x.
Define ty = —(1/n) log(dn/4B). The first part of Lemma 5.1 implies that, for
any N > 1,

I (tx) ] < 157 (e) = 7l + | W) + Nt

so that

Pa(The > ) < P (10(tw) — 1l > 20 ) P (I3 o) + M) > 252 ).
By (5) the first term tends to zero uniformly in x as N goes to infinity, since ¢y
is associated to dx/2 in the same way as sy was to dy. The second one is also
easily shown to converge to zero, using Chebychev’s inequality for the Poisson
variable Ny (tx) + N, (tn), together with the relation 5N > 1 that implies
Nén > VN> 1/6n > ty.

The first part of the proposition is thus proved with A = 4B.
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Using the last assertion of Lemma 5.1, it is not difficult to show that the same
result holds for 75, . ]

We finally just mention for the sake of completeness (it will not be used in the
sequel) the following result that describes the asymptotic dynamics, as |z| — 400,
of the empirical distribution of the particles: it evolves as the distribution, as
function of time, of a Markov process with generator Q.

Not surprisingly, this can be proved using the same standard arguments as for
studying the M/M /oo queue under the Kelly scaling (see Robert [Rob03]).

ProroOSITION 5.3. Consider the processes ()A(IN (t),t > 0) associated to some se-

quence (xn, N > 1) of initial states satisfying: lim v p for some p € P.
N—+oco N

For any T > 0, as N — 00, (X¥(t),t > 0) converges in distribution with
respect to the uniform norm topology on [0,T], to the deterministic trajectory:

p(t) = pFr.

In other words, for any positive 6:

lim ]P’( sup ||)?ww(t)—ppt||>5):o.
N—+o0 0<t<T

The same convergence holds for the corresponding processes (x*~ (t),t > 0), N > 1.

6. The Supercritical Regime

This section deals with the supercritical regime A > p. As the next proposition
shows, the unstability of the system is straightforward in this case. Theorem 6.1
establishes an almost sure result describing the long term behavior, and Theorem 6.2
presents a surprising phenomenon.

PROPOSITION 6.1. When A > u the process X is not ergodic.

PROOF. Just remark, using Proposition 4.1, that if x € N™ is the initial state:
L) > Jo] + Na(t) - N ().

Hence for any initial state, L(t) almost surely goes to 400 as t tends to +oo. W

The following theorem gives an almost sure description of the divergence of X (t)
for ¢t large. Among other arguments, the proof makes use for the first time of the
martingale estimate provided by Proposition 3.2, and involves the representations
of X given in Section 4.

THEOREM 6.1. Assume A > . Then, for any initial state © € N™, the following
convergence holds almost surely:

X*(t)

=(A—pm.

t——+o0

REMARK 6.1. This theorem has a double meaning: it tells almost sure convergence
both of x(t) to m and of L(¢t)/t to A — u as t — +oo.
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PRrROOF. Assume the theorem is true when p = 0. Then, using the notations of
Theorem 4.1, t~1(X§ o (t) — X%Q(t)) converges a.s. to (A — )7 and the componen-

twise inequality X3 u X3o0— X/%,Q derived from Theorem 4.1, implies that each

X?(t) tends to infinity almost surely as t goes to infinity.
As a consequence, since |Z(t)| can increase only when some X;(t) is zero, then,
with probability 1, lim;_, 1 |Z(t)]| is finite and lim; 4~ Z(t)/t = 0, so that:

Xt X§o(t) = X, (1)

t——+o0o T - t—}gloo t - - ()\ N /.L)T('

holds almost surely, which is the stated result.

The theorem must now be proved in the case where 1 = 0. In this case with
no deaths, using representation (4), the process X7 splits into two (independent)
processes: X% = U” + XY, where U® is associated to a “closed” system with |z|
particles moving independently, and X has no initial particles, birth rates A\ and
null death rates. Then t~1U*(¢) obviously tends to zero almost surely as ¢ tends to
infinity, and all is left to show is that =1 X%(t) converges almost surely to Ax.

So, dropping for simplicity the superscript 0, consider the process X with initial
state 0, birth rates A and null death rates. Equation (4) here becomes, for ¢ > 0:

Na(t)
Xi(t) = > Weytop=iy » 1<i<m,
k=1
where (&, k > 1), have initial distribution Y., (X\i/A) &;.

It will first be shown that the analysis can be reduced to the case of stationary
trajectories (i.e., the case when A\;/A = m; for 1 < ¢ < n) by using a coupling
argument.

Indeed, associate to each & a stationary process ), with the same generator,
such that ((&,&,),k > 1) is a sequence of independent processes in {1,...,n}?,
and, for k > 1, &, &, are coupled in the classical following way: &, and & are
independent until the first time 7T} when they meet, and after that stay equal for
ever. Recall that the “coupling times” Ty, k > 1, are integrable. Moreover assume
the (&, &), k > 1, independent from N.

Define the process (X'(t),¢t > 0) on N™ analogously to X, with the same N},
but with & in place of & (k > 1). Then, for each i € {1,...,n}

Na(t) N (t)
1X:(t) = X[ = | Y (Iept—on=i} = LeLt—on=i)| < D LTist-ou}-
k=1 k=1

Define the right hand side of the above equation as A(t): then for any ¢ > 0, A(¢) is
exactly the number of customers at time ¢ in an M/G/oco queue with no customer
at time 0, arrival process Ny, and services given by the i.i.d. integrable variables
Ty, k > 1. It is easily proved that A(t)/t converges almost surely to zero as ¢ tends
to infinity. It is then enough to prove a.s. convergence of process X' to A, and so
we assume from now on that ({x,k > 1) are stationary.

Since L(t)/t = Ny (t)/t converges a.s. to A as t tends to infinity, the problem
is equivalent to proving that x(¢) converges almost surely to =, i.e., by Lemma 2.1
that:
Ve>0, PET < +oo:Vt>T,H(t) <e)=1.
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This will be done using Borel-Cantelli lemma and showing that:

+oo
Ve >0, ZIP(Ht € [ok,0k41]: H(t) > &) < +00,
k=1

Writing, for any fixed e:
(6) P(ﬂt IS [0k70k+1[5 H(t) > E)
g g
<P (H(ak) > 5) +P (H(ak) < 5 and 3t oy, opl: H(t) > 5) ,

we will show that both series associated to both terms in the right hand side con-
verge for e sufficiently small (which is enough by monotonicity of the left hand side

of (6)).

Let us begin with the first term. Note that for & > 1, x(ox) = X (oy)/k. Then
due to Lemma 2.1, it is enough to show that, for small ¢ and any ¢ € {1,...,n},

This is obtained by using Chernoff’s inequality, that we recall in Lemma 6.1.

>E> < +00.

LEMMA 6.1. (Chernoff’s inequality) Let Zp,1 < h < k, be k independent random
variables such that |Z,| <1 and E(Z,) =0 for 1 <h <k.

The following bound holds for any n € [0,20], where 0 = Var (22:1 Z;L) :
]P> (
Xi(ow)

k
1 i . i
T = Y 20, with 20 = Ug, (ry o)) — i
h=1

k

> 2

h=1

> na) < 2e~ /4,

Write for 1 <i¢<mn

Since &, h > 1, are stationary, then for each fixed i € {1,...,n} and k > 1, the k
variables Z,EZ}L, 1 < h <k, are i.i.d. centered random variables, bounded by 1 in

modulus. (Notice that independence is only true in this stationary case).
We can thus apply Chernoff’s inequality, which gives, for each fixed k and i:

k
p (|l o, >€)p<zz,gf;
h=1
)

k
if ¢ < 2v;, where v; = m;(1 — 7;) is the common variance of the variables Z,gih.

2

_ <2k
> ks) < 2e Wi

Property (7) is then proved (for small ¢, hence for any £ by monotonicity).

Now it must be shown that the second term in the right hand side of (6) is
summable as well for € small enough. Here, the stationarity of the movements will
play no special role.

By definition of o, x(t) = X (t)/k for any t € [0k, ok+1[. Moreover, oy is a
stopping time for the Markov process (X(t),t > 0), because it is the first time
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when L(t) = k. Hence the strong Markov property yields

€
P, (H(ak) < S and 3t €loy, opia[ H(t) > 5) < max P, (T§ <oy).
- 2 zeN":|x|=k and
H(z/|z|,m)<e/2
Clearly, the last event only depends on o and on the movements of the |x| initial
particles, so that by independence of these variable and processes, one obtains, for
any r € N™:

P, (T <o) =E, (G—Aff,) <E, (e—(AAe)T;,) 7

where ffI is the first time the entropy associated to the initial particles is larger
than €. Then, using Proposition 3.2 in the case of a closed system with § = ¢/4,
a = (A/0) A1 and ¢ =k gives:

P, (T§ < 1) < Cepal(\/0) A1) e =k/4,

for any @ € N™ such that |z| = k and H(x/|z|,7) < /2. The second term in (6) is
thus summable over k for € small enough. |

Along the preceding proof, we used o1, in the particular case p = 0, as an
asymptotic lower bound (as the initial state grows to infinity) for the exit time
of x(t) from some neighborhood of 7. This is a very crude underestimation, as the
following result shows that this exit time is actually infinite with high probability.

THEOREM 6.2. Assume A > p, and fix 6 and € such that 0 < § < € < g9, where gg is
given by Lemma 2.2. Consider a sequence (xn, N > 1) with limy_ 1o |zn|/N =1
and H(xn/|zn|,7) < 6. Then:
NlirfrlmeN (T = +o0) = 1.

PRrROOF. By definition of T, Py, (T < +00) = P, (I >0: H(t) > ¢), and so
we need to study the behavior of H(t) for all time ¢t > 0. The idea of the proof
is twofold: First, the estimate given by Proposition 3.2 is precise enough to show
that T is much larger than N, say T > N2. After this time, the initial particles
are negligible, and Theorem 6.1 then gives a control on the rest of the trajectory
by reducing the problem to the case where the system starts empty. So we use the
following decomposition:

Py (T < +00) <P, (T < N*) + P, (3t >N?: H(t) >¢).
For the first term, Markov’s inequality gives
(8) P,y (T < N?) < By (e—TE/NZ) .

Let §' < & — §: by choice of ¢ and ¢, and since H(zy/|zn|,7) < §, Proposition 3.2
shows that there exists a constant Cs such that by choosing o = 1/(§N?), for
any N large enough and any ¢y,

EZL’N <€_T13/N2;L(T[8{) > KN) < C5/66|QN‘+2”108§N—(6—6’)2N.

The choice of ¢ requires some care: as N grows, it must be both of order |z | and
smaller than L(T§;) with high probability. Since |zy| ~ N, write |zy| = N + uy
with uy = o(IN), and choose £y = N —+/Nuy with vy = |uy|V1. With this choice,
¢y ~ N and £ — |xn| — —o0. The first relation implies, since ¢ — ¢ — § > 0,
Slen|+2nlog N—(e—d")in _ 0.

lim e
N——+oc0o
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Moreover, since T, < 7y because € < ¢¢, Proposition 4.1 implies that L(T§) =
L(0) + Nx(T5;) — Nu(Tj;), hence

B (L(T) < ) = Pay (o] + M5(Th) ~ (T < )
<P (100 (VA (0) = N (0) < b — o)

where the last bound vanishes because A > p, and so inf;>q (N (t) — N, (t)) is finite
with probability one, whereas ¢y — |z x| goes to —co. It results that P, (Tg < NQ)
goes to 0 thanks to (8) and to the following inequality:

E., (e—Ti/Nz) <E,p (e—Tiz/Nz; L(T) > EN) P, (L(TS) < fy),

and it has been shown that each term goes to 0.

All is left to prove now is that imy_ o Pyy (3t > N?2: H(t) >¢) = 0, or,
by Lemma 2.1, that P, (3t > N2 : |[x(t) — 7| > £) vanishes. After time N?, the
initial particles are negligible since a number of new particles of the order of N2
have arrived. So the behavior of the system will be similar to that of a system
starting empty, to which we can apply Theorem 6.1 (since in this case the initial
state is fixed).

To formalize this argument, a coupling between the processes X® and X°, for
any x € N is required:

LEMMA 6.2. For any xz,y € N™ with x > y componentwise, it is possible to couple
the two processes X* and XY in such a way that for any t > 0, L*(t) — LY(t) <
|z| — |y| and the inequality X*(t) > XY(t) holds componentwise.

The proof of this lemma is postponed at the end of the current proof. Let X°
be the process starting empty coupled with X?~ and let L? = |X0|, L*¥ = | X~
X" = X°/LY and x*¥ = X®~ /L*~ be the corresponding quantities. The triangular
inequality gives

(9) PGBt N?:|x™ () —all 2 ¢) SP(3t > N?: ™ (t) = xX"(t)]| > ¢/2)
+P(3t > N?: |x°(t) — 7| > ¢/2).

Theorem 6.1 states that x°(¢) converges to m almost surely, which shows that the
last term goes to 0. For the first term, write for each i =1,... n,

- 0 XN X (XTV() = XP(1)LO(t) — XP(H)AN(2)
X0 =60 = T T o T LO(t) (A~ (2) + LO(t)) ’
where AN (t) = L*¥(t) — LY(t). Lemma 6.2 implies that |XIV(t) — X2(t)] <
AN (t) < |y, hence, since the function z — z/(z + a) is decreasing for any a > 0,
N 2ATN (1 2z 2

XN () = X3 (1)) < AT (1) +(130(t) = |IN||+NL|0(,5) T1A LW [an]
This yields in turn, using ¢t > N? for the second inequality,

PG> N7 [ () 30l 2 e2) < F (32 N g > 272)

<P (15 (L+L0(0)/t- N?/law]) < 4/6) ,
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Theorem 6.1 shows that L°(¢)/t — A — p almost surely as t — +oo, and N2/|zy|
goes to infinity as N goes to infinity by choice of . Hence almost surely,

li inf (1+ L°(t)/t- N? =
(e inf (14 L0/t N/ = +oc,
and the theorem is proved. |

We now fill in the gap in this proof by proving Lemma 6.2.

PrOOF OF LEMMA 6.2. Process X admits the following representation as the so-
lution of a system of integral equations:

X(t) = X:(0) + N, () — / L, oo yo 1y N, (ds)

t Xi(s7)

k k .
+Z/ ZNqﬁds Z/ Nquds) 1<i<n,
J#i J#i
where Ny, and N,,,, for i = 1,...,n, are Poisson processes with respective param-

eters A; and p;, and for (i,7) € {1,...,n}?, i # j, (NF ,k > 1) is a sequence of
Poisson processes with parameter g;;, all these processes belng independent.

Now using the same Poisson processes for X* and XY, it is easy to check that
the inequalities X7 (t) > X/ (t) true at ¢t = 0 are preserved at each jump of any of
the Poisson processes involved, and that |X®| — | XY| is decreasing over time. W

The previous results make it possible to establish the fluid regime of the system
by studying the rescaled process X y defined by

(10) Xty = 200,

In the following, Ly denotes the rescaled number of particles, i.e., Ly (t) = L(Nt)/N,
and Y = X /Ly is the corresponding proportions. Note that any fluid limit is
discontinuous at 0+ (so that strictly speaking, X does not have any fluid limit),
because Proposition 5.1 will show that the fluid limit is at 7 at time 0+, and
Theorem 6.2 will imply that it stays forever proportional to 7.

t>0.

COROLLARY 6.1. Assume X\ > p, and let z : [0, +oo[— R™ be defined by

z(t) = (1+ A —p)t)m

Then, for any sequence (xy, N > 1) with |xy| = N, any s,t such that 0 < s < t
and any € > 0:

NLHEOOP (s?ilgt HYN(U) —z(u)| = 5) =0.

PROOF. Since the size of the initial state goes to infinity, Proposition 5.1 shows
that for any § > 0, the event {T5 < ts} occurs with high probability. Since Ty
is a stopping time, the strong Markov property makes it possible to use X7, as a
new initial point, which is as close to equilibrium as desired. Since moreover the
total number of customers did not significantly evolve in this time interval, this
initial point will satisfy the hypotheses of Theorem 6.2, which makes it possible to
conclude.
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Denote Ay (s,t) the distance of interest:

(11) An(s,t) = silvl}it HYN(u) — x(u)H .

First, the following decomposition makes it possible to consider all further conver-
gences on the set {Ts < ts5}:

Puy (An(s,t) > ) < Puy (An(s,t) > e, Ts < t5) + Puy (Ts5 > ts),

and the last term goes to 0 by Proposition 5.1. The strong Markov property used
with the stopping time Ty then shows that

Poy (An(s,t) > &, Ts < t5) < Euy [Px () (An(0,1) > €)] .
Now, we isolate the event of interest {|L(Ts) — |zn|| < V/N} by writing:

Evx [Pxcry) (An(0,8) > )3 [L(Ty) — ||| < VN]

< max P, (An(0,8) > ¢),
yeNs|ly|—lon||<VN
and ly/ |yl —l|<8

therefore, if we note yy the value that realizes this maximum (the set over which
the maximum is considered is finite),

Eoy [Px(ry) (An(0,) > £)] <P, <}L(T5) — |an]] > \/ﬁ) + P, (An(0,t) > 2).
The following inequality holds for any time u > 0 and any initial state:
[L(w) = L(O)] < Na(w) + Nou(w) = Mo (u),
and yields
Poy (JL(T5) = lonl] 2 V) < Puy (Naiu(Ts) 2 VN, Ty < bs) + Pay (Ty > 15)

<P (./\[)\Jﬁu(t(;) > \/N> + P (Ts > ts).

This last sum vanishes, so that all is left to prove is that as N — +o0,
Py (An(0,8) > e) =Py, (Oiug HYN(u) - x(u)” > 8) — 0.
<u<t

Note that the initial state yy is now such that |yn|/N goes to 1 (because |zn| = N
and |lyn| — |zn]|| < V/N), and H(yn/|yn|, ) is as small as needed to apply Theo-
rem 6.2, since ||yn/|yn| — 7| < 6 and § > 0 is arbitrary small.

The triangular inequality and the definition of = give for any 0 < u <t

[ X n(u) —2(u)|| <[ Xn(w) = Ly @)r|| + || [Ln(uw) = (1 + (A = p)u)] 7|
< X (u) =l sup Iy(u)+ Il sup [Lwv(w) =1+ A~ pu)

)

and so

(12) B,y (An(0.1) > ¢) <P, <Oililit||XN(u)—7T|| >/ (2 sup LN(u>))

0<u<t

1B, ( sup [In(u) — (14 (A= )| s/<2||w||>) |

0<u<t
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Under P, , a trivial upper bound for Ly (u) for 0 < u < t is given by

YN

L) < 5 (] +Na(NE) A (o),

therefore for any constant C' > 0,

Pov s () =7l 2/ (2,50 Tu(w)) )

0<u<t

<Py (s, ()~ 2 2/ (20) ) + B(Aw(0) 2 ©)

(

converges almost surely to 1 + A\t as N goes to infinity,

For any t > 0, An(t)
t) > C) goes to 0 for C' = 2(1 + At). The other term vanishes as

therefore P(An(
well. Indeed,

N
>

Puv (s I (0) = 7l 2 &/ (20) ) = By (19090 < ).
0<u<t
and by Lemma, 2.1, there exists some ¢’ > 0 such that 7¢/(2¢) > Tf{/, hence
Py (T9/C9) < Nt) <Py, (T < Nt) <Py, (Tir < +00).

One can moreover assume ¢’ < gy without loss of generality. Observe that so far,
0 is arbitrary: it can be chosen small enough, say § < §y so that using Lemma 2.1,
H(yn/lynl,7) < €'/2. Thus yy satisfies the hypotheses of Theorem 6.2, which
shows that Py, (Tfll < 400), and hence the first term in the upper bound of (12),
vanishes in the limit N — +o0.

The second term of (12) is easier to deal with. We reduce the problem to the
event {7y = +oo} by using the following upper bound:

(13) By ((sup [T~ (14 (= )| 2 /2D ) < Py (5 < 40

0<u<t

+Pyy < sup |L(u) — (14 (A = p)u)| > &/@2[|x|), To = +oo) )
0<u<t
The first term Py, (7p < +00) in the right hand side of (13) goes to 0 since, by
Lemma 2.2, P, (Ty < 4o00) < P, (T < +00) which has just been proved to
vanish as N — +o0.
Because L(u) = L(0) + Nx(u) — N, (u) for all u > 0 on {7y = +o0}, we get the
following upper bound for the second term:

P ( sup
0<u<t

and this term goes to 0 thanks to Doob’s inequality. The proof is complete. |

1

& Uyl + N (Nu) = Ny (Nu)) = (1 + (A = p)u)

> e/<2|w>) ,
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7. Stability of the Subcritical Regime

In this section we consider the subcritical regime A < p that is, the case when
the input rate is smaller than the maximal output rate. As in the previous section,
the key ingredients are the short and long term “homogenization” property and the
M /M /1-like behavior of the total number of customers. The next lemma will be
useful for establishing the fluid behavior of the system. It gives a control on the
stopping time T, or equivalently 7°: with high probability, T is larger than the
time needed for a stable M/M/1 queue to empty.

LEMMA 7.1. Assume A\ < u. Fix some a > 0 and let (xy, N > 1) be any sequence
in N such that

Nliﬁlm % =a and Nl_iLI.looH(xN/lle’ﬂ) =0.

Then, for any t < a/(p — A) and any € < gy, where gy is given by Lemma 2.2,

Gl P (T < Nt)=0.

PrOOF. Denote Hy = H(zn/|xn|,7), and let ({y, N > 1) be a sequence of inte-
gers such that N > ¢y > NHy and {y > log N (such a sequence clearly exists,
e.g., {n = NvHy V (log N)?). Proposition 3.2 with o = 1/N? and § = £/2 gives

(14) Epy (770N L(TH) > x ) < Cppe®loeNFlanliin=ctu/2,

where the last bound goes to 0 by choice of £). Let now 7n be defined by 7y =
inf{t > 0 : L(t) < £n}. Since ¢y is an integer and L has jumps £1, we have
L(tny) = £n, and consequently, for any ¢ > 0,

(15) Eay (e T8N L(TG) 2 b)) = By (75T < 7y
> e /NP, (Tg <75 ANt).
Inequalities (14) and (15) together imply that P, (T < 7n A Nt) goes to 0 as N
goes to infinity. Since
P, (T5 < Nt) < Py, (T5 < 7 A Nt) + Py, (1w < NU),
all is left to prove is that P,, (7n < Nt) goes to 0 if ¢ < a/(p — A). Using the

lower bound L(t) > L(0) + N, (t) — N, (t) from Proposition 4.1 and the fact that
lzn| > (p— ANt + €y for N large enough if t < a/(u — A), we get for such a ¢

Pyy (T8 < Nt) <P, (3s € [0, Nt] : L(0) + Na(s) — Nyu(s) < In)

gm( sup wu(s)NA(s)(uA)s)zw(uA)NMN)

0<s<Nt
< Puy (510 (N3(6) = AR(5) = (0= 08)" 2 (Jawl = (= DN~ £2)?)
0<s<Nt
Since (N, (s) — Na(s) — (u — N)s, s > 0) is a martingale, Doob’s inequality yields
that the last term is in turn upper bounded by
Var (Mx(Nt)) + Var (N, (Nt)) (A+ )Nt
(lzn] = (n = ANt — tn)? (a—(n—A)t)>N?
which completes the proof. |

— 0,
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The fluid behavior can now be established. Recall that the rescaled pro-
cess (Xn(t)) is defined by Xn(t) = X(Nt)/N for any t > 0. In what follows,
for u € R, u™ denotes max(u, 0).

PROPOSITION 7.1. Let x : [0, +oo[— R™ be defined by

z(t)=(1+(A— ,u)t)+7r.

Then for all 0 < s <t and all e > 0:

lim max P sup || Xn(u) —z(u)||>¢e)| =0.
Notoo |:x€N":|a:|=N ¥ (sgul:;t H ~(u) ( )H = )]

PROOF. Lemma 7.1 makes it possible to study the system for ¢ < 1/(u — A). An
additional coupling argument, involving larger initial states, is then required to
show that fluid limits stay at O after that time. For this technical reason, initial
states of size equivalent to aN for some a > 0 will be considered, and the following

more general result will be established: For a > 0, let z, : [0, +00[— R™ be defined
by

zq(t) = (a+ (A - u)t)+7r.
It will be proved that for any a > 0, any s,t with 0 < s < ¢ and all € > 0:

lim max P, ( sup || X n(u) — za(u)|| > 5)] =0,
N—+o00 |zeN™:|z|=|aN | s<u<t
where the notations of the previous section are used.

First assume t < t, = a/(u—A\), and set Ay (s,t) = Sup,<,<; || X v (1) — za(u)||:
the first steps of the proof are similar to the underloaded regime, namely using the
strong Markov property to replace the arbitrary initial state by some initial state
with low entropy. More precisely, let 5 and ¢ty be as in Proposition 5.2: for any
x € N with |z| = N, one has

P, (An(s,t) > ) <P, (An(s,t) > ¢,T5, < Ns)+P.(Ts,, > Ns).

Since tx /N goes to 0, Proposition 5.2 gives that the last term P, (Ts, > Ns) goes
to 0 uniformly in z € N with |z| = |aN]. As for the first term, we write

P, (An(s,t) > ¢, Ts, < Ns) < E, [IP’X(TJN) (An(0,2) > g)}
<Py (An(0,1) = &) + P, (|L(Tsy) — L(0)] = V) ,
where yn € N™ is such that
Py, (An(0,8) > €) = max Py, (An(0,t) > €).
yeN":|ly|-[aN]|<VN

and [ly/|y|—=||<én

Because Ts, < tx with high probability, and because tx /v N — 0, one can show
similarly as in Section 6 that as N goes to infinity,

P, (‘L(T(;N) — L(0)] > \/JV) - 0.

max
zeN™:|z|=|aN]
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Along the same lines as in the overloaded case, one gets, by introducing the
term Ly (u)7 that for any C' > 0

(16) Py (0.0 2 ) < By (sup ) — 7l > ¢/ (20))

#2y0 (s T) =€) +2, sup [Tut) = (0 0= )| 2 /) ).

0<u<t 0<u<t

Note that since ¢ < tm Zo(u) = (a+ (A — p)u)m for 0 <u < t. For C large enough,
Py (sup0<u<t Ln( ) goes to 0 as N goes to infinity. Moreover, Lemma 2.1
gives

P,y ( sup [|xn(u) — 7| > &/ <20>) =Py, (T < Nt) <P, (T < Nt)
0<u<t

for some & > 0 that can be assumed to satisfy &’ < 3. Since the sequence
(yn, N > 1) satisfies the hypotheses of Lemma 7.1 and since t < t,, this last upper
bound goes to 0. Moreover, since

Py ( 50 [Ex(u = (o (= )| 2 £/ 2D ) < P < 1)

1P, ( sup [Tn(w) — (a+ (= p)| > e/l To > Nt) |

0<u<t

we conclude, using Lemma 7.1 together with Lemma 2.2 for the first term and
Doob’s inequality for the second one, that

o (s, En () — 0+ (= ] = </ 211)) — 0
0<u<t

The proof in the case 0 < s < t < ¢, is thus complete.

To conclude in the other cases, a monotonicity argument derived from the
above Lemma 6.2 is used. Let 0 < s < t and t > t,, and assume in a first step that
t—s<e/(2(p—A)). In addition, let b > (u — M)t be fixed, and let t, = b/(u — A)
be the corresponding time. Note that ¢t > ¢, implies that b > a, so that for any
x € N™ with |z| = [aN], there exists some y € N such that y > 2 componentwise
and |y| = |bN]. For such z,y, Lemma 6.2 shows that X* and X¥ can be coupled
in such a way that |X*(t)| < |X¥(¢)| for any t > 0. Hence for any u > s, using the
inequality ||v|| < |v| < nljv|| for any v € R™, one gets

[ = zaw)| < [Fr@)] + 2as)] < [ K5 (@)] + [2a(s)]
< | X% () = @) + ()] + fra(s)]
By definition
24(5)] + ()] = (1= Nty — 8) + (1 = N(ta — )7 < 2u— N (ty — 5).

This yields in turn

Py < sup || X (u) — za(u)|| = s) <P, < sup || X () — ()| > g/)

s<u<t s<u<t
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where e” = (e — 2(u — M) (ty, — s)) /n, and finally
max P, < sup HYN(U) - xa(u)H > 5)

zEN":|z|=aN] s<u<t
< max P, ( sup HYN( — zp(u H > ¢ )
yEN":|y|=[bN] s<u<t

Since it has been assumed that t —s < /(2( — X)), b > (1 — A)t can be chosen
small enough so that ¢” > 0. Since ¢ < tp, the first part of the proof implies that

lim ma P, sup ||[Xn(u)—ap(u)|| >€")| =0.
N= oo LeNn ui=1ow) (sgf;t [¥av () = arl) 2 )]

This proves in particular that when 0 < s < ¢t and ¢t — s < £/(2(u — A)), then
max|,—|on| Pz (An(s,t) > €) — 0. It is now left to extend this result to any s,t
such that s < ¢, which is a consequence of the following decomposition:

q
max P, (An(s,t) >¢) < P, (An(si_1,8; Ze)
zeN":|z|=|aN] ( Z:: (xeNn |a;\ [aNJ (An(sj-1,85) 2 )
where s) = s < 51 < ... <sg=tand s; —sj_1 <¢e/(2(p—A)) for 1 < j <gq.
Indeed, it has just been shown that each term of this finite sum goes to 0. ]

REMARK 7.1. It can be proved that in the critical case A = p > 0, the fluid limit
is constant and equal to 7, i.e., if A = p > 0, then for all 0 < s <t and all € > 0,

lim [ max P, ( sup HYN(U) 77r|| > €>:| =0.
N—+oo |zeN™:|z|=N s<u<t
This convergence follows readily from Proposition 7.1 and the following coupling.
For 0 < 7 < ), if X is a subcritical process with arrival rate A—»n and departure rate
A =, then X and X" can be coupled in such a way that | X () — X' (t)]| < N, (t)
for all ¢ > 0, where N,, is a Poisson process with intensity 7.

Note that the behavior of the fluid limit in the critical case does not make it
possible to infer the stability or the transience of process X. The analogy with the
M/M/1 queue nevertheless suggests that it could be recurrent null in this case.

In contrast, the behavior of the fluid limit shows that X is ergodic in the
subcritical case A < p:

PROPOSITION 7.2. When A < u, the Markov process X s ergodic.

PRrOOF. According to [Rob03, Corollary 9.8 p. 259], it is enough to show that for
some deterministic time 7" > 0,

li E.(Ly(T)) = 0.
NI e Be(Ln(T))

Recall that Ly(T) = L(NT)/N, and let £ > 0 be fixed: then, for z € N” with
|x] = N:

E, (ZN(T)) <e+E,; (ZN( ) LN > 6) 1 + )\T)Px (ZN(T) > 6)

% (N,\(NT) ANT;Ly(T) > ¢).
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where the second inequality comes from Ly (T) < Ly(0) + Ny(NT)/N. For any
T > 0, using Cauchy-Schwartz inequality, an upper bound on the last term is given
by

1 — 1 IAT
N]E,% (Ma(NT) = ANT;Ln(T) > ¢) < NE(M/)\(NT) — ANT)) < ~

so that finally

_ _ AT
E, (Iy(T)) < e+ (1 + AT P, (Ly(T) > iy

mGNI}llz?ﬁ:N « (In(D)) <+ (14 )IGNIP:?;\;:N v (In(T) > €) + N
and all is left to prove is that for some 7' > 0, max|,—n P, (ZN(T) > 5) goes
to 0 as IV grows to infinity: this is a direct consequence of Proposition 7.1 with
T =1/(p— A) since z(T) = 0. The proof is now complete. ]
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Appendix A. Martingale Construction

This appendix is devoted to proving Theorem 3.1, which states the existence
of a fundamental family of local martingales. In Proposition A.1, we first establish
the harmonicity of a special function g, which has an integral form. Then a change
of variables leads to the local martingale introduced in Theorem 3.1.

A.1. An Integral Harmonic Function. The starting point is the generator 2
of the Markov process X given, for any x € N* and any function f: R™ — R, by:

Q(f)(z) = Z Ai (f(iﬂ +ei) — f(x)) + Zﬂi(f(x —e;) — f(w))]l{xi>0}
+ Z i (f(x +ej —e;) — f(2)).

1<i#j<n

In addition to the irreducibility of @ = (¢;j)1<i,j<n, We will require that Q is diag-
onalizable in C, i.e., that there exists a set (w;,1 < j < n) of eigenvectors of ) that
generate R”. The complex square matrix w = (w; j)1<i,j<n Where w; = (w; j)1<i<n
is invertible.

We can assume without loss of generality that w, = 1, denoting by 1 the
vector in R™ with all coordinates equal to 1, so that w, is associated to the null
eigenvalue; more generally, for 1 < j < n, 6; will denote the (possibly complex)
eigenvalue associated to w;. The negative trace of @ is then given by —0 = Y7 6;
with 8 > 0.

In the sequel ‘H will denote the hyperplane of R™ defined by

n
H= {’UER”ZZWZ'UZ':O}.
i=1
Forj=1,...,n—1, w; € H since Qw; = O;w; for 6; # 0 implies (in a matricial
form, where 7 is a row and w; a column): 7mw; = (6;)"'7Quw,; which is 0 since
m() = 0. These n — 1 eigenvectors then generate H.

We recall some notations and results of Section 3. (P, t € R) denotes the
Q-generated Markov semi-group of linear operators in R”: P, = ¢'?, extended to
all real indices ¢ into a group. Each P, has eigenvalues e%® and eigenvectors w;,
j=1,...,n. For any v € R" and ¢t > 0, we define

(v,1) = (ds(v,1),1 < i < n) = P_yv.

If v € R" and ¢(v,-) is any primitive of Y1, (¢ (v,-) /(1 + ¢i(v,-)) — X (v, )]
on some open subset V of {t > 0 : Vi = 1,...,n, 1+ ¢;(v,t) # 0}, then the
function h, (t,z) defined by

(17) ho(t,@) = e?OO T (1 + (v, 6)™

i=1

is space-time harmonic with respect to Q in the domain V' x N*" (see Proposi-
tion 3.1).
The suitable domain of integration for constructing our martingale will be:

Dt)={veH :1+o(vt)>0}, teR,
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where, for any v € R™, u > 0 (resp. v > 0) means that u; > 0 (resp. u; > 0) for
every i =1,...,n.

For each t € R, D(t) is an open subset of H. Moreover, it is clear from
the definition of D(t) and from the invariance of H under the group of operators
(Ps, s € R) that, for any v € R™ and any ¢ > 0,

v € D(t) <= P_w € D(0).

So, for any t € R, D(t) = P,(D(0)). Then, since D(0) = {v € R" : Y | mv; =
0,1+wv > 0} is clearly bounded, each D(t) = P;(D(0)) for ¢ € R is bounded as well.
Define the subset A of H x R by:

A={(v,t):t eRand v € D(t)}.

The first step is to show that the following choice of ¢ makes sense:

(18) o(v,t) / Z( -1f2¢t}js)—/\i¢i(v,s)>ds

for (v,t) € A. This is the object of the following two lemmas, which will also give
some regularity properties of ¢ in view of Proposition A.1.

LEMMA A.l. If (v,t) € R™ x R satisfies 1 + ¢(v,t) > 0 and v # —1, then
1+ ¢(v,s) >0 for all s < t. As a consequence:

(19) t>s=D(t) C D(s), s,tER,
and
(20) D(t)) = |J D(t), toeR.

PRrROOF. Let first remark that the irreducibility of () implies that, for any » > 0 and

any (i,7) € {1,...,n}, the probability P.(i,) that a Markov process with genera-

tor @ initiated at ¢ is in state j at time r is positive. Indeed, if i = ig,91,...,ix = j

is a path from ¢ to j such that ¢;, ,; > 0for ! =1,...,k, then there is a positive

probability that the process has exactly followed this path by time r.

This implies that P.u > 0 for any r > 0 and u € R™ such that v« > 0 and u # 0.
Now let (v,t) satisfy the hypotheses in the lemma, then 1 + ¢(v,t) # 0 since

0#1+v="PF(1+P_w)=P(1+¢,t)),
and the previous property applied to u = 1 + ¢(v,t) and r =t — s for s < t gives,
1+ ¢(v,s) =1+ P_v=P_,(1+P_)=P_,(1+¢(v,t)) > 0.
The implication ¢t > s = D(t) C D(s) follows, noticing that —1 ¢ H.
To show (20) for typ € R, note that D(ty) contains the right hand side union

by (19), and that the reverse holds since the inequality 1 + ¢(v,tp) > 0 extends to
some neighborhood of ¢, for v € D(tp). u

LEMMA A.2. (i) For any i € {1,...,n}, the two integrals

0 0 .
/_ ¢i(v, s)ds and /_ %ds

are well defined for v € D(0), continuous as functions of v on this domain and
respectively bounded and bounded above on D(0).
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The function @q can then be defined on D(0) b

0= L5 ety ;L)- At

and is continuous and bounded above on D(0).
(ii) The function ¢ given by (18) is well defined for (v,t) € A and satisfies:

p(v,t) = po(P-4v) (v,t) € A.

The function ¢ is bounded above on A and continuous with respect to v € D(t) for
fized t € R.

PROOF. (i) Notice that, for fixed v € R, the map s — ¢(v,s) = e *Quv is contin-
uous on R (with values in R™). Moreover, if v € H, it has a fast decay as s tends
to —oo as a consequence of the exponential fast convergence of P;(i,-) to 7 (already
used in Section 5):

There exist some positive constants 1 and B; such that, for any s < 0

N | < eS|
(21) 151?2{ |P_s(i,j) —mj| < B -e

This gives, for s < 0 and v € H,
(22) [6(v, s)|| < Bz - ™ ||v]],

where B, = nBj, which ensures the existence of the vectorial integral ffoo (v, s)ds
for any v € ‘H. This integral is continuous with respect to v in H since, for v € H,

/_ OOO P vds — /_ OOO (P, — ) vds — ( /_ OOO (P, —T0) ds) v

where II is the square matrix with all lines equal to 7 = (71, ...,7m,) and the last
matricial integral has a coefficientwise meaning (and is well defined due to (21)).
This shows the integral f_ooo ¢(v, s)ds as a linear function of v € H, thus proving
its continuity with respect to v € H. The boundedness of this function on D(0)
follows since D(0) has compact closure in H.

For the second integral, Lemma A.1l and the condition v € D(0) first ensure
that 1T + ¢(v,s) > 0 for s < 0. The existence of this integral then again follows
from the continuity of s — ¢(v, s) and from the exponential decay in (22).

Let us now begin by proving that it is bounded above on D(0), writin