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Résumé

Le but de cette thèse est de traiter quatre problèmes motivés par les réseaux
de communication modernes ; les outils appropriés pour résoudre ces problèmes ap-
partiennent à la théorie des probabilités. La résolution de ces problèmes améliore la
compréhension des systèmes physiques initiaux, et contribue en même temps à la
théorie puisque de nouveaux résultats théoriques, intéressants en soi, sont prouvés.

Deux types de réseaux de communication sont considérés. Les réseaux mobiles
sont ces réseaux où les clients se déplacent dans le réseau indépendamment du
service qu’ils reçoivent ; contrairement aux réseaux de files d’attente classiques, les
transitions des clients ne sont pas liées aux fins de service. Dans les réseaux pair-
à-pair, la distinction entre client et serveur est abolie, puisque dans ces réseaux un
serveur est un ancien client qui offre le fichier après l’avoir téléchargé. Ces derniers
réseaux sont particulièrement efficaces pour disséminer des fichiers gros ou popu-
laires.

Dans les Chapitres I et II, le comportement stationnaire de tels réseaux est
considéré. Dans chaque cas, le réseau est décrit par un processus de Markov à espace
d’état discret et à temps continu, et l’on s’intéresse à son ergodicité ou au contraire
à sa transience. Une spécificité de ces deux modèles est que les taux de transition
des processus de Markov correspondants sont non bornés : dans le cas du réseau
mobile du Chapitre I ceci est dû au fait que les clients bougent indépendamment
les uns des autres, alors que pour le réseau pair-à-pair du Chapitre II, cela tient au
fait que la capacité du système est proportionnelle au nombre de clients.

Habituellement, l’analyse de la stabilité d’un réseau stochastique se fait par
l’étude des limites d’une suite de processus de Markov correctement renormalisés,
appelées limites fluides. Cette procédure est bien adaptée pour les processus “locale-
ment additifs”, i.e., les processus qui se comportent localement comme des marches
aléatoires ; cette propriété disparaît quand les taux de transition sont non bornés.
Ces techniques sont néanmoins adaptées pour étudier la stabilité du réseau mobile
du Chapitre I : utiliser des limites fluides pour étudier la stabilité de processus de
Markov avec des taux de transition non bornés représente l’une des contributions
de ce travail.

Le réseau pair-à-pair du Chapitre II ne se prête quant à lui pas à ces tech-
niques, et la stabilité découle alors de l’existence d’une fonction de Lyapounov. Un
autre ingrédient clef est lié à une classe spéciale de processus de branchement. Ces
nouveaux processus de branchement sont définis et étudiés dans le Chapitre II, et
des estimations sur leur temps d’extinction permettent, avec des arguments de cou-
plage, d’établir des résultats de stabilité du réseau stochastique.
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viii Résumé

Outre le comportement stationnaire des réseaux pair-à-pair, leur comportement
transient peut aussi être étudié : ce comportement est l’objet du modèle simple du
Chapitre III. Ce modèle se concentre sur l’initialisation d’un réseau pair-à-pair dans
un scénario d’arrivée en masse : au temps t = 0, un pair propose un nouveau fichier
que N autres pairs veulent télécharger. Contrairement au modèle du Chapitre II,
ici le flot d’arrivée de nouvelles requêtes n’est pas stationnaire, il est initialement
très intense puis le devient de moins en moins. Bien que le système démarre avec un
serveur et beaucoup de clients, le nombre de serveurs disponibles augmente avec le
temps et l’on s’intéresse au temps nécessaire pour que le réseau se mette à niveau
avec la grande demande initiale. Ce problème engendre un problème de boules et
d’urnes intéressant en soi, qui est traité dans le Chapitre IV.

Dans ce problème de boules et d’urnes, la distribution de probabilité qui décrit
la manière dont les boules sont jetées est aléatoire : il s’agit donc d’un problème
de boules et d’urnes en environnement aléatoire. De plus, les boules sont jetées
dans un nombre infini d’urnes. Les problèmes de boules et d’urnes avec une infinité
d’urnes sont bien étudiés, mais les résultats sur les problèmes de boules et d’urnes
en environnement aléatoire sont peu nombreux. Quand il y a une infinité d’urnes,
on peut s’intéresser à des quantités géométriques telle que l’emplacement de la
première urne vide. De telles quantités ont parfois été étudiées dans des travaux
antérieurs, en environnement déterministe : ici, grâce à l’utilisation de processus
ponctuels, nous décrivons d’un coup tout le paysage des premières urnes vides, ce
qui diffère des travaux précédents.

En résumé, cette thèse contribue à la modélisation des réseaux mobiles et pair-
à-pair ; d’un point de vue technique, des problèmes liés à la stabilité des processus
de Markov, aux processus de branchement et aux problèmes de boules et d’urnes
sont résolus.



Summary

The goal of this thesis is to solve four problems motivated by modern com-
munication networks; the appropriate tools to solve these problems belong to the
theory of probability. Solving these problems gives insight into the original physi-
cal systems, and contributes at the same time to the theory since new theoretical
results of independent interest are proved.

Two kinds of communication networks are considered. Mobile networks are
these networks where customers perform trajectories within the network indepen-
dently of the service they receive; in contrast with classical queueing networks,
transitions of customers are not triggered by service completions. In peer-to-peer
networks the distinction between clients and servers is abolished, since in these net-
works a server is a former client that offers a file once it has downloaded it. These
last networks are especially efficient in spreading large or popular files.

In Chapters I and II, the stationary behavior of such networks is considered.
In each case, one describes the network through a discrete state-space, continuous
time Markov process, and establishes its ergodicity or transience. A specificity of
these two models is that the transition rates of the corresponding Markov processes
are unbounded : in the case of the mobile network of Chapter I this is due to the
fact that customers move independently of one another, while for the peer-to-peer
network of Chapter II this is because the capacity of the system is proportional to
the number of customers.

Classically, to analyze the stability of a stochastic network, one can study the
limits of a sequence of suitably rescaled Markov processes, the so-called fluid limits.
This scaling is well suited for “locally additive” processes, i.e., processes which lo-
cally behave as random walks; this is however not the case when the transition rates
are unbounded. These techniques are nonetheless adapted to study the stability of
the mobile network of Chapter I: using fluid limits to study the stability of Markov
processes with unbounded transition rates represents one of the contributions of
this work.

The peer-to-peer network of Chapter II is not amenable to the same techniques,
and Lyapounov type arguments are used. Another additional key ingredient is re-
lated to a special class of branching processes. These new branching processes are
defined and studied in Chapter II, and estimates on their extinction time make it
possible, thanks to coupling arguments, to derive stability results on the stochastic
network.

In addition to the stationary behavior of peer-to-peer networks, their transient
behavior can also be studied: this is the object of the simple model of Chapter III.

ix



x Summary

It focuses on the initialization of a peer-to-peer network under a flash crowd sce-
nario: at time t = 0 a peer proposes a new file that N other peers are interested
in downloading. In contrast to the model of Chapter II, here the flow of incoming
requests is not stationary, it is initially very intense and then becomes sparser and
sparser. Although the system starts with one server and many clients, as time
goes by there are more and more servers available and one is interested in the time
needed for the network to cope with the initial high demand. This problem triggers
a bins and balls problem of independent interest, which is treated in Chapter IV.

In this bins and balls problem, the probability distribution that describes how
balls are thrown is random: it is therefore a bins and balls problem in random
environment. Moreover, balls are thrown in an infinite number of bins. Bins and
balls problem with an infinite number of bins are well-studied, but results on bins
and balls problems in random environment are scarce. When there are infinitely
many bins, one can be interested in geometric quantities, such as the index of
the first empty bin. Such quantities were sometimes studied in earlier works and
in a deterministic environment; here, using point processes, we could describe at
once the whole landscape of the first empty bins, which differs from previous works.

In summary this thesis contributes to the modeling of mobile and peer-to-peer
networks; from a technical standpoint it solves problems related to the stability of
Markov processes, to branching processes and to bins and balls problems.



Since applications inevitably involve simplifying

assumptions that focus on some features of a problem

at the expense of others, it is advantageous to begin

by thinking about simple experiments, such as tossing

a coin or rolling dice, and later to see how these

apparently frivolous investigations relate to important

scientific questions.

— Encyclopædia Britannica, article Probability Theory

Basic research is like shooting an arrow into the air

and, where it lands, painting a target.

— Homer Burton Adkins, American chemist
(1892–1949)





Introduction

Foreword

“Really, there are new things to discover in mathematics?”: since I started
my Ph.D., I have been faced many times in casual conversations with this simple
question. Although the general public is probably convinced that mathematics is
useful, this recurrent question makes me believe that they need to be convinced
that current mathematical research is relevant as well. This is maybe due to the
way everyone is exposed to mathematics in early education, which can give the
impression that it is carved in stone.

Actually, mathematics is a very lively field, and one of the reasons for that is
that it is derived from real-world problems. If a (necessarily fuzzy) line had to be
drawn between pure and applied mathematics, one could probably say that pure
mathematics studies abstract objects in their own right, whereas in applied math-
ematics one usually has a concrete motivation in mind, however remote.

Within this definition, the area of applied mathematics would for instance
include the fields of optimization and of numerical analysis, as well as another field
most important here, namely probability theory.

Interest in probabilistic questions arose in connection with games of chance. In
the 17th century, Pascal tried to answer to the following problem asked by Chevalier
de Méré: suppose two players play a certain game, whose winner is the one who wins
at least four out of seven series, and are interrupted before they can finish. How
should the stake be divided among them if, say, at the time they are interrupted one
has won three series and the other one? It is clear that the player who has already
won three series is more likely to end up winning, and should therefore get a larger
share of the stake; however the possibility that the other player eventually wins
cannot be completely ruled out. Intuitively, the stake should be divided according
to the probability of each player of winning the game, given the current situation
when the game was interrupted. Probability theory makes it possible to evaluate
this probability, but only within a well-defined mathematical model.

Indeed, to answer to this question a probabilist needs to make mathematical
assumptions. For instance, one can assume that the game is memoryless and fair,
i.e., the results of two different series are independent and each time each player
wins or loses with equal probability; one can then compute that the player who
has already won three games will win with probability 7/8. However this answer
heavily depends on the assumptions made, and the model can be refined to ac-
count for the fact that the players can learn from the previous series, or that one
player is better than the other, etc. . . Although games of chance, and related fields
such as insurance or finance, provide a natural framework for probability theory,
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2 Introduction

probabilistic models appear in many other settings as well, such as engineering,
chemistry, biology, physics, . . . .

In the engineering for instance, one is interested in the failure of machines
in supply chains, and a good understanding of these events makes it possible to
efficiently dimension the supply chain, e.g., the number of spare machines. In
chemistry, molecules in a medium move randomly and interact when they meet, so
that the frequency of chemical reactions is governed by the concentration of each
component: a probabilistic model can for instance give insight into the time needed
for some rare reaction to occur, or into the time needed to exhaust all the com-
pounds and the state of the system at that time. Similar events occur in the cells
of living beings, where RNA strands and ribosomes interact when they meet —
RNA is then translated into proteins. In biology again, different probabilistic mod-
els can be used to shed quantitative light into the qualitative behavior predicted
by the theory of evolution, considering mutations in DNA sequences as random
events. Another example comes from physics: there an important problem con-
sists in understanding how water percolates through a porous medium, such as a
stone, and this simple problem has given birth to the domain of probability called
percolation theory. In this setting one typically assumes that holes are randomly
located within the porous medium, and the amount of water that can go through
then depends on their frequency, shape, etc. . . Finally, a striking example comes
from the study of the human brain, called brain mapping. Modern machines make
it possible to know which parts of the brain respond to a given stimulation, and
so a biologist is given the values of some measurements defined over the surface
of the brain. However one needs to discriminate in these measurements between
the signal statistically meaningful and the noise: although very abstract in the first
place, probabilistic models — called Gaussian random fields — turned out to be
efficient tools to answer this question.

This eclectic list of problems shows that probability theory is encountered in
many different situations, which reflects the fact that randomness is an intrinsic
component of many physical systems. A common feature of the above problems is
that they represent a great source of inspiration for probabilists. Most of the time
new questions triggered by concrete real-world problems cannot be directly dealt
with existing results, and one needs to extend the theory to cover these new cases.
The implications of these advances are then difficult to predict: although initially
motivated by physical considerations, percolation theory is now an essential tool for
the analysis of some communication networks. Moreover, the interactions between
concrete problems and probability theory are two-sided: in the example of the brain
mapping, the biological motivations triggered tremendous advances in the area of
Gaussian random fields, which allowed in return a better understanding of concrete
questions.

The job of an applied probabilist is therefore twofold: on the one hand he or
she has to find relevant and interesting models to study; on the other hand he or
she needs to prove rigorous mathematical results on these models. This second
point is really a bottleneck, since usually, only “simple” mathematical models are
tractable, e.g., models which are not too general, or with few parameters. But
from a modeling point of view, the model studied needs to be representative of the
physical system: to borrow a saying from one of my former professors, the goal is to
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study “the simplest model which is not simplistic”. In other words, one is interested
in studying the simplest model which both exhibits mathematical difficulties, and
is at the same time relevant for the initial physical problem.

In this thesis models motivated by communication networks are considered; the
main contribution is however mathematical, insofar as the results only provide a
limited insight into concrete networks. Each model sets the focus on an impor-
tant characteristic of the network, which makes it possible to carry on a thorough
mathematical analysis.

Outline of the Introduction. The next section is intended to introduce some
key concepts, related to the modeling of communication networks, to non-experts:
due to their importance throughout this thesis, the two notions of mathematical
queues and of stability are discussed from a general perspective. The goal is to give
a compelling — though very subjective — rationale to explain why such questions
are both interesting and challenging. It must be emphasized at this point that
stability issues play an important role in this thesis, since two out of the four
chapters are devoted to them.

Because of the audience targeted by this first section, the reader already familiar
with queueing theory and stability of stochastic networks may wish to directly
proceed to the second part of this introduction, on page 9. There the two types
of communication networks that have kept me busy for three years are presented,
namely wireless and peer-to-peer networks. This section gives an overview of the
rich variety of problems dealt with in the existing literature, which gives a natural
opportunity to introduce the models constitutive of this thesis.

The last section is devoted to the mathematical content of the different chapters.
A large part of this section is concerned with stability questions, and discusses
renormalization techniques which allow the analysis of complex stochastic networks.
Other techniques are discussed as well, namely branching processes and bins and
balls problems. These two models are classical tools in applied probability and are
used in a wide variety of settings; here they (surprisingly) appear when studying
peer-to-peer networks.

Finally, a detailed presentation of the four different chapters of this thesis
follows. A reader eager to know precisely which probabilistic models are studied
here is referred to this part of the introduction, which starts on page 18.

Modeling of Communication Networks

Communication networks have a huge impact on every aspect of modern so-
cieties, and constitute an interesting and stimulating domain of application for
mathematics. In the Paris area, a recent survey has exhibited an average of 1.2 cell
phones per inhabitant: since their appearance, mobile phones have been adopted
by the vast majority of the population, representing both an important change in
people’s way of life and the development of a new and major economic sector. A
similar observation goes with the Internet: email, e-commerce, social web sites, to
name only a few, are now part of the daily life of hundreds of millions of users. In
the corporate world as well, the rapid growth of the Internet has changed firms’
business models, internal organization, etc. . .

Due to this prominent impact, communication networks are the focus of a strong
research and development activity, which aims at defining more efficient networks,



4 Introduction

as well as offering new services to users. Communication networks thus constitute
a lively field which evolves rapidly, and every innovation represents a new and
potentially challenging mathematical problem. The scope of these problems is very
large, ranging from physical considerations — how is information transmitted? — to
economic ones, such as the pricing of service. Among these possible questions, the
focus of this thesis is set on performance analysis. This encompasses the analysis of
various characteristics of a network, such as the transmission time of a message, the
number of customers in steady state, etc. . . Of course not all of these aspects are
treated in this thesis, and it will become clear later on in this introduction which
are.

Peer-to-peer technologies and web surfing on PDAs are among the recent tech-
nological advances that we have investigated. Although many other innovations
offer interesting mathematical problems, it must be noted that every technological
advance does not necessarily yield interesting mathematical questions. For instance,
two different versions of the Wi-Fi protocol 802.11, such as 802.11a or 802.11b, do
not necessitate two different mathematical treatments, at least for us. However,
wireless Internet networks and networks of mobile phones are fundamentally differ-
ent: for the former, any number of users can connect to a hotspot, at the expense
of experiencing a slow connection, whereas for the latter, only a given number of
users per base station can have simultaneous conversations, whose transmission rate
is fixed. Such a qualitative difference between these two behaviors indeed neces-
sitates two different mathematical models. Similarly, peer-to-peer networks offer
distinctive characteristics.

Erlang. The first communication network that was the object of careful mathe-
matical analysis is arguably the telephone. The birth of queueing theory is indeed
quite unanimously attributed to Erlang, who published in 1909 a celebrated pa-
per [Erl09], “The theory of probabilities and telephone conversations”. Together
with his second seminal paper [Erl17] published in 1917, Erlang investigates the
problem of dimensioning a telephone network.

Basically, a telephone network is a collection of telephone lines, to which users
access and which they keep busy for the duration of their conversation. The same
description applies to more modern networks of cellular phones, where it is a com-
mon experience to initiate a call that is rejected because the network is busy; in
other words, all lines are occupied, and one must try again later and hope that a
conversation has ended in the meantime. Setting asides physical considerations such
as the quality of the communication itself, the quality of service perceived by the
customers is measured through the frequency at which this event happens, which
is called the blocking probability ; a good quality of service means a low blocking
probability. The primary wiggle room for a network operator is the total number
of available lines: more lines mean a better quality of service but obviously a more
expensive network as well. Thus the operator needs to tune the trade-off between
the quality of service perceived by the users and the cost of the network.

Although evaluating the cost of a network is probably not a difficult issue (by
which we mean that it does not require sophisticated mathematical reasoning),
the blocking probability represents on the other hand a more challenging task.
It is important to note that given the network, the blocking probability is solely
determined by the customers’ behavior, i.e., the frequency and the duration of
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their calls. As an illustrative example, imagine that one wants to dimension a
network for 1,000 customers who make, on average, 4 calls a day of mean duration
5 minutes. The number of customers being large, the law of large numbers predicts
that random fluctuations around the mean values will average out, so that finally,
around 20,000 minutes of communication will be generated during a typical day.
One single line providing 3,600 minutes of communication a day, a rule of thumb
advocates the use of 6 telephone lines. However, this result does not say anything
about the blocking probability, and for a good reason: the law of large numbers
tells about the long term behavior of the network, while a call is rejected when a
customer initiates a call and all lines are busy. Thus the blocking probability is
determined by the instantaneous state of the network, which cannot be taken into
account by law of large numbers type of arguments; it is intrinsically of a different
nature. These events largely depend on the random behavior of the customers: thus
as indicated in the title of Erlang’s first paper, probability theory is the natural
framework in which to cast this problem.

The problem can then be formulated as follows: given customers who originate
calls at random times, each call being itself of a random duration, what is the
probability that a call finds all lines busy? A fundamental and natural assumption
is to assume that customers behave independently of one another: under this as-
sumption, Erlang argues that calls arrive in the network at the epochs of a Poisson
process. As for the call duration, fields measurements performed by Erlang show
that they follow the exponential distribution. These different assumptions define
completely the problem from a mathematical standpoint, which Erlang solves to
prove the famous Erlang B formula. It gives a flavor of the kind of results encoun-
tered in queueing theory: if ρ > 0 is the traffic intensity — equal to λ × r where λ
is the mean number of calls arriving in a unit of time and r is the mean duration
of a call, measured in the same units — then the blocking probability P (ρ, n) when
there is a total of n lines is given by

P (ρ, n) =
ρn/n!

1 + ρ/1! + · · · + ρn/n!
.

Plugging in the values of the above simple example, one finds a blocking proba-
bility of 23% with six lines, so that the random fluctuations can hardly be neglected.
Conversely, this formula can be inverted to find that twelve lines are needed to en-
sure a blocking probability of less than 1%: having a closed form formula allows
such manipulations, which is one of the strength of this theoretical approach. The
Erlang B formula was moreover shown to hold even if call durations are not dis-
tributed according to the exponential distribution, see for instance Takács [Tak69].
Although traffic patterns in telephone networks have changed drastically since Er-
lang, the robustness of this formula probably explains its enduring success; it is still
used by today’s network operators.

Queues. In a telephone network, customers finding all lines busy will retry later
on. Another possibility would be to queue these customers, so that the earliest
customer that arrived and found all lines busy could use the first line to get free; this
mechanism describes for instance the operation of a call center, or of a supermarket
with several cashiers and a single queue. These two simple examples illustrate the
concept of mathematical queue, and already show that a single mathematical model
can be representative of different physical systems.
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In a supermarket, customers are served based on their order of arrival, and we
say that the service discipline is FIFO or FCFS, for First-In First-Out and First-
Come First-Serve, respectively. Other service disciplines could make sense: if one
knew the service required by a customer, i.e., the amount of time this customer
will keep a cashier busy, then it could be efficient to determine the order in which
to serve customers based on this information — e.g., by treating preferentially
customers with only few items. Last-In First-Out (LIFO) is another example of a
simple service discipline, it models for instance a stack of items, which is a common
object, for instance in computer science. When a new item arrives, it is placed on
top of the stack, so that the first item to be processed is the last one to have arrived.
Similarly, the processor of a computer can be seen as a queue with a special service
discipline: the processor divides time into slots, devotes its computing power during
one slot to one application, and successively inspects the running applications slot
after slot. This gives the user the impression of parallelism and indeed enables
him to launch several applications simultaneously. Each application creates an
incoming flow of jobs that the processor needs to handle, and each job necessitates
more or less computation from the processor. When the length of a time slot is
very small, a reasonable modeling assumption amounts to suppose that jobs are
treated simultaneously, and so the service discipline is not FIFO, it is a well-known
discipline called Processor-Sharing.

These different examples illustrate the different parts that define a queue from
a mathematical standpoint. First there is indeed a queue — e.g., the customers
placed on hold in a call center or the jobs waiting to be treated by a processor.
Then there are servers, which serve the customers — e.g., the call operators or the
processor. And finally there is a service discipline, which determines in which order
customers are served — e.g., FIFO or Processor-Sharing. Finally, to fully define
a mathematical queue, one needs to specify the statistical hypotheses concerning
the customers’ behavior, namely call arrivals and durations. In the queueing ter-
minology, the duration of a call is often called the service requirement, because this
corresponds to the amount of time it keeps a server busy.

Queues are fundamental objects to model communication networks. The ex-
ample of call centers has already been given, but the Internet provides a much
more important and richer example. The Internet can indeed be seen as a network
of FIFO queues, which gives a good idea of modeling of communication networks.
Due to the Transfer Control Protocol (TCP), which plays a fundamental role in the
stability of the Internet, it can also be partially modeled as a network of Processor-
Sharing queues, but this is a more delicate story.

The Internet is the network of computers that communicate using the Internet
Protocol (IP), which, broadly speaking, defines the address of a computer, the fa-
mous IP address. It is not to be mistaken with the Web, which is the network of
web pages, and as such a “subnetwork” of the Internet; for instance, peer-to-peer
networks use the Internet but have nothing to do with the Web. To communicate
over the Internet, two computers send packets to each other: these packets are
relayed from the source to the destination through a series of dedicated machines,
called routers. The route — i.e., the sequence of routers — taken by a packet is
not known in advance: each router has a buffer, where incoming packets are stored.
The router inspects the packets buffered sequentially, and decides, based on the
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destination IP address, the router to which to forward the packet. If a router is
seen as a server, its buffer as a queue and packets as customers, then the Internet
can naturally be seen as a network of FIFO queues, where a customer goes from one
queue to another until it exits the network; under particular statistical hypotheses,
such networks are called Jackson networks.

The above examples show that mathematical queues provide a flexible frame-
work to model a great variety of physical systems. Yet because of this versatility,
queueing theory lacks of a unified theoretical framework. When one gets interested
in a new class of network, it is illusory to think that it will readily fall within the
range of some existing theorem, as well as it seems illusory, for now, to try to for-
mulate and prove a theorem that would encompass many different networks. So the
corpus of queueing theory consists essentially (although not only) in results about
various network models, and this partly explains the global structure of this docu-
ment, where different chapters essentially correspond to independent problems. It
seems all the more hard to unify different results under general theorems that even
two close models can exhibit radically different behaviors.

For instance, although the behavior of two queues in tandem is well under-
stood — this can model the waiting time at some furniture shops, where one first
has to queue at the cashier, and then a second time to retrieve the item — Bram-
son [Bra94a] studies a close model where customers can re-enter the network after
being served the second time. This slight difference yields a different and counter-
intuitive behavior, related to the fundamental notion of stability.

Stability. The simplest way to think of stability is the following: imagine a net-
work is a black box that transforms an input flow into an output flow. Clearly the
output flow cannot be larger than the input one — at least in the long run — and
we say that the network is stable if the output equals the input. Otherwise, the
output is strictly smaller than the input and some flow necessarily accumulates in
the network, which is then said to be unstable. Studying the stability properties of
a network can therefore be thought of as studying its capacity, i.e., the maximal in-
put rate it can accommodate; we discuss below why the situation is (un)fortunately
sometimes not that simple, and in order to illustrate the subtlety of this notion, we
spend some time discussing some surprising results.

But before that, note that the notion of stability is not always appropriate:
since the total number of customers in a telephone network is upper bounded by
the number of lines, customers cannot accumulate indefinitely and so it is always
stable. As discussed before, the relevant question in that case concerns the block-
ing probability. In contrast, in the previous simple model of the Internet, packets
can accumulate in the buffers of the different routers, and the network can then be
stable or unstable. To each case corresponds different questions: Under stability
conditions, one wants to know more about the steady state, for instance the average
number of packets that remain in the network or its fluctuations in time; when it is
unstable, it can be interesting to characterize the rate at which packets accumulate,
or where and how in the network do these packets aggregate.

Stability properties of the single-server queue have been understood in a fairly
general setting since 1962 with Loynes [Loy62]. If the server works at rate µ, then
the queue is stable if and only if the arrival rate λ is smaller than µ, i.e., λ < µ.
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In other words, the queue is stable if and only if the server can output more fluid
than what enters. Under stability conditions, although the instantaneous output
rate is µ > λ when the server is busy, the long-term output rate from the queue is
exactly equal to λ due to idling periods of the server. The condition λ < µ is often
rewritten ρ < 1, where one defines ρ = λ/µ as the traffic intensity.

For networks of queues, one can still define the traffic intensity: the input rate
to a queue is for instance given by the rate of exogenous arrivals plus the rate of ar-
rivals due to inner transitions of customers, which themselves depend on the arrival
rates into the other queues; thus the arrival rates are usually determined through
fixed point equations. In view of Loynes’ results, a natural idea is to think that a
network of queues will be stable if and only if the traffic intensity at each node is
smaller than one. One way is correct: if the traffic intensity at some node is greater
than one, then the network is unstable, since customers will necessarily accumulate
at this node. The converse has been the object of intensive investigations in the
early ’90s. Because of Loynes’ results, the simplest setting where this conjecture
could fail is when the network consists of at least two queues. And indeed, Rybko
and Stolyar [RS92] in 1992, and Bramson [Bra94a] two years later, came up with
counter-examples for this yet appealing conjecture with networks consisting of only
two queues. In both examples, the customers accumulate within the network as
follows: one of the two queues is large and the other empty, and then the large
queue empties while the empty queue builds up. Although each queue is empty
infinitely often, the amplitude of the oscillations are larger and larger.

Such situations naturally appear in multiclass queueing networks, where cus-
tomers are of one out of several possible types, or classes. Different classes (may)
differ by their arrival processes or the routes of their customers within the net-
work, and more importantly because servers can prioritize customers based on their
classes. Rybko and Stolyar’s counter-example [RS92] indeed relies on a two-node
queueing network with two classes of customers, where each server gives strict pri-
ority to one class of customer over the other. This results in an unstable network
which nonetheless satisfies the condition ρ < 1 at each server. In a similar vein, Du-
mas [Dum97] exhibits a three-node network with two classes of customers where
the stability region is non-linear, non-convex and non-monotonous. This means in
particular that the network may be unstable for some arrival rate λ and still stable
for some larger arrival rate λ′ > λ. Thus the concept of maximal input rate that a
network can accommodate does not always make sense.

In each of the two above counter-examples, servers give strict priority to one
class of customers, which can seem artificial. To compensate for this unsatisfactory
situation, Bramson [Bra94a] built an unstable two-node FIFO queueing network
with only one class of customers where the usual conditions ρ < 1 are satisfied. And
still in 1994, Bramson exhibited an even more striking behavior in [Bra94b]: He
built a class of networks such that if the traffic intensity ρ at each node is smaller
than some threshold ρ∗ < 1, and then it may be arbitrarily small, then the corre-
sponding networks are unstable.

In conclusion, the question of stability represents both an important and chal-
lenging issue. Although the above various counter-examples highlight some possible
subtleties, there are nonetheless many networks where the usual conditions ρ < 1
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give the correct stability region; this is for instance the case for Jackson networks,
mentioned previously. This is also the case for the network models investigated in
this thesis, which we now introduce.

Wireless and Peer-to-Peer Networks

Two types of networks are studied in this document: wireless and peer-to-peer
networks. The goal of this section is to give a broad overview of the issues raised by
these networks, and to explain the models and questions studied in related works.
In doing so, the models studied therein are naturally introduced, and the issues
addressed and models considered are positioned. As mentioned in the beginning
of this introduction, the reader is referred to the next section for details on the
technical (i.e., mathematical) content of this thesis.

We first introduce wireless networks, and then peer-to-peer networks. Since the
latter are built on top of the Internet, a quick overview of the wide range of prob-
lems raised by the Internet is done before introducing peer-to-peer networks. As for
wireless networks, the two different types of wireless networks, namely ad-hoc and
infrastructure wireless networks, are introduced. It must be stressed at this point
that this thesis does not contribute to the field of ad-hoc wireless networks; never-
theless, the range of issues raised by such networks is wider, in my opinion, than the
issues raised by infrastructure wireless networks. For this reason, time is spent in
introducing some interesting issues specific to ad-hoc wireless networks. Note that
although ad-hoc wireless networks seem richer from a mathematical standpoint, the
vast majority of real-life networks have a fixed infrastructure.

Wireless Networks. Plainly, these are networks where communication between
two nodes is carried by electromagnetic waves, propagated in the air. We sometimes
use the generic term of node, since as will be seen, users can communicate directly
with one another, but communication can also occur between a user and a base
station; a node can be a sensor too, in the case of sensor networks. Because they
exhibit original features compared to wired networks, such as the Internet or the
telephone, wireless networks have triggered a large amount of work in various fields,
such as information theory, algorithmic, random geometry or scheduling.

Ad-Hoc Wireless Networks. These are wireless networks where any two nodes
can directly communicate with one another, without resorting to a fixed infrastruc-
ture. Since information is transmitted through the air where the signal fades away,
communication between two nodes is possible only if they are within transmission
range, i.e., close enough. In multihop networks — a hop informally refers to the
transmission of a message from one node to another — nodes that are further apart
can communicate by using other nodes as relay. The message is then forwarded
from node to node until it reaches its destination. It is usually not possible to
restrict the direction in which the radio signal is emitted, so that the drawback
of allowing any two nodes to directly communicate is that, when they do so, they
create a zone of interference where other nodes’ communication is hindered. Two
models for this interference zone are equally prevalent in the literature, and most
of the following references consider both of them.
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On the one hand, one can consider that every communication is strictly pro-
hibited in this zone. Then as soon as a node receives a signal from another node, it
does not emit itself; because the situation is binary — a node either receives a signal
or not — such models are called boolean models. It is usually assumed that any
node has a fixed transmission range, thus prohibiting communications in a given
radius: the interactions are short-range. On the other hand, in the physical model,
a node can separate the signal it is interested in from the other signals it is exposed
to — the noise — as long as the power of the signal of interest is larger than the
power of the noise: the signal-to-noise ratio needs to be larger than some thresh-
old for the communication to be successful. It is usually assumed that the power
decays smoothly with the distance, so that any node influences every other node,
however weakly: the interactions are long-range. In this setting, power control is
an important issue: it determines the range of a signal as well as the strength of
the interference created. Power control is moreover a critical issue for autonomous
devices, since it determines their life span.

In either model, interference has an adverse impact on the network’s capac-
ity, which is defined as the maximal rate at which nodes can transmit messages.
Imagine for instance that each node has a buffer, where messages waiting to be
transmitted are stored. If new messages appear at a rate higher than the network’s
capacity, then the number of queued messages will become larger and larger, and
the network will be unstable. With a low density of nodes, interference does not
play a significant role, and all communications will essentially be accepted. But
as the density increases, more and more communications will be inhibited and an
interesting question is to quantify this impact. Information theory sheds light on
these questions by providing theoretical upper bounds on the network’s capacity;
an algorithmic issue then consists in designing algorithms that reach, or get close
to, this theoretical upper bound. For instance, Gupta and Kumar [GK00] have
shown in 2000 that if n nodes are arbitrarily located in a network of fixed area,
then the throughput of any node vanishes like 1/

√
n as n gets large; they moreover

exhibited a deterministic scenario where this bound is reached. This scenario is
nonetheless unrealistic — nodes need to be regularly spaced — and they comple-
ment their study by looking at the situation where nodes are randomly spread over
the network. They found that the capacity of each node vanishes like 1/

√
n log n in

this case. Although information theory does not preclude the capacity of reaching
1/
√

n, the additional factor 1/
√

log n was seen as the price to pay for randomness.
The main point in the case of randomly located nodes is to define a routing

algorithm, i.e., an algorithm that determines how to forward a message from the
source to the destination. The routing algorithm originally proposed by Gupta and
Kumar [GK00] tries to connect two nodes by a straight line, and its analysis relies
on random geometry. Seven years later, Franceschetti et al. [FDTT07] showed that
the factor 1/

√
log n was actually due to this particular choice of routing algorithm,

and proposed another routing algorithm that reaches the information theoretic
bound 1/

√
n in the case of randomly located nodes. This new algorithm is based

on the existence of a particular configuration of nodes. Namely, Franceschetti et
al. show that the network can organize a highway of nodes, in charge of relaying
the long-distance information transmitted over the network.



Wireless and Peer-to-Peer Networks 11

This example illustrates the interplay between the connectivity properties of
the network and its capacity. The right mathematical tool for formalizing this in-
terplay is the percolation theory, which is indeed the cornerstone of the arguments
of Franceschetti et al. [FDTT07]. See for instance the first chapter of Grim-
mett [Gri99] for an introduction to this theory, where some physical motivation is
given. This mathematical framework turned out to be very fruitful in the context
of wireless networks. In addition to the aforementioned results of Franceschetti et
al., Dousse et al. [DFT06] give an explanation to the fact that the throughput seen
by any node vanishes as the number of nodes increases: using percolation theory,
they prove that this is actually the price to pay to get the full connectivity of the
network. If a fraction of nodes cannot communicate with each other, then the net-
work can be designed in such a way that the throughput does not vanish in the
limit.

The above mentioned results concern ad-hoc networks where users do not move,
and a natural extension consists in allowing mobility. In this case the connectivity
properties of the network evolve over time, so that the results in the fixed setting
need to be revisited. A first difficulty consists in designing efficient routing algo-
rithms, see, e.g., Tschopp et al. [TDG08] and the references therein. An interesting
discovery of Grossglauser and Tse [GT01] is that the situation under mobility can
be much more favorable than in the fixed setting: although in the fixed setting the
network’s capacity decreases like 1/

√
n, they show that the throughput can be kept

constant if users move. The underlying idea is that mobility represents an oppor-
tunity for the network to increase its capacity by devoting its resources to nodes
that are in a good state; we will shortly come back to this interesting property in
the context of infrastructure wireless networks.

Infrastructure Wireless Networks. Ad-hoc wireless networks are those wireless
networks which can operate without fixed infrastructure. In wireless networks with
a fixed infrastructure, be it a hotspot in the case of the Wi-Fi or a base station in the
case of cell phones, communication is always between a user and this infrastructure,
say a base station for simplicity; such networks are sometimes called infrastructure
wireless networks, a terminology that we use here. This communication is directed,
from the users to the base station (many-to-one), or from the base station to the
users (one-to-many), but we will not enter this level of details. Since several users
can connect simultaneously to a base station, this latter needs to divide its capacity
according to some scheduling policy ; these problems are sometimes referred to as
bandwidth-sharing problems.

In the case of cell phones, the data transmitted is the voice, which is sent at
a fixed rate determined by the data compression scheme used. In particular, users
require the same transmission rate — the traffic is said to be inelastic — so there
is a simple way for the base station to divide its bandwidth. Imagine for instance
that every user requires 13 kbit/s, and that the base station’s capacity is equal
to 100 kbit/s: then the base station will divide its capacity into 7 slots of equal
capacity of 13 kbit/s, thus being able to serve a maximum of 7 users simultaneously.
In the case of the Wi-Fi, this question is more complex, since now users are happier
if they can get a faster connection. A simple approach is to serve all the users
simultaneously and equally, i.e., if there are 10 users connected, then each user
would receive one tenth of the base station’s capacity.
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This answer is satisfactory in a fixed setting, when users’ capacity — the
amount of data they can send or receive in a second — does not evolve over time.
Knopp and Humblet [KH95] investigate the situation in a dynamic setting, where
users have a time-varying capacity. They show that under power constraints, the
base station should at any time serve only one user, the one with the best capacity,
in order to maximize the network’s throughput. This scheduling induces delay in
message transmission, because a user will not be served until its state is favorable,
and so the information relayed needs to be delay-tolerant. Users have similar be-
havior, so that any user will indeed be served after some time, but in general, one
must be careful that such policies are fair and do not induce starvation of a category
of users.

The case of time-varying capacity is not just an intellectual game, it naturally
arises in the context of mobile users. The capacity of a user connected to a base
station indeed depends on how the user “sees” the base station, determined by the
distance between the base station and the user, the presence of obstacles between
them, etc. . . Thus under mobility assumption, users’ capacity will naturally vary
over time. Knopp and Humblet’s results suggest that the optimal scheduling policy
then consists in serving the user with the best capacity. This observation motivated
the above mentioned result of Grossglauser and Tse [GT01] in the case of ad-hoc
wireless networks, while the situation has been extensively investigated in the case
of a single-cell network with a base station, see for instance Bonald et al. [BBP04]
and the references therein. Knowing the users’ capacity implicitly assumes that the
base station is aware of the channel conditions, and these scheduling disciplines are
called channel aware scheduling disciplines; the above mentioned works of Bonald
et al. [BBP04] and other results have shown that such algorithms improve sig-
nificantly the throughput. In practice a network consists of more than one base
station: with several stations, new problems appear due to the fact that customers
move from one cell to another, and also because neighboring cells can interfere.
Interference problems are not discussed here.

The situation then depends on whether the traffic is elastic or inelastic: for
inelastic traffic such as the voice, the capacity of each cell is finite, i.e., there is
a maximum number of users per cell. A user moving to a cell with already the
maximum of users will see its service interrupted, and such events need to be
controlled since they are worse than a call simply being rejected initially. When
several types of users coexist, which may typically correspond to different traffic
patterns, Antunes et al. [AFRT06, AFRT08] exhibit a stability problem: the
system spends a long time in a certain state — e.g., favoring a certain class of users
— and then switches for another state, where again it stays for a long time. This
is a bad property from an operator’s perspective, since one wants to be able to
guarantee some quality of service.

For elastic traffic, any number of users can be simultaneously in a cell: again
problems of interference and power control are important, but also the problem of
bandwidth sharing. The base station needs to decide which users to serve, and how
to divide its capacity. This question, investigated in depth for the single cell, was
extended by Borst et al. [BPH06] by considering inter-cell mobility: the model of
this paper is of primary interest for us.
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This paper considers a network of base stations, where users enter the network
with some service requirement, and then move within the network independently of
the service they receive until their initial service requirement has been met. Along
their route, they share the capacity of the cell they are in with the other customers
simultaneously present. This model is very flexible: Borst et al. consider different
classes of customers (corresponding to different service requirements and routes),
each cell is divided into regions corresponding to different radio conditions, and base
stations implement sophisticated scheduling disciplines. Their primary objective is
to characterize the stability region of the network for different scheduling disciplines.
They use fluid limit techniques to identify this region — these are discussed in the
next section — but their analysis is not completely rigorous. A serious technical
difficulty arises because of the coexistence of two different time scales, one for the
variation of the total number of customers in the network, and the other for the
movements of customers within the network.

Chapter I of this thesis is devoted to fixing this problem. In order to do so we
had to develop a technical approach completely different from theirs, which in the
end rigorously justifies the use of fluid limits to characterize the stability region.
The model of this chapter is simpler than the one of Borst et al. insofar as there
is only one class of customers, and more importantly the base stations implement
the simplest possible scheduling discipline. The conclusion of this analysis is that
thanks to the users mobility, the stability region is as large as it can be; similarly as
in the above mentioned results, the mobility has a positive impact on the network’s
capacity. Note that although the model studied in this chapter finds its motivation
in the modeling of infrastructure wireless network, its contribution is in the end
essentially technical, as is explained in the next section.

In contrast to the model studied in Chapter I which contributes to the field of
wireless networks, Chapters II and III are motivated by the modeling of peer-to-
peer networks. These are particular networks built on top of the Internet, which
we introduce first before going into the details of peer-to-peer networks.

Internet. Although any two computers communicate over the Internet using IP
addresses, the medium as well as the content of the communication are varied. The
medium can be the air, optical fibers, ADSL or even electric lines, whereas the com-
munication taking place over this versatile medium can be file sharing, telephony,
parallel computing, etc. . . In the Web, a communication takes place between a user
and a web server, which hosts the web site of interest, using the HTTP protocol.
More generally, every type of communication is usually associated with one or more
protocols, e.g., web browsing with HTTP and HTTPS, file sharing with FTP and
BitTorrent, telephony with Skype, etc. . .

These many different mediums of communication each offer specificities worth
investigating. To name only a few, we have already discussed in length the case
of the wireless Internet as a special case of wireless networks; due to their physical
nature, optical communications raise new problems, especially in routing [ZJM00];
ADSL lines carrying domestic traffic exhibit peculiar patterns due to peer-to-peer
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or video streaming traffic, and their analysis is a subject of utter interest for network
operators since they carry a majority of the current Internet traffic [bAGP+05].
In addition to these problems, the many different protocols each trigger new prob-
lems as well. BitTorrent and peer-to-peer protocols in general have been intensively
studied in the past years (see below); TCP is the cornerstone that makes the In-
ternet work, but its modeling is a challenging question that has yielded different
studies [DGR02, CMP09]; widely used access protocols such as Aloha or Ether-
net present mathematical peculiarities, such as the instability of Ethernet [Ald87],
and are still intensively investigated currently, see the recent work of Bordenave et
al. [BMP08] on the stability of Aloha; some attempts have been made to define
efficient admission control protocols at the router level, such as RED [FJ93]. And
more generally, many aspects of the Internet can be optimized or enhanced. Just to
name a few, Appenzeller et al. [AKM04] try to dimension the size of the routers’
buffer, and Benameur et al. [BFOBR02] are interested in introducing admission
control and quality of service in the Internet.

The modeling of the whole Internet at once is a tantalizing task that reveals
many challenges; some respectable researchers think that the behavior of TCP is
well understood only for networks with one node. The interaction between several
nodes indeed induces a high degree of complexity. Massoulié and Roberts [MR99]
recently introduced a popular model for elastic flows, which sees TCP as a black
box which divides the bandwidth of each router among the different flows that
traverse it according to some optimization problem. This model has found some
justification thanks to a recent work of Walton [Wal09], which shows that this
bandwidth sharing model can be obtained by a scaling procedure starting from a
rather general class of networks. Let us close this long and eclectic list of problems
related to the Internet by mentioning a recent and innovative work of Bonald et
al. [BFP09], in which they question the very need of a control protocol such as
TCP, and suggest that an efficient use of source coding could do the job.

This list of problems is very far from being exhaustive — for instance, we did
not discuss insensibility issues or graph-related problems such as the structure of
the Internet or the PageRank algorithm — but just gives an idea of the wide range
of problems triggered by the Internet. Every level of the Internet, from the physical
to the application layer, raises many problems. Among these problems, we have
decided to focus on peer-to-peer networks.

Peer-to-Peer Networks. A typical situation in the Web is that of a communica-
tion between a user and a web server, the former requesting a file, e.g., the HTML
code source of a web page, from the latter. If several users connect simultaneously
to the same server, then it needs to divide its capacity between the different users.
The most common sharing policy is the Processor-Sharing discipline, where every
user receives only a small fraction of the server’s capacity when many of them are
connected. This is not a problem if the file requested is small — a web page for
instance — but if a user is interested in downloading a larger file, it may then expe-
rience a large delay. Another observation is that since the server is the only source
where the file is available, the time needed to download it is essentially proportional
to its size. For these two reasons, the Web and the HTTP protocol are not suited
for sharing large or popular contents, such as, respectively, a Linux distribution or
a movie. Although some protocols were specifically developed to address this issue,
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for instance FTP, the Web was still widely used at the end of the 90’s to exchange
large files.

Peer-to-peer networks have been designed to provide an alternative way of
sharing large or popular files. The simple yet fundamental idea of peer-to-peer
networks is the following: once a user has received a file, he offers it in turn, thus
acting like a server. If many users want the file, many users will offer it after some
time, and so it seems reasonable to expect that such networks will cope with a high
demand. Note in particular that in contrast to classical web architecture, under
certain conditions, the higher the demand and the better the network’s capacity.
The vast success of these technologies is reflected in recent figures that show that a
large portion of the Internet traffic originates from peer-to-peer applications. These
figures are however to be taken with some care, since measuring peer-to-peer traffic
proves to be a difficult issue, see Saddi and Guillemin [SG07].

Another crucial idea that dramatically speeds up the dissemination of a large
file consists in splitting it into small pieces, called chunks; a movie will typically be
cut into a couple of thousands of chunks. This strategy has numerous advantages:
first of all, the user can download different chunks simultaneously and from differ-
ent sources, thus both speeding up the downloading process and balancing the load
over different peers. Another key advantage is that a peer can start sharing the file
as soon as he has a chunk: in particular, he can quickly participate in increasing the
network’s capacity, instead of having to wait to have the whole file in his posses-
sion. This idea is key in BitTorrent, one of the most popular peer-to-peer networks
nowadays. The drawback is that it increases the complexity of the algorithm, and
the system’s performance is very sensitive to the policy that rules out which chunks
are exchanged between two peers. More generally, peer-to-peer networks are chal-
lenging networks to operate, since now the information is no longer centralized but
disseminated all across the Internet.

Peer-to-peer networks have to provide peers information on how to find chunks
they are interested in. Not only are these chunks spread over the entire network,
but the topology of the network evolves dynamically over time, when peers enter
or leave the network, propose a new content or get some old one. Providing the
relevant information to the peers is thus a difficult issue, and largely determines
the network’s (in)efficiency.

One approach consists in trying to maintain a fixed structure on the network’s
topology, e.g., organize the peers into a ring. One can then exploit properties
of this topology to optimize the lookup of information. Some attempts in this
direction consider de Bruijn graphs for the overlay topology, and rely on the use of
distributed hashtables, see for instance Gai and Viennot [GV04] and the references
therein. Due to the dynamically evolving topology of the network, maintaining a
fixed structure turns out to be a difficult issue in practice. Instead, recent algorithms
such as BitTorrent rely on random graph. Broadly speaking, a peer in BitTorrent
connects to a random set of peers, from whom he will try to obtain interesting
chunks. The set of peers a peer communicates with then slowly evolves over time,
see [Bit] for more details.

Once peers have decided to communicate with one another and exchange chunks,
another crucial question concerns the chunks that should be exchanged. The policy
chosen in this respect has a great impact on the downloading time of the full file, as
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well as on the scarcity of chunks in the network. Because peers leave the network
after some time once they have completed the download, it can indeed happen that
some chunks disappear, or are rarer than others.

A related problem concerns the time needed to download the first and last
chunks. It has been argued, e.g., in Tian et al. [TWN06], that peers spend most
of their time downloading their first and last chunks. For the first chunks, this
comes from the fact that initially, a peer does not have chunks to exchange, and
thus other peers do not have a strong incentive to communicate with him. On the
other hand, the last chunk problem comes from the fact that getting one precise
chunk can be difficult. To circumvent this problem, solutions implying network
coding have been proposed [GMR06], as well as exchange policies that favor the
exchange of rare chunks, see for instance Bharambe et al. [BHP06].

We now introduce models closely related to the ones studied in Chapters II
and III. The discussion is twofold, depending on whether the system is studied in
stationarity, or if the focus is rather set on the initialization of the network.

Performance Analysis in Stationarity. The key idea in peer-to-peer networks
is that each peer participates in increasing the network’s capacity: not surprisingly,
this powerful and generic idea has spread beyond the limited scope of file shar-
ing. Skype is a good example of the use of a peer-to-peer network in a real-time
context, and such applications are an active topic of research. Recently, Bonald
et al. [BMM+08] and Massoulié and Twigg [MT08] have investigated the per-
formance of a peer-to-peer system used to broadcast real-time data, such as a
television show. The case of live streaming presents new constraints compared to
file sharing: it is not mandatory that each peer receives exactly every packet of the
stream, but the delay is critical. In [BMM+08], Bonald et al. compare different
chunk exchange policies and analyze their impact on the system’s performance,
while Massoulié and Twigg [MT08] establish the network’s capacity under various
scenarios. One limitation of these works is that they consider a static context, i.e.,
the network’s topology is fixed and does not evolve in time. One of the motivation
of our own works on peer-to-peer systems was to try to analyze in some way the im-
pact of the evolving topology. The price to pay is twofold: the multichunk scenario
is much more difficult to analyze, and it is hard to consider a realistic topology for
the overlay network.

In addition to the above live streaming scenario, file-sharing peer-to-peer net-
works have been extensively studied: these are complex networks where several
aspects can be considered. A popular model introduced by Massoulié and Vo-
jnović [MV05] neglects the time needed to download a particular chunk, and puts
the emphasis on the process of contacts between peers. In these models, at random
times, each peer contacts another randomly selected peer and tries to exchange
some chunks with him. It is assumed that once a contact is made, the peer takes a
chunk uniformly at random among the chunks that the contacted peer has and that
the initial peer does not have; the exchange is one-sided. Kesidis et al. [KKS09]
consider a model with two-sided exchanges upon contact. In both cases, the initial
stochastic system is studied by means of a deterministic approximation involving a
system of differential equations, and the stability of this system is the primary con-
cern. In contrast to the aforementioned papers on live streaming, in these models
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the overlay topology is complete, i.e., any peer can contact any other peer.

If chunks are indeed small in practice, it is however not clear that their down-
loading time can be completely neglected. Qiu and Srikant [QS04] investigate a
simple queueing model for BitTorrent-like peer-to-peer networks. Their model con-
sists of two queues in tandem, where peers in the first queue do not have the file, and
peers in the second queue have it. The peer-to-peer dynamics then dictates that
the first queue behaves as a queue with a varying and random number of servers,
where a server is precisely a peer in the second queue. This model again implicitly
assumes that there is a complete overlay topology. Because peers who do not have
the file are impatient, the queueing system they propose is always stable, but when
this assumption is removed, such as in Susitaival et al. [SAV06], then the stability
needs to be studied. The stability criterion involves a comparison between the input
rate and the mean number of peers in the second queue, which determines the mean
output rate of the system. Susitaival et al. derive such a stability condition from
a heuristic standpoint, and this intuitive result is proved in Chapter II under more
general hypotheses. A remarkable feature of these networks is that when peers who
have the file are patient enough (i.e., stay long enough once they have downloaded
the file), then the network is always stable and can accommodate any input rate.

These two models do not take into account the multichunk situation, and there
is a good reason for that. Although with a contact process perspective, the com-
binatorial problems induced by several chunks can be handled — with n chunks,
each peer is characterized by one of the 2n possible subsets of chunks — the situ-
ation is much more challenging with a queueing perspective. Indeed, the subset of
chunks then not only characterizes the peers, but the servers as well. When a peer
has k chunks, then its capacity, as a server, needs to be divided in some way among
these k chunks. To the best of my knowledge, there is no good queueing model that
correctly handles this difficulty. A possibility to circumvent it is to restrict the sets
of peers that can interact. For instance, Parvez et al. [PWMC08] consider the
possibility to parse a file while downloading it. The chunks of the file then need
to be downloaded in order, what reduces the dimensionality of the problem since
now a peer can be characterized by the number of chunks it has. A further simpli-
fication amounts to impose that a peer with k chunks always asks the next chunk
from peers with k+1 chunks; in particular, a peer is a server for only one chunk,
the last one it has downloaded. This architecture can be justified by load balancing
arguments: without this constraint, peers with the whole file would receive more
requests than other peers, and more generally the more chunks a peer would have,
the more requests it would receive. These two assumptions lead to a simple net-
work model with n+1 queues in tandem, if n is the number of chunks, and where
the dynamics between two successive queues is similar to the model of Susitaival
et al. [SAV06]. It can therefore be seen as a generalization of their model, that is
analyzed in some particular situation in Chapter II. One would ideally like to study
the case where chunks have identical size, but, among other results, we prove that
if chunks are smaller and smaller (i.e., a peer starts by downloading the biggest
chunk, etc. . . ) and if customers are patient enough, then a similar phenomenon as
in the single-chunk case holds, i.e., the system is stable for any input rate, which is
in sharp contrast to classical queueing networks.
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Flash Crowd. All the above models consider peer-to-peer systems in a stationary
regime, with a continuous flow of incoming peers (or chunks in the case of live
streaming), for which the problem of stability makes sense. Another opposing
situation is the flash crowd phenomenon: this corresponds to the initialization of
a peer-to-peer network upon the release of a popular file. If many peers were
awaiting this release, then there will be a sudden burst of incoming peers shortly
following the release. This phenomenon has been observed in real-world networks,
see for instance Pouwelse et al. [PGES05] for measurements of the flash crowd
effect corresponding to the “release” of the movie “Lord of the Rings III”.

As long as the flash crowd effect prevails, the system is in a transient regime.
An interesting question concerns the time needed to reach the stationary regime,
or, put otherwise, the time needed for the system to cope with the initial high
demand. Yang and de Veciana [YdV06] look at this question, but their analysis
remains a first-order one, and basically amounts to say that the number of servers
grows exponentially. Indeed, the system begins with one server (the one initially
offering the file), which is replicated after the first customer finishes downloading
the file; at this time, the system consists of two servers working in parallel, so
the next server is created twice faster, etc. . . This dynamics is analog to the dy-
namics of a population of cells, where each cell splits into two identical cells after
some time. This analogy with this kind of biological processes, called branching
processes, makes it possible to carry out a more detailed analysis of the transient
phase of the peer-to-peer systems, which is the object of Chapters III and IV. This
analysis makes it possible to get a deep understanding of the system’s behavior
and, as a simple consequence, to justify the first-order approach used by Yang and
de Veciana [YdV06].

So far, we have not entered the technical content of our works on mobile net-
works or peer-to-peer systems, in order to focus on the modeling problems; the next
section introduces it.

Mathematical Framework

In this section, an overview of the mathematical tools used is given. All the
works contained in this thesis were motivated by the modeling of communication
networks, and the choice has always been made to use simple Markovian assump-
tions: the section starts with a few words on this topic. Since two chapters are
devoted to the study of the stability of Markov processes, we then present renor-
malization techniques which are modern tools designed to address such issues. Fi-
nally, we conclude this section with the introduction of two common probabilistic
models which naturally appeared along way, namely branching processes and bins
and balls problems.

Markovian Modeling. Although seemingly simple, the memoryless property of
the exponential random variable has a crucial technical impact on modeling ques-
tions. If one is interested in the evolution of a single-server queue, the number of
customers in the queue forms a Markov process only when the arrivals of customers
in the queue are Poisson and the service requirements are exponentially distributed.
If these assumptions are not met, one can still describe the evolution of the queue
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as a Markov process if more information is added to the description of the process:
if the queue implements the FIFO discipline, it is usually enough to add to the
number of customers the residual service time of the customer being served as well
as the time till the next arrival; if the queue is Processor-Sharing, then one needs
to keep track of the residual service time of each customer, etc. . .

Although the process giving the number of customers in the queue lives in a
countable state space, this is no longer the case when the state descriptor has a
continuous component, such as some residual service time. The theory of Markov
processes living in an uncountable state space is well developed, but compared to
the countable case, the new difficulties introduced are, often, essentially technical.
Numerous examples deal with systems with almost arbitrary service distribution,
arrival process or even service discipline, but often the high level of technicality
introduced obfuscates the main message. In my view it is very valuable to have
such examples at hand, since they justify making exponential assumptions, but
given a system, one must have a good motivation in order to tackle the problem
in all generality. In addition, two other arguments are in favor of the exponential
distribution.

First of all, the exponential distribution is met in practice. We have already
mentioned the works of Erlang [Erl09, Erl17], where incoming calls are modeled
as a Poisson process, and call durations are assumed to follow the exponential dis-
tribution. The Poisson approximation essentially comes from the independence of
the users who originate the calls, whereas the statistical model for the call durations
followed from field measurements. The Poisson approximation turns out to be a
very good model for the telephone network, and more generally for most arrival pro-
cesses which stem from human activity. Sometimes however the Poisson assumption
does not apply: In a paper with an enticing title, Paxson and Floyd [PF95] look
at the arrival process of packets at a router, and found that it sharply differs from
a Poisson process. There is a simple explanation for that, namely that packets
in the Internet are generated by computers, so that even if the users’ actions are
Poisson, each action generates a burst of packets; Paxson and Floyd argue that for
different traffic types, the burstiness of the traffic observed cannot be modeled with
models derived from Poisson. Another serious problem comes from the long-range
dependence of Internet traffic, since long flows induce a correlation of packets over
long periods of time. The Poisson process nonetheless remains a realistic model for
many arrival processes.

On the other hand it seems harder to justify the exponential assumption when
it relates to call durations or more generally to service requirements. Brown et
al. [BGM+05] for instance investigate in depth the case of a call center, where
they conclude that the service times are lognormal. Surprisingly, there exists a
remarkable case when this does actually not matter: A network is said to be insen-
sitive when the number of customers in steady state at the different nodes depends
on the service time distribution only through its mean. For such networks, one can
solve the problem for any suitable service distribution, and usually the exponential
one is the simplest. A typical example is the aforementioned Erlang B formula: pro-
vided calls arrive according to a Poisson process, the number of customers in steady
state — and so the blocking probability — only depends on the first moment of
the service time distribution, see Takács [Tak69] and the references therein. This
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fundamental property is without any doubt responsible for the enduring success
of this simple formula. Insensitivity results were later established for networks of
queues by Schassberger [Sch77] and Burman [Bur81], see also the more recent
works of Bonald and Proutière [BP02, BP03].

Renormalization Techniques. Even in the “simple” case of the exponential dis-
tribution, it is usually challenging to give a simple description of a network’s dy-
namics. Either the network is stable, in which case one wants to know how it
stabilizes, or it is unstable, and one wants to know details on the transient paths
that lead to infinity. Renormalization techniques aim at providing such a descrip-
tion. The general idea is to take a sequence of suitably renormalized processes that
converges: the limiting process then gives insight into the original network’s dy-
namics. We discuss in detail two fundamentals models, the M/M/1 and M/M/∞
queues, which correspond to two different scalings. These two models are central
building blocks in the different problems studied therein.

M/M/1 and Fluid Scaling. The M/M/1 queue is the single-server FIFO queue
which works at speed one, with Poisson arrivals at rate λ and i.i.d., exponentially
distributed with parameter µ, service requirements. To describe this system, one
can consider the process (L(t)) that gives the number of customers in the queue;
under the above exponential assumptions, this is a Markov process. It lives in
the space of non-negative integers N = Z+ = {0, 1, . . .}, and its dynamics in the
region N

∗ = {1, 2, . . .} is simple to describe. On the one hand, it can be seen as the
difference of two independent Poisson processes (Nλ(t)) and (Nµ(t)) with respective
parameter λ and µ: if T0 = inf{t ≥ 0 : L(t) = 0} denotes the hitting time of 0, then

(1) L(t) = L(0) + Nλ(t) −Nµ(t), 0 ≤ t ≤ T0.

An equivalent way of describing the dynamics in N
∗ is to see (L(t)) as a

continuous-time random walk: after a time exponentially distributed with param-
eter λ + µ, the process goes up with probability λ/(λ + µ), and otherwise it goes
down. As will be discussed below, this analogy is important.

When it hits 0, (L(t)) jumps to 1 after a time exponentially distributed with
parameter λ: then using either one of the two descriptions together with the Markov
property, it is easy to see that if λ > µ, then (L(t)) goes to infinity; if on the other
hand λ < µ, then it will hit 0 infinitely often. One would like to have a simple
description of the dynamics of (L(t)): Equation (1) strongly suggests that starting
from L(0) = ℓ, then L(t) ≈ ℓ + (λ − µ)t, at least for some t > 0. We want to
explain how this approximation can be made rigorous. This explanation relies on
the estimation of certain important hitting times.

Since the dynamics of (L(t)) is discontinuous at 0, the hitting time T0 of 0
naturally plays a key role, as Equation (1) highlights. Of course T0 is random, but
if there are many initial customers in the queue, then its behavior can be described
with deterministic quantities: if L(0) = n, then as n gets large, T0 is infinite with
high probability if λ > µ, whereas T0/n converges to t0 = 1/(µ−λ) if λ < µ. Hence
assuming n large, the approximation L(t) ≈ n + Nλ(t) −Nµ(t) holds for all t ≥ 0
if λ > µ, and for 0 ≤ t ≤ nt0 if λ < µ.

Two important remarks should be derived from this simple heuristic. First of
all, taking a large initial state makes it possible to give a simpler description of the
process; second, in the case λ < µ, the relevant time scale is linear in the size of
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the initial state. This second point is natural in view of (1): when starting with
L(0) = n customers, one will see significant fluctuations in the number of customers
when the Poisson processes will have reached values of order of n, which takes a
time of order of n as well since a Poisson process grows linearly.

These remarks lead to the so-called fluid scaling : consider a sequence (Ln, n ≥
0) of processes such that, for n ≥ 0, the nth process (Ln(t)) is an M/M/1 queue
starting with n customers, i.e., Ln(0) = n. Because the time scale is linear in n, and
because one needs to rescale in space by n as well in order to avoid a trivial limit
as n gets large, it is natural to consider the renormalized process (Ln(t)) defined
as follows:

(2) Ln(t) =
Ln(nt)

n
, t ≥ 0, n ≥ 1.

Because time is sped up by n, the time scale of the renormalized process (Ln(t))
is the normal time scale, i.e., for this process, one sees significant fluctuations on
[0, t] for any t > 0. Because of the above mentioned behavior of T0 as the size
of the initial state gets large, one can prove the following result (see for instance
Robert [Rob03, Chapter 5] for this and the following results): as n goes to infinity,
the sequence of processes (Ln, n ≥ 1) converges in some sense to the deterministic
process, called fluid limit, (x(t) = 1+(λ−µ)t, t ≥ 0) when λ > µ; when λ < µ, then
the same convergence holds but only for times t ≤ t0, i.e., the sequence of processes
(Ln, n ≥ 1) restricted to the time interval [0, t0] converges to (x(t), 0 ≤ t ≤ t0).
This restriction comes from the fact that (1) is only valid for t ≤ T0, which corre-
sponds to t ≤ t0 on the fluid scale. An interesting question concerns the behavior
of the fluid limit when t > t0 in the case λ < µ: once again important hitting times
need to be discussed.

Assume λ < µ: at time t0 = 1/(µ − λ), the fluid limit hits 0, i.e., x(t0) = 0.
Interpreting the fluid limit as the nth system for large n, this means, since space
has been scaled by a factor n, that the number of customers in the nth system is
much smaller than n, it can even be thought of as being 0. Similarly, because of
the time and space scaling, the fluid limit will take off from 0 at some time t > t0
only if there are of order of n customers in the nth system at a time t > T0 still of
order of n. In other words the hitting time τn(u) = inf{t ≥ 0 : L0(t) ≥ un} of level
un, for u > 0, starting from 0 (using implicitly the Markov property) is central. If
τn(u) is of order n, this means that one should see the fluid limit reaching u after
time t0.

Not surprisingly, since the queue is subject to a negative drift when λ < µ,
τn(u) for u > 0 is much larger than n: τn(1) is of order (µ/λ)n ≫ n. Thus the time
scale of the fluid scaling does not make it possible to capture such events: on the
fluid scale, the process stays stuck at 0. In particular, the sequence of processes
(Ln) restricted to [t0,+∞) converges to the process identically null. Gathering the
above observations, one can formulate the fluid approximation in a unified formula
for the two cases λ > µ and λ < µ:

(3) Ln(t) ≈
(
1 + (λ − µ)t

)+
, ∀t ≥ 0,

where x+ = max(x, 0) for any x ∈ R. This approximation captures the first-order
behavior of the process (L(t)): since this comes from the averaging behavior of
the large number of initial customers, such approximations are often referred to
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as functional laws of large numbers. The M/M/1 queue provides a simple and
insightful example of such techniques, which are applied in more complex cases, see
for instance the book by Bramson [Bra08] which studies fluid limits of complex
queueing networks; the end goal of this book is the analysis of stability. As will be
highlighted later, the fluid scaling plays a special role compared to other scalings
due to its importance with respect to stability issues. Other scalings indeed exist:
although the fluid scaling of (2) is appropriate for the M/M/1 queue, the right
scaling procedure depends in general on the system of interest. For the M/M/∞
queue for instance, the right scaling is Kelly’s scaling.

M/M/∞ and Kelly’s Scaling. The M/M/∞ is the Markovian queue with an
infinite number of servers; in particular, arrivals occur at times of a Poisson process,
say with parameter λ, and the process (L(t)) that gives the number of customers is
a Markov process. Since there are infinitely many servers, each customer is served
immediately upon arrival, and leaves after a time exponentially distributed with
parameter µ. The behavior of this queue is radically different from the behavior of
the M/M/1: a first and comfortable difference is that the dynamics is continuous
at 0. For instance, Kolmogorov’s equation has a nice and simple expression,

d

dt

[
E(L(t) |L(0) = ℓ)

]
= λ − µE(L(t) |L(0) = ℓ),

which can be solved to give E(L(t) |L(0) = ℓ) = ρ + (ℓ − ρ)e−µt with ρ = λ/µ.

Besides, the main difference is that the output rate from the queue is not
constant nor bounded, since it is proportional to the number of customers in the
queue; in particular, and in contrast to the M/M/1, the M/M/∞ cannot be seen
as a random walk. Moreover, this new behavior makes that starting from a large
initial state L(0) = n, the departures largely outpace the arrivals: in [0, t], the
number of arrivals is of order of one (the mean number of arrivals is exactly equal
to λt), whereas the number of departures is already of order of n since each one of
the n initial customers may have left with positive probability. Thus in contrast
to the M/M/1 queue where arrivals and departures occur at the same pace, here
there is a different time scale for the arrival and departure processes.

A possibility to get round this problem is to scale the input rate λ by n: then
the mean number of arrivals in [0, t] is equal to nλt, and is therefore comparable
with the number of departures. This simple idea leads to Kelly’s scaling, introduced
by Kelly [Kel86]. Again we consider a sequence (Ln, n ≥ 1) of processes such that
the nth system represented by (Ln(t)) starts with Ln(0) = n customers; in contrast
to the fluid scaling however, the input rate λ is scaled by n as well, i.e., the input
rate into the nth system is equal to nλ. The rescaled process (L̂n(t)) is obtained
by rescaling in space only:

L̂n(t) =
Ln(t)

n
, t ≥ 0, n ≥ 1.

Again, note the difference with the fluid scaling (2) in that time is not sped up. Simi-
larly as for the M/M/1, it can be proved that the sequence of renormalized processes
(L̂n, n ≥ 1) converges to the deterministic process (x(t), t ≥ 0) which is the unique
solution of the following differential equation (see for instance Robert [Rob03,
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Chapter 6]):
dx(t)

dt
= λ − µx(t), t ≥ 0, and x(0) = 1.

This equation is exactly Kolmogorov’s equation, which shows that this scaling pro-
cedure indeed highlights the first-order behavior of (L(t)). To complete the compar-
ison with the fluid scaling, it is interesting to look at the fluid limit of the M/M/∞.

Imagine one applies the fluid scaling given by (2) to the process (L(t)): note
(Ln, n ≥ 1) the resulting sequence. Similarly as for the M/M/1, the behaviors
of T0, the hitting time of 0, and of τn, the hitting time of n starting from 0, are
key to understand the fluid scaling. Because of the exponential decay of (L(t))
reflected by Kolmogorov’s equation, it can be proved that T0 is of order of log n
when L(0) = n gets large. On the other hand the M/M/∞ queue is extremely
stable, and not surprisingly, τn is very large, it is of order of (n − 1)!(µ/λ)n. Since
the time scale of the fluid scaling is given by the size of the initial state n, one sees
the following: for any t > 0, at times of order nt the process (Ln(t)) has already
reached 0 and did not have time to bounce back to reach levels of order of n. What
this means is that the sequence of processes (Ln, n ≥ 1) converges on (0,+∞) to the
process identically null. Note that the time t = 0 is excluded from this convergence,
since by definition the sequence (Ln(0)) converges to 1; in particular, the fluid limit
of the M/M/∞ exhibits a discontinuity at 0+.

Kelly’s scaling can be applied in various settings: Ethier and Kurtz [EK86,
Chapter 11] provide some multi-dimensional examples in chemistry and popula-
tion dynamics — they call these processes density dependent population processes.
Broadly speaking, Kelly’s scaling is suited when events happen at rates which are
proportional to the number of customers, so that starting from a large population
automatically speeds up time. This is the case for peer-to-peer systems as well, see
Massoulié and Vojnović [MV05] or Kesidis et al. [KKS09] for instance.

As concluding remark for these two simple yet fundamental examples, note
that the fact that the scalings discussed for the M/M/1 and M/M/∞ queues are
deterministic and governed by differential equations is quite common. The differ-
ential equations usually translate the network’s first-order dynamics; the limits are
deterministic in “good cases” where the system’s main behavior is relatively simple.
This is nevertheless not always the case, see for instance Fayolle et al. [FIMM91]
or Dantzer et al. [DHR00] for examples where the limiting process keeps some
randomness. In these two examples the process is essentially deterministic, but has
from time to time to make a deterministic choice. For instance in [DHR00], the
process is piecewise linear, and the slope of each line is randomly chosen when the
process hits some boundary.

Fluid Scaling and Stability Analysis. If various scalings can shed light into
a system’s dynamics, the fluid scaling corresponding to Equation (2) nonetheless
plays a special role with respect to stability analysis. In the sequel, the word “stable”
refers to a positive recurrent Markov process, when this process lives in a countable
state-space; in general, the correct notion of stability is the one of positive Harris
recurrence.

Proving the stability of a Markov process usually represents a challenging is-
sue, even for seemingly simple processes and especially for multi-dimensional ones.
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One approach consists in finding the expression of the stationary distribution: this
computational approach is usually intractable, since in most cases there is no closed-
form formula for the stationary distribution. A noticeable exception is when the
stationary distribution has a product-form, which is true for the large class of re-
versible or quasi-reversible networks, see the book of Kelly [Kel94] on this subject.

For more complex networks however, it is hopeless to get a hand on the expres-
sion of the stationary distribution, and approaches which are more qualitative and
less computational are thus needed. Fluid limits provide such an approach, and
it is not fortuitous that they were introduced earlier on the simple example of the
M/M/1 queue. Indeed, a key feature of the M/M/1 queue, mentioned previously,
is that it behaves as a simple random walk in the interior of R+; its dynamics is
nonetheless discontinuous at 0. Many networks can actually be seen this way: for
instance, in Jackson’s networks the transition from x ∈ N

n to x − ek + eℓ occurs
at rate µkpk,ℓ1{xk>0} for some µk > 0, where pk,ℓ is the probability for a customer
to go from queue k to queue ℓ upon completion of service. It is apparent that this
dynamics is that of a random walk in N

n whose dynamics is characterized by the
set of empty queues.

This simple observation motivates Malyshev [Mal93] to study a general class
of random walks: the two main conditions satisfied by these random walks is the
boundedness of the size of their jump and another homogeneity property, namely
that the probability to go from one state to another depends only on the distance
between these two states and also on the set of empty queues. As any Markov
chain, the stability properties of a random walk only depends on what happens
far from the origin; moreover, a random walk is a sufficiently nice object so that
its long-time behavior is governed by its mean drift. Hence the fluid scaling of
Equation (2) is a natural renormalization procedure to apply to a random walk:
the nth system starts from a large initial state, i.e., far from the origin, and time
is sped up in order to bring out the drift. Hence the fluid scaling describes the
macroscopic behavior of a random walk started from a large initial state, and so
captures the essential features that characterize its stability.

However, not every continuous-time Markov process can be described by means
of a random walk: one must be able to go from the continuous time-scale of the
Markov process to the discrete one of the random walk, and vice-versa. This es-
sentially depends on the transition rates of the Markov process. When they are
bounded, then one can find a universal Poisson process such that transition epochs
of the continuous-time Markov process occur at times of this Poisson process: the
imbedded Markov chain therefore provides a precise description of the original
continuous-time Markov process since they only differ by a time scale which, al-
though random, is smooth. This property is no longer true when transition rates
are unbounded: think for instance to the M/M/∞ queue, for which it is not pos-
sible to find a Poisson process with a finite intensity that serves as universal clock.
This simple remark shows a limitation to this “random walk” approach.

Rybko and Stolyar [RS92] develop this approach on an interesting two-node
model: they study a multiclass network where they make the connection with fluid
limits clearer. Under some static priority rule, their model provides one of the
first examples of a stochastic network unstable under the usual conditions ρ < 1.
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Dai [Dai95] then studied a general class of networks, which can be thought of as
Jackson’s networks allowing various service disciplines, with several classes of cus-
tomers, and where service requirements and arrivals follow general distributions.
A contribution of this paper is to develop a systematic method to make the link
between the stability of the fluid limit and the stability of the original stochastic sys-
tem, which was already underlying Rybko and Stolyar’s analysis. The introduction
of this paper provides a good introduction to these questions and to further refer-
ences. Among others, Dai motivates his work by a previous paper by Dupuis and
Williams [DW94] where a reflecting Brownian motion in an orthant is studied.
This connection is not surprising in view of the aforementioned results of Maly-
shev [Mal93]. A recent book by Bramson [Bra08] provides an extensive account
on similar models.

In view of the random walk’s analogy, a key feature of these models is that the
“transition rates” (which make sense under exponential assumptions) are bounded,
since transitions of customers within the network are governed by service comple-
tion. There are at least two interesting cases which do no fit directly into this
framework. A first one concerns the Processor-Sharing discipline, or more gener-
ally service disciplines that can serve an unbounded number of customers. There
a technical difficulty appears, mentioned by Bramson [Bra08], namely that one
needs to control the number of customers finishing their service in any time inter-
val. In such cases it can be convenient to adopt a different technical approach by
describing the network with measure valued processes, see for instance Doytchinov
et al. [DLS01] and Gromoll et al. [GPW02] in the case of heavy traffic.

This is nonetheless a rather technical limitation, and another, more natural case
is that of systems whose dynamics intrinsically yields unbounded transition rates.
This is the case for the M/M/∞, and also for the two models studied in Chap-
ters I and II which indeed inherit salient features of the M/M/∞. In Chapter I the
transition rates are unbounded because customers move within a network indepen-
dently of the service they receive. In this model, motivated by mobile networks, the
network’s capacity is bounded. In contrast, Chapter II considers a network where
the customers act as servers so that, similarly to the M/M/∞, the service capacity
is proportional to the number of customers in the network. In this last example, a
phenomenon that does not occur in classical queueing networks happens: one needs
to deal with time interval of integrable size on which a non-integrable number of
events occur.

Since the models studied in Chapters I and II escape the classical framework
of queueing networks, it is not possible to directly use fluid limits techniques as
developed earlier. In Chapter I these techniques are nonetheless adapted to give
stability results on a model for mobile network; the peer-to-peer model of Chapter II
is not amenable to such techniques, and Lyapounov type arguments are used. To
make these arguments work, a detailed analysis of some branching processes is
carried out.

Branching Processes. Branching processes are very generic models in applied
probability which are used in a wide range of settings: historically they were intro-
duced to study the survival of family names of noble families, but more generally
their most natural framework is to represent the evolution of a population.
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The Galton-Watson branching process is the simplest branching process: it is
a discrete-time Markov process that can be thought of a as a random tree which
represents the genealogy of individuals. Imagine a (unisexual) population where
independent individuals give birth to a random offspring according to a common
offspring distribution. If Zn is the number of individuals in the nth generation for
n ≥ 0, then the sequence (Zn) satisfies the following recursive equation:

Zn+1 =

Zn∑

k=1

ξk,n, n ≥ 0,

where (ξk,n, k, n ≥ 0) are i.i.d. random variables distributed according to the com-
mon offspring distribution; ξk,n represents the offspring of the kth individual of the
nth generation. The comprehensive book by Athreya and Ney [AN72] presents
many results on this process.

A fundamental property of Galton-Watson processes is called the branching
property : at any time n ≥ 0, the population starting with x + y individuals can
be thought of as coming from two independent branching processes, one starting
with x individuals and the other with y individuals. This can be written down
as follows: if (Zn(x), n ≥ 0) is a Galton-Watson process started with Z0(x) = x
initial individuals, and (Z ′

n(x), n, x ≥ 0) follows the same law and is independent
of (Zn(x), n, x ≥ 0), then the following distributional equality holds:

Zn(x + y)
dist.
= Zn(x) + Z ′

n(y), n ≥ 0, x, y ∈ N.

Although seemingly simple, this fundamental property makes it possible to prove
many results on Galton-Watson processes; it is even so fundamental that it is the
only property (in addition to the strong Markov property) required to define the
most general class of branching processes, called continuous-state branching pro-
cesses and introduced by Lamperti [Lam67].

From a modeling standpoint, the Galton-Watson process is limited in that it
does not incorporate time: an easy way to add this component is to assign to
each edge of the tree representing the branching process i.i.d. labels. Each label
then stands for the life of the corresponding individual. In other words, there
is a common distribution, say X, such that each individual lives for a duration
distributed like X: upon death, the individual splits and gives birth to a random
number of new and independent individuals, where the number of new individuals
follows the offspring distribution. Such models are called Bellman-Harris branching
processes following the paper by Bellman and Harris [BH52]. They are not so
different from Galton-Watson processes in that the time structure is essentially
decoupled from the genealogy.

Although more general branching processes exist, such as Crump-Mode-Jagers,
Jirina or continuous-state branching processes, Bellman-Harris processes are gen-
eral enough for our purposes. A Yule process is a special kind of Bellman-Harris
processes: this is the branching process where particles live for a duration expo-
nentially distributed, and split upon death into exactly two particles; they were
initially motivated by the fission of particles.

Due to their intrinsic dynamics, branching processes appear naturally in sys-
tems where individuals act identically and independently: this is the case for in-
stance in epidemic models, see for instance Barbour [Bar09] where the early stages
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of an epidemic process is coupled with a branching process. More surprisingly,
branching processes appear in other settings as well: in queueing theory they turn
out to be useful tools to study the single-server Processor-Sharing queue, see for
instance Yashkov [Yas83].

Similarly as epidemic and branching processes are related, Yang and de Ve-
ciana [YdV06] point out that early stages of a peer-to-peer system under a flash
crowd scenario behave similarly as a branching process. This analogy is the starting
point of Chapter III, where Yang and de Veciana’s ideas are exploited more deeply.
Imagine a system that consists, at any time, of a certain number of servers. Each
time a customer finishes its service, then it becomes a server in turn, so that there
is an increasing and random number of servers; see the previous section presenting
peer-to-peer systems for a motivation for such a dynamics. Under a flash crowd
scenario, many peers request the file and so servers will not be idle. Under this
assumption, servers are independent and each one acts as follows: after a random
duration given by the service time of the current customer, it gives birth to a new
server — equivalently the server dies and gives birth to two new servers. In other
words, the number of servers evolves exactly like a binary Bellman-Harris process,
where the life duration of an individual is precisely given by the service time; when
this service time is exponentially distributed, then Yule processes naturally appear.

More surprisingly, branching processes turn out to be essential tools in Chap-
ter II where the stationary behavior of a peer-to-peer network is studied. In par-
ticular, branching processes are used to study a system which, in contrast with
epidemic models or peer-to-peer networks under flash crowd, does not exhibit an
exponential growth. The analogy is however slightly too complex to be explained
here.

We now conclude this section on the mathematical content of this thesis by
introducing probabilistic models which, similarly as branching processes, appear
naturally in many different problems. Here they appear in connection with the
model for a peer-to-peer system under a flash crowd scenario.

Bins and Balls Problems. These problems make it possible to cast many dif-
ferent problems within a somehow unified framework. In the classical version of
this problem, n balls are thrown independently into m identical bins: each ball
falls in any given urn with probability 1/m. Various asymptotic quantities may
be investigated: choosing m as a function of n and letting n go to infinity, one
can look at the number of bins which receive at least one ball, or at the number
of balls in the bin that receives the most balls; one can wonder how n should be
chosen in function of m so that as m goes to infinity, with high probability no bin
is empty; etc. . . These simple models are motivated by classical problems such as
the coupon collector’s problem or the birthday paradox. The book by Johnson and
Kotz [JK77] offers a comprehensive account on these questions, see also Chapter 6
of Barbour et al. [BHJ92] for a recent presentation of these problems.

An extension of these models is when there is an infinite number of bins and
a probability vector (pn) on N describing the way balls are sent: for n ≥ 0, pn is
the probability that a ball is sent into the nth bin. In one of the first studies in
this setting, Karlin [Kar67] analyzed the asymptotic behavior of the number of
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occupied bins. An interesting difference then is that geometrical quantities such as
the location of the first empty bin or of the last non-empty one can be investigated.
In [FM85], Flajolet and Martin propose a probabilistic algorithm to estimate the
cardinality of a multiset: the analysis of this algorithm turns out to be equivalent to
estimating the index of the first empty bin when (pn) is the geometric distribution.
The same problem when (pn) decays as a power law was investigated by Csáki and
Földes [CF76], while Hwang and Janson [HJ08] look at the number of occupied
bins for essentially arbitrary (pn).

A further extension of these stochastic models consists in considering random
probability vectors (Pn). These problems have only been investigated recently, and
the literature is rather scarce on this topic. A noticeable exception concerns the
series of papers of Gnedin et al. [Gne04, GINR09, GIR08]: motivated by the
problem of integer composition, they analyzed the case where (Pn) decays geometri-
cally fast according to some random variables, i.e., for n ≥ 1, Pn =

∏n−1
i=1 Yi(1−Yn)

where (Yi) are i.i.d. random variables on (0, 1). Various asymptotic results on the
number of occupied bins in this case have been obtained. The random vector (Pn)
can be seen as a “random environment” for the bins and balls problem, and it com-
plicates significantly the asymptotic results in some cases. In particular, the indices
of the bins in which the balls fall are no longer independent random variables as
in the deterministic case, and Chen-Stein’s inequality, which makes it possible to
tackle many problems in the deterministic setting, does not apply anymore.

Here a bins and balls problem appears in connection with peer-to-peer systems:
as explained above, and under certain hypotheses, the population of servers evolves
similarly as a Yule process with sequence of split times (tn). A sequence (Bi) of
i.i.d. exponential random variables describes the times at which customers enter
the system, and from a modeling perspective, the first time when two servers are
created in a row and no customer arrived in between is important; see Chapter III.
Seeing the intervals (ti, ti+1) as random bins and the points (Bi) as balls, this is
exactly a bins and balls problem in random environment. One of the distinctive
feature of this work is that using point processes, we are able to describe not only
the location of the first empty bin, but the locations of all the first empty bins at
once.

Presentation of Chapters

Each chapter of this thesis corresponds to a paper (one of them, corresponding
to Chapter II, being at the time of the printing under review):

Chapter I: Florian Simatos and Danielle Tibi. Spatial homogenization in
a stochastic network with mobility. To appear in the Annals of Applied
Probability.

Chapter II: Lasse Leskelä, Philippe Robert, and Florian Simatos. On the
stability properties of file-sharing networks. Submitted to Advances in
Applied Probability, June 2009.

Chapter III: Florian Simatos, Philippe Robert, and Fabrice Guillemin. A
queueing system for modeling a file sharing principle. In Proceedings of
SIGMETRICS’08, pages 181–192, New York, NY, USA, 2008. ACM.
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Chapter IV: Philippe Robert and Florian Simatos. Occupancy schemes
associated to Yule processes. Advances in Applied Probability, Vol. 41,
Number 2, Pages 600–622, June 2009.

For the sake of completeness, another work that was carried out during my
Ph.D. is cited below: the subject is different from the problems treated here, and
is therefore not included.

• Florian Simatos. A variant of the Recoil-Growth algorithm to generate
multi-polymer systems. DMTCS Proceedings, AI:283–294, 2008.

Chapter I: a Model for Mobile Networks. This chapter deals with a sto-
chastic model for mobile networks first investigated by Borst et al. [BPH06].
The network consists of n nodes; µi ≥ 0 is the service capacity of node i, which
serves customers according to the Processor-Sharing service discipline. New cus-
tomers arrive at node i according to a Poisson process of intensity λi, and then
move independently of one another within the network according to a Markov pro-
cess with Q-matrix Q = (qij). In particular, their movements are not governed
by the service they receive. Upon arrival, customers generate a service require-
ment exponentially distributed with mean 1, and are then served according to the
Processor-Sharing discipline at each node they visit. Customers leave the net-
work once their service requirement has been fulfilled. The n-dimensional process
(X(t) = (X1(t), . . . ,Xn(t)), t ≥ 0) where Xi(t) is the number of customers at node i
at time t is then a Markov process whose non-zero transition rates are given, for
i 6= j ∈ {1, . . . , n}, by 




qn(x, x + ei) = λi

qn(x, x + ej − ei) = xiqij

qn(x, x − ei) = 1{xi>0}µi.

In these equation ei denotes the n-dimensional vector with every coordinate equal
to 0, except the ith one equal to 1. The first rate corresponds to an arrival at
node i; the second one to a transition of a customer from node i to node j; the last
one to a departure from node i. The arrival and departure rates are reminiscent of
the M/M/1 queue, and the rate for inner transitions of the M/M/∞ queue. This
model can be seen as an interacting particles system; with respect to the number
of customers, the Processor-Sharing discipline has no impact, but it has nonethe-
less an appealing queueing motivation. The intuition on this system is the following.

First of all, when no node is empty, the total number of customers locally
evolves as an M/M/1 queue with input rate λ = λ1 + · · · + λn and output rate
µ = µ1 + · · ·+ µn. Thus in view of the fluid approximation (3) of the M/M/1, and
as long as there are no empty nodes,

(4)
n∑

i=1

Xi(t) ≈
(
1 + (λ − µ)t

)+
.

Secondly, imagine that there are many customers in the network. Because the
maximal output rate if of order of one — it is bounded by µ — most customers
will stay for a long time in the network before leaving. Now assume that Q admits
a stationary distribution π, defined by πQ = 0: since customers stay a long time



30 Introduction

in the network, each customer gets close to stationarity and so will after some
time be at node i with probability πi. Since customers’ trajectories are moreover
independent, the law of large numbers suggests that the fraction of customers at
node i at time t is πi, i.e.,

(5)
Xi(t)∑n

j=1 Xj(t)
≈ πi.

Hence in view of approximations (4) and (5) and of the above discussion, the
following approximation is tempting, say when the networks starts off with a large
number of customers:

Xi(t) ≈ πi(1 + (λ − µ)t)+.

Chapter I essentially aims at justifying this approximation, which requires a fine
control on the network’s behavior. The main idea is that in the fluid regime,
customers are instantaneously spread in the network according to π, i.e., approxi-
mation (5) indeed holds for t > 0. On the normal time-scale, the time needed to
reach this homogenized state is of order of one when there are many customers in
the network. Because time is sped up in the fluid regime, this implies that cus-
tomers are indeed instantaneously homogenized in the fluid regime. On the other
hand it is not easy to control that customers stay homogenized for a long time: in
the supercritical case λ > µ, this is indeed the case thanks to the following almost
sure limit that controls the long-term behavior of (X(t)):

lim
t→+∞

X(t)

t
= (λ − µ)π.

In the subcritical case customers stay homogenized as long as there are still many
customers in the network, which corresponds to say that customers stay homog-
enized in the fluid regime as long as fluid limits have not hit 0. After this time,
fluid limits stay stuck at 0, which implies stability of the original stochastic system
for λ < µ.

Although these results seem rather natural, they are actually technical to ob-
tain, and Chapter I is the most technical chapter of this thesis. One of the reasons
for that is that we need to control some specific stopping times, typically the time
needed by the network to homogenize, starting from an arbitrary state. We control
these stopping times thanks to a martingale, whose sole construction is actually one
of the achievements of this chapter. Starting from a space-time harmonic function,
we show that for some functions F and G, and for any parameter α > 0

Jα(t) = e−αt

∫

u∈R
n−1:ui>0

and
∑n−1

i=1 ui<1

n∏

i=1

(
ũi

πi

)Xi(t)

G(ũ)F (ũ)α−1du,

stopped at some suitable stopping time T0 is a local martingale, see Theorem 3.1 in
Chapter I for the precise notations. The main property of this martingale is that it
decouples the time and the state of the system, i.e., it is of the form e−βtV (X(t))
for some function V : N

n → R+. This form is suitable to yield Laplace transforms
of stopping times after using optional stopping arguments.
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Chapter II: a Stationary Model for Peer-to-Peer Networks. In Chapter II,
the stability of another model with two different dynamics is investigated. This
(n+1)-dimensional model consists of n+1 queues in tandem, labelled from 0 to n,
and corresponding to the following non-zero transition rates, for any i = 1, . . . , n
and any x = (x0, . . . , xn) ∈ N

n+1:




q(x, x + e0) = λ

q(x, x + ei − ei−1) = µi(xi ∨ 1)1{xi−1>0}
q(x, x − en) = νxn.

Arrivals occur at rate λ to the first queue, customers stay for an exponential dura-
tion in the last queue, and customers in the ith queue act as servers for customers
in the (i−1)th queue; the boundary condition xi ∨ 1 is a technical condition that
prevents the existence of absorbing states. This Markov process can model a peer-
to-peer system for a file with n chunks where peers download the chunks sequentially
(in order), ask for the next chunk to peers who have one more chunk, and stay for
an exponential duration once they have the complete file; this model was motivated
by Parvez et al. [PWMC08].

In the special case n = 2, more general interactions are considered: we find
the stability region when the transition rate corresponding to a transition from the
first to the second queue is given by

q(x, x + e2 − e1) = µr(x)(x2 ∨ 1)1{x1>0},

where r : N
2 → R+ is any function satisfying the condition:

(C) lim
x1→+∞

r(x1, x2) = 1, ∀x2 ≥ 0.

Considering such functions makes it possible to study variations of the model which
offer different insight, for instance:

Case r(x) = 1 ∧ (x1/(x2 ∨ 1)): customers in the second queue act as servers
for customers in the first one, but having more servers than customers
makes no difference (a customer cannot be served by more than one
server).

Case r(x) = x1/(x1 + x2 ∨ 1): each customer in the first queue initiates con-
tacts at rate µ, and polls a customer from the first or the second queue
uniformly at random. With probability (x2 ∨ 1)/(x1 + x2 ∨ 1) the cus-
tomer polled has the file, which the first customer gets instantaneously;
downloading times are neglected.

For this system there exists a capacity threshold λ∗: the Markov process is stable
if λ < λ∗ and unstable for λ > λ∗. Using Foster’s criterion, we prove that λ∗ is
given by:

λ∗ =

{
∞ if µ ≥ ν

µν
[
(ν − µ)(1 − log(1 − µ/ν))

]−1
if µ < ν.

In other words, the system can accommodate any input rate if customers share the
file long enough (i.e., ν is small); otherwise it can only accommodate a finite input
rate.

The technical reason for this dichotomy is the following: broadly speaking, one
needs to compare the input into the system to its output, i.e., λ to νx2. Thus the
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case x2 ≫ 1 is a good situation with respect to stability, and so the real bottle-
neck — when there are many customers — corresponds to x1 ≫ 1 and x2 ≈ 1.
This intuitively explains why the stability region does not depend on the specific
function r provided it satisfies Condition (C). If µ > ν, then the second queue is
unstable and grows exponentially fast until it exhausts the first queue; after that,
the system essentially resembles an M/M/∞ queue until both queues are almost
empty. In the other case µ < ν, then the second queue is stable, and the mean
transition rate from the first to the second queue is then µE(X2 ∨ 1) if E(·) refers
to the expectation with respect to the stationary distribution of X2. Hence the
system can only accommodate this much throughput.

In the general case n ≥ 3, it seems difficult to explicitly exhibit the stability
threshold. We prove the following result: if

(6) µ1 > µ2 > · · · > µn − ν > 0,

then the (n+1)-dimensional Markov process is stable for any value of λ > 0. This
case is the equivalent of the good case µ > ν in dimension two: informally, cus-
tomers can be carried over the network very rapidly because all the queues can be
build up, thus providing a high throughput. We conjecture that when the above
condition fails, then the capacity threshold is finite, and we prove this conjecture
in dimension n = 3. In higher dimension similar techniques could work but one
needs to face more serious combinatorial problems. Although rather intuitive, the
proofs of these results rely on involved couplings with branching processes. Among
other results, we need to study a new class of branching processes that we introduce
below in order to give the flavor of results encountered in this chapter.

To construct this process, one starts with a Yule process with parameter µ
and with a deterministic sequence (σn) increasing to infinity. The killed process
(Z(t), t ≥ 0) is defined by killing a particle of the initial Yule process, and therefore
its future progeny with it, at each time σn: thus the sequence (Z(σn)) satisfies the
following recursion:

Z(σn+1) =




Z(σn)∑

k=1

ξk,n − 1


1{Z(σn)>0}

where for each n ≥ 1, (ξk,n, k ≥ 1) are i.i.d. random variables distributed like
Y (σn+1 − σn) where Y (·) is a Yule process with parameter µ and starting with
one particle. For k, n ≥ 1, ξk,n, which is actually a geometric random variable with
parameter e−µ(σn+1−σn), represents the offspring of the kth particle alive at time σn

in the time interval (σn, σn+1). Then the killed process Z(·) can survive if and only
if ∑

n≥1

e−µσn < +∞.

This result is then applied to the model with n queues in tandem to show, in
conjunction with Foster’s criterion, that it is stable for any input rate λ > 0 when
Condition (6) is satisfied. In dimension n = 3, estimates of the extinction time of
this process when Condition (6) fails are performed, which makes it to possible to
find the stability region.
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Chapters I and II: a Mixture of Two Dynamics. The two models con-
sidered in the two first chapters have characteristics both from the M/M/1 and
the M/M/∞ queues. Because the transition rates of such Markov processes are
unbounded, they do not fit in the usual framework of fluid techniques, see the
discussion on fluid limits in the previous section.

A challenging problem in these cases is to decouple the two dynamics: the
M/M/1 dynamics is responsible for the stability of the system, while the M/M/∞,
which acts on a faster time scale, dictates in some sense how the customers are
spread within the network.

Chapter III: a Flash Crowd Scenario. To complement the study of Chapter II
on the stationary behavior of file-sharing peer-to-peer networks, we have studied a
very simple model for a flash crowd phenomenon. The system starts with one server
that offers the file, and N peers that want to download it. Each time a peer finishes
downloading the file, it offers it in turn: thus the number of servers increases in
time. At time t = 0, every peer initiates an exponential clock with parameter 1/ρ:
when its clock expires, the corresponding peer “wakes up” and enters the system.
It is then queued at the server with the smallest number of queued peers, where
it is served according to the FIFO discipline and requests a service exponentially
distributed. Once served, it becomes a server; thus each time a peer downloads the
file, a new server is created where further incoming peers can be queued.

The system starts from a highly overloaded state (N peers want the file, one
server offers it); eventually, the situation is reversed, with many servers offering the
file and only few peers not awake. The question addressed in Chapter III concerns
the time needed for the system to cope with the initial high demand, or equivalently,
the time needed to pass from one equilibrium to the other. A first-order approach
to this question is the following.

The number P (t) of peers not awake at time t decays exponentially fast, i.e.,
P (t) ≈ Ne−ρt. On the other hand, the number S(t) of servers grows exponen-
tially fast, at least when the system is still overloaded: S(t) ≈ et. The system
shifts from one equilibrium to the other when the input rate, proportional to P (t),
equals the output rate S(t), i.e., when S(t) ≈ P (t), which leads to a time of order
(log N)/(ρ+1). Our conclusion is that this heuristic approach is valid: we neverthe-
less provide a justification and a more detailed explanation for this approximation.
The approach itself is interesting and yields theoretical questions of independent
interest, which are treated in Chapter IV.

As a first guess on the time when the system’s equilibrium shifts, one can
consider the time TN defined by the first time when two successive servers are
created while no peer arrived in between. Intuitively, this amounts to compare the
speed at which new peers enter the system to the speed at which new servers are
created: TN corresponds to the first time when servers are created faster than peers
arrive.

The time TN is solely determined by the comparison between two random
sequences: note (Ai, 1 ≤ i ≤ N) the times at which the N peers wake up (this
is a vector of N i.i.d. exponential random variables) and (τn, n ≥ 0) the sequence
that describes the times at which new servers are created, with τ0 = 0. Then TN
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is defined by

(7) TN = inf{n ≥ 0 : Ai /∈ (τn, τn+1), i = 1, . . . , N}.
It can be argued that before the time TN , empty servers can be safely neglected:

a key observation is that if servers were never empty, then their number would
evolve exactly like a Yule process, since each server would give birth to a new
server after a time exponentially distributed. Hence to get an insight into TN , one
can consider the same problem as (7), but where the sequence (τn) is replaced by
the sequence (tn) of split times of a Yule process; for n ≥ 1, tn is an accurate
approximation of τn. One then defines TN,R as the first time that an interval
(tn, tn+1) contains no point (Ai):

TN,R = inf{n ≥ 0 : Ai /∈ (tn, tn+1), i = 1, . . . , N}.
Then as N gets large, TN,R is a very good approximation of TN . It turns out that
estimating TN,R is not easy — Chapter IV is devoted to solve this problem — and
that TN,R is actually not a good indication on the global equilibrium of the network.

Indeed, the first interval (tn, tn+1) that contains no point does not have a global
significance, it is rather due to a rare event, namely that this interval is very small
compared to what it ought to be. In terms of peers and servers, this means that
the first time that two servers are created in a row and no peer arrived in between
is due to the fact that at some point, a server is created very quickly. In particular,
around TN , there are still a great number of peers arriving in between the creation
of two successive servers.

Hence TN does not capture the shift in equilibrium, and this is due to the
stochastic fluctuations of the sequence (tn). To get rid of this effect, a natural
idea is to consider the same problem defining TN,R, but instead of looking at the
random sequence (tn), look at the deterministic sequence (E(tn)); thus the irrelevant
stochastic fluctuations will be avoided. This leads to define the first time TN,D when
an interval (E(tn), E(tn+1)) contains no point (Ai):

TN,D = inf{n ≥ 0 : Ai /∈
(
E(tn), E(tn+1)

)
, i = 1, . . . , N}.

This problem was already investigated in 1976 by Csáki and Földes [CF76], but
we revisited their answer with a modern tool in applied probability, namely Chen-
Stein’s inequality. This approach gives a more precise answer as well as an indication
on the speed of convergence. It is shown that the quantity

(ρ + 1)TN,D − log N + log log N

converges in distribution as N goes to infinity to some non-trivial random variable;
in particular TN,D is of order of (log N)/(ρ+1). Simulations show that this answer
is rather good, and gives a good idea of the time when the system’s equilibrium
shifts. We finally argue, based on simulations, that empty servers cannot be ne-
glected anymore after time TN,D. This significantly complicates the analysis since
approximating the population of servers with a Yule process is the key idea that
allows to derive analytical results.

Chapter IV: Bins and Balls in Random Environment. This chapter is de-
voted to the study of the bins and balls problem that naturally arises in Chapter III.

A convenient way to describe this bins and balls problem is to consider a random
sequence (tn, n ≥ 0), strictly increasing from t0 = 0 to +∞, that divides the positive
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half real line R+ into random intervals; these intervals play the role of bins. Balls
are represented by i.i.d. exponential random variables with parameter ρ > 0: the
ith ball Bi falls in the nth interval (tn−1, tn) if tn−1 < Bi < tn.

Because the sequence (tn) is random, the locations of the balls — i.e., the bins
in which they fall — are independent only conditionally on this sequence. Hence
conditionally on (tn), this is a usual bins and balls problem where the probability Pn

for any ball to fall in the nth bin is given by

Pn = P
(
tn−1 < B1 < tn| (tk)

)
= e−ρtn−1 − e−ρtn = e−ρtn−1

(
1 − e−ρ(tn−tn−1)

)
.

Because the sequence (tn) is random, so is the probability distribution (Pn): this
is a bins and balls problem in random environment. The random number of balls
that fall in the ith bin when n balls are thrown is denoted ηi,n,

ηi,n =

n∑

j=1

1{ti−1<Bj<ti}.

Gnedin et al. [Gne04] look at the case where (tn) is a renewal process; due
to our motivation coming from Chapter III we investigate the case where the se-
quence (tn) is the sequence of split times of a Yule process, i.e.,

tn =

n∑

k=1

Ek

k

where (Ek, k ≥ 1) are i.i.d. exponential random variables with mean 1. With this
choice of (tn), he random probability distribution (Pn) can be written

Pn =
1

nρ+1
W ρ

nZn,

where the sequence (Wn) converges almost surely to some random variable W∞, and
(Zn) converges in distribution to an exponential random variable with parameter ρ.
The variable W∞ induces a global randomness that affects the whole process, while
the variables (Zn) induce some randomness at the local level only, i.e., at the level
of each bin.

Our primary functional of interest is the random point process {i ≥ 1; ηi,n = 0}
that describes the indices of empty bins: the correct scaling factor — i.e., the order
of magnitude of the first empty bin — is n1/(ρ+2), so that we are interested in the
convergence of the sequence of point processes (Nn) where

Nn =

{
i

n1/(ρ+2)
: i ≥ 1, ηi,n = 0

}
.

It is shown that the sequence (Nn) converges in distribution as n goes to infinity
to the point process (

W ρ/(ρ+2)
∞ σ

1/(ρ+2)
i

)

where (σi) is a standard Poisson process with parameter [ρ(ρ + 2)]−1/(ρ+2). The
random variable W∞ that induces a global randomness therefore affects the distri-
bution of the limiting process as well. This result follows from the convergence in
distribution of the sequence of the two-dimensional point processes (Pn) where

Pn =

{(
i

n1/(ρ+2)
, nPi

)
: i ≥ 1

}
.
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Let us explain why Pn is a natural object to study. Conditionally on the environ-
ment (tk), the average number of balls that fall in the ith interval when n balls are
thrown is given by E(ηi,n|(tk)) = nPi. Thus the first empty bins will be the bins
with index i such that nPi is of order 1, which is precisely the indexes on which Pn

sets the focus. Hence Pn indeed provides a more detailed description of the loca-
tions of the first empty bins than Nn does. Moreover, and perhaps surprisingly, it
is technically slightly easier to study the convergence of the sequence (Pn) than the
convergence of (Nn).

An interesting phenomenon is studied in conclusion of Chapter IV: due to the
non-integrability of W−ρ

∞ for ρ < 1, the following fact happens for ρ < 1. For α > 0,
define Nα

n by

Nα
n =

{
i

nα
: i ≥ 1, ηi,n = 0

}
.

Informally, Nα
n focuses on empty bins which have indices of order nα. The conver-

gence of the sequence (Nn) implies that for any x > 0, the sequence (Nα
n ([0, x]))

converges in distribution to 0 for any α < 1/(ρ + 2). This suggests that the mean
number E(Nα

n ([0, x])) of empty bins with index between 0 and xnα should converge
to 0 as well, but actually, we have that for ρ < 1 and any 1/(2ρ+1) < α < 1/(ρ+2):

lim
n→+∞

E (Nα
n ([0, x])) = +∞, ∀x > 0.

For 1/(2ρ+1) < α < 1/(ρ+2), the discrepancy between the behavior in distribution
of the two sequences (Nα

n ([0, x]), n ≥ 1) and (E(Nα
n ([0, x])), n ≥ 1) is due to events

which, however of vanishing probability, make the expected value diverge. These
rare events are explicitly exhibited and discussed.

Link between Chapters III and IV. These two chapters correspond to two
different papers and were written separately, which explains the slight discrepancy
in notations between them; for instance, the number of balls is noted N in Chap-
ter III and n in Chapter IV. We hope that this will not hinder their readability.
Since these are the most correlated chapters of this thesis, we wish to make clear
the connection between them by quickly summarizing their technical content.

Chapter III deals with a bins and balls problem in a deterministic environment:
the analysis of the index of the first empty bin relies on Chen-Stein’s method, which
requires analytic estimates of first and second moments of some random variable.
Chapter IV investigates a bins and balls problem in random environment and uses
tools from the theory of point processes to describe the locations of the first empty
bins. It is mentioned in Chapter IV how the main result obtained in Chapter III
can be revisited to give results on point processes, and results from Chapter IV are
used in Chapter III to gain some insight into the peer-to-peer model considered.

Organization of References and Citations. We use the following labels. Ro-
man numbers refer to chapters, arabic numbers to statements (lemma, proposition,
corollary, theorem, . . . ) and numbers between parentheses to equations or formulas.
For instance, Proposition III.4.1 refers to the proposition with label 4.1 in Chap-
ter III, and Equation (IV.6) to the equation with label (6) in Chapter IV. Since
chapters are essentially independent, only few references will be made from one
chapter to another and so for simplicity the roman number referring to a chapter
is omitted within the same chapter.
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At the end of each chapter, the reader will find the list of references used solely
in this chapter. A comprehensive list of all the references used in this document
can be found on page 163.
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1. Introduction

Recent wireless technologies have triggered interest in a new class of stochastic
networks, called mobile networks in the technical literature [BPH06, GT01]. In
contrast with Jackson networks where users move upon completion of service at
some node, in these mobile networks, transitions of customers within the network
occur independently of the service received. Moreover, at any given time, each node
capacity is divided between the users present, whose service rate thus depends on
the capacity and on the state of occupancy of the node. Once his initial service
requirement has been fulfilled, a customer definitively leaves the network. In Borst
et al. [BPH06], complex capacity sharing policies are considered, but in the sim-
plest setting, which will be of interest to us, nodes implement the Processor-Sharing
discipline by dividing their capacity equally between all the users present. Previous
works [BPH06, GT01] have mainly focused on determining the stability region
of such networks, and it has been commonly observed that the users’ mobility rep-
resents an opportunity for the network to increase this region. Indeed, because of
their mobility, users offer a diversity of channel conditions to the base stations (in
charge of allocating the resources of the nodes), thus allowing them to select the
users in the most favorable state. Such a scheduling strategy is sometimes referred
to as an opportunistic scheduling strategy, see Borst [Bor05] and the references
therein for more details.

In the present chapter, we investigate from a mathematical standpoint a basic
Markovian model for a mobile network, derived from Borst et al. [BPH06]. In
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this simple setting, customers arrive in the network according to a Poisson process
with intensity λ, and move independently within the network, according to some
Markovian dynamics with a common rate matrix Q. Service requirements are
exponentially distributed with mean 1, and customers are served at each node they
visit according to the Processor-Sharing discipline, until their demand has been
satisfied. The total capacity of the network, defined as the sum of all the individual
capacities of the nodes, is denoted by µ. It corresponds to the instantaneous output
rate of the network when no node is empty, i.e., when there is at least one customer
at each node.

It is of particular interest to note that, even if Q is reversible, because of the
arrival and departure processes, the system is not reversible. This contrasts with
earlier works in which particle systems with similar dynamics have been investigated
under reversibility assumptions. In Caputo and Posta [CP07], the authors look at
a closed system (i.e., with parameters λ = µ = 0) where transition rates are chosen
such as to yield a reversible dynamics. In this case, the stationary distribution of
the system has a product form, and the authors are interested in showing that the
convergence to equilibrium is exponentially fast. Their approach essentially relies
on logarithmic Sobolev type inequalities.

In our case however, a different set of questions is addressed, involving different
tools. Since the system under consideration is open, it may be unstable, so that
a natural issue is to determine the stability region. We prove, as was conjectured
in Borst et al. [BPH06], that the intuitive, simple condition λ < µ is indeed the
stability condition (the critical case λ = µ is not considered). In contrast with
Jackson networks for which the stability condition is local, in the sense that each
node has to satisfy some constraint, here only the global quantities λ and µ matter.
This shows that mobility allows to make the most of the potential service capacity
of the network, corroborating the results previously mentioned. Note that λ < µ
being a necessary condition is obvious, since µ is the maximal output rate. But
surprisingly, proving that it is sufficient requires very technical tools, among which
the use of fluid limits and martingale techniques. In particular, the long and tedious
Appendix A of this chapter is solely devoted to the construction of a martingale
which provides key estimates for showing that λ < µ corresponds to a stable system.

This martingale is a multidimensional (therefore complicated) generalization of
the martingale built in Fricker et al. [FRT99] for the M/M/∞ queue, and this is
not completely surprising, since as will be seen, the model inherits salient proper-
ties of the M/M/∞ queue. Besides, the construction of a martingale associated
to a multidimensional process represents one of the technical achievements of this
chapter: such examples are indeed pretty scarce in the literature. Similarly as in
Fricker et al. [FRT99], the approach relies on building a family of space-time har-
monic functions indexed by some parameter c ∈ R

n, and then on integrating over c
in such a way as to preserve the harmonic property.

Through studying both the stability region and the unstable regime, a detailed
description of the behavior of the system is given, resulting in two versions (sta-
ble and unstable) of the following rough property: When many users are present
in the network, they get approximately distributed among the nodes according
to the unique invariant distribution π associated to Q, the latter being assumed
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irreducible. It must be emphasized that yet, contrary to Borst et al. [BPH06],
customers’ movements are not assumed stationary.

As a first argument for this spatial homogenization, the law of large numbers
suggests that, when the total number of users initially present in the network is
large, the proportions of users at the different nodes should be close to π after some
time, related to the convergence to π of the Markov process associated to Q. The
more delicate question, that next arises, of how long these proportions stay close
to π constitutes the main challenging issue of the chapter, that requires martingale
techniques for estimating the deviation time from π.

The short term reach of π is understandable from an analogy with the M/M/∞
queue: indeed, independence of the customers’ trajectories yields that, similarly to
the M/M/∞ queue, the output rate from any node due to inner transitions is
directly proportional, through Q, to the number of customers at this node. When
the network is overloaded, the relative occupancies of the nodes should then, after
a while, be close to the internal traffic balance ratios, given by π.

A more explicit analogy with another classical queueing model is provided by
the following simple but crucial observation: As long as no node is empty, the total
number of customers simply evolves as an M/M/1 queue with input rate λ and
output rate µ. And this is in particular the case when the distribution of customers
is close to π. This interplay between, on the one hand, the proportions of customers
at the different nodes, and on the other hand their total number, will underly the
analysis all along the chapter.

While the short term behavior, which results in the spreading of customers
according to π, is dominated by the M/M/∞ dynamics, the long term behavior
is essentially driven by the M/M/1 dynamics of the total number of customers.
This naturally suggests that two different scalings have to be considered: one,
corresponding to the M/M/∞ dynamics, where only space is scaled, and not time;
and a second one, where both space and time are scaled, corresponding to the
fluid scaling of the M/M/1 queue. Note that the natural scaling for the M/M/∞
queue is the so-called Kelly scaling, in which space and input rate are scaled. Here,
since the input rate at each node due to inner transitions is a linear function of
the numbers of customers at the different nodes, there is no need to scale the
external input rate λ. Inner movements dominate the dynamics and the space
scaled process converges, analogously to the M/M/∞ queue under Kelly’s scaling,
to some deterministic trajectory, with limit point at infinity here given by π.

The coexistence of these two different scalings makes the use of fluid lim-
its both original and challenging. Fluid limits are a standard tool in the anal-
ysis of complicated stochastic networks. Rybko and Stolyar [RS92] is one of
the first papers using this technique together with Dai [Dai95]. Dupuis and
Williams [DW94] presented similar ideas in the context of diffusions. In a se-
ries of papers Bramson [Bra96a, Bra96b] describes the precise evolution of fluid
limits for various queueing networks. See also the books by Chen and Yao [CY01]
and Robert [Rob03]. In the context of networks, fluid limits have been used mainly
for Markov processes which behave locally as random walks. For this reason, re-
sults related to fluid limits are sometimes presented as functional laws of large
numbers. Because of the mixture of two different dynamics, given by the M/M/1
and M/M/∞ models, our framework is somewhat different. A second important
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difference with the existing literature concerns tightness results which are usually
easy to obtain, mainly because transition rates are generally bounded: this not the
case here.

The long term analysis is twofold. Deriving fluid limits requires a control on
the process over time periods of the same order as the initial number of customers
(since the fluid scaling parameter is the same for time and space). In the stable case
this is obtained by showing that the deviation time from π is essentially larger than
the time for the underlying M/M/1 queue to empty. The unstable case exhibits
a more striking behavior: the deviation time from π is not only large compared
to the initial number of customers, but is even infinite with high probability. This
amounts to a control of the whole trajectory: the distribution of users among nodes
stays trapped in any neighborhood of π with high probability as the initial state
is large. This result is related to a strong convergence result stating that, for any
fixed (non scaled) initial state, the system almost surely diverges along the direction
of π. A similar phenomenon has been exhibited in Athreya and Kang [AK98], in
the context of branching Markov chains, i.e., Galton-Watson branching processes
where individuals located at some countable set of sites move at their birth time.

These various remarks and outline of results lead to the following organiza-
tion for the chapter. Section 2 gives a precise description of the stochastic model
and introduces the notations that will hold throughout the chapter. We have al-
ready mentioned the construction of a martingale which gives important estimates
through optional stopping techniques: Section 3 introduces this martingale, and
provides the main estimate that will be used. Due to its technicality, the construc-
tion of the martingale is postponed to the Appendix A.

Section 4 establishes a decomposition of the process as, mainly, the difference
between two processes of the same type but with no departures. For such a process
(with null service capacity), a representation involving labelled particles is given.
Both representations will help derive the almost sure convergence result of Section 6.

The three last sections are devoted to analyzing the behavior of the system.
Section 5 deals with the short term behavior, thus studying the only space renor-
malized process. Section 6 studies the supercritical case λ > µ, establishing among
other results the almost sure convergence of the proportions to the equilibrium dis-
tribution π as t → ∞. Finally, Section 7 proves the stability of the system in the
subcritical case λ < µ.

2. Framework and Notations

This section gives a precise description of the model under consideration and
introduces the main notations. The network is described by a Markov process
X = (X(t), t ≥ 0) characterized by its infinitesimal generator, given by (1) below.

Section 6 will make use, in the particular case of null service capacity, of a more
explicit representation of X involving a sequence of Markov jump processes that
represent the trajectories of the successive customers entering the network. The
general description of the system through its Markovian dynamics provided in the
present section is however sufficient for most results of the chapter, especially for
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building a family of martingales and for determining the stability condition.

The network consists of n nodes between which customers perform independent
(continuous time) Markovian routes during their service. In this setting, transitions
of customers from one node to another are driven by some rate matrix Q = (qij , 1 ≤
i, j ≤ n) and are thus not triggered by service completion.

New customers arrive at node i = 1, . . . , n according to a Poisson process with
intensity λi ≥ 0, and then move independently according to the Markovian dynam-
ics defined by Q. The arrival processes at the different nodes are independent, so
that the global arrival process is Poisson with intensity λ =

∑n
1 λi. The case λ = 0

corresponds to a system with only initial customers, and no new arrivals.
Upon arrival, or at time t = 0 for those initially present, customers generate

a service requirement which is exponentially distributed with mean 1. All service
requirements, arrival processes and Markovian routes are assumed to be mutually
independent.

Node i, 1 ≤ i ≤ n, has service capacity µi ≥ 0, which is divided at any time
between the customers present, according to the Processor-Sharing discipline: If N
is the number of customers present at node i, then each of these N customers is
served at rate µi/N . The service rate of a given customer thus evolves in time,
depending on his current position and on its occupancy level. Once a customer has
received a service that meets his initial requirement, he leaves the network.

The total service capacity of the network is defined as µ =
∑n

1 µi. Notice that,
due to the exponential nature of the services, the mechanism of departure from one
node by completion of service does not distinguish the present Processor-Sharing
discipline from the FIFO discipline: the instantaneous output rate from the system
at node i is µi provided that node i is not vacant. The total output rate is then µ
when no node is empty.

The process of interest is X = (X(t), t ≥ 0) defined by

X(t) = (X1(t), . . . ,Xn(t)), t ≥ 0,

where Xi(t), for i = 1, . . . , n, is the number of customers present at node i at time t.
The Markovian nature of the movements together with the exponential assumption
for the service distribution imply that X is a Markov process in N

n with infinitesimal
generator Ω given, for any function f : N

n → R and any x = (x1, . . . , xn) ∈ N
n, by

(1) Ω(f)(x) =

n∑

i=1

λi

(
f(x + ei) − f(x)

)
+

n∑

i=1

1{xi>0}µi

(
f(x − ei) − f(x)

)

+
∑

1≤i6=j≤n

qijxi

(
f(x + ej − ei) − f(x)

)
,

where ei ∈ N
n has all coordinates equal to 0, except for the ith one, equal to 1.

The introduction has highlighted that this system is a mixture of two classical
models in queueing theory, the M/M/1 and the M/M/∞ queues. This is readable
in the expression of the generator given in (1), where the two first sums are remi-
niscent of the M/M/1 queue, and the last one of the M/M/∞ queue.

The rate matrix Q is assumed to be irreducible, admitting π = (πi, 1 ≤ i ≤ n)
as its unique stationary distribution, characterized by the relation

πQ = 0.
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For technical reasons related to the construction of the martingale introduced in
Section 3 (see the Appendix A), we require the additional assumption that Q is
diagonalizable. This assumption is satisfied if Q is reversible with respect to π, but
it is in general a much less restrictive constraint.

For any t ≥ 0, the random vector X(t) will often be described in terms of the
total number of customers L(t) and the proportions of customers at the different
nodes χ(t) = (χi(t), 1 ≤ i ≤ n). More formally, define

L(t) =

n∑

j=1

Xj(t) = |X(t)| and χi(t) =
Xi(t)

L(t)
, 1 ≤ i ≤ n, t ≥ 0,

with the convention that χ(t) = e1 when L(t) = 0. Here, and more generally for
any x = (x1, . . . , xn) ∈ R

n, |x| denotes the ℓ1 norm in R
n: |x| =

∑n
1 |xi|.

The vector χ(t) can be identified with a probability measure on {1, . . . , n}:
namely, the empirical distribution of the positions of the L(t) customers present in
the network at time t. Denote by

P =

{
ρ ∈ [0,+∞[n:

n∑

i=1

ρi = 1

}

the state space of χ(t). The interior set of P is P̊ = {ρ ∈]0,+∞[n:
∑n

1 ρi = 1}.
As emphasized earlier, the deviation of χ(t) from π will be of particular interest

in the forthcoming analysis. It will be measured, depending on circumstances, by
the ℓ∞ distance ‖χ(t) − π‖:

‖x‖ = max
1≤i≤n

|xi|, x = (x1, . . . , xn) ∈ R
n,

or by the relative entropy H(χ(t), π), where H(·, π) is defined on the set P of
probability measures on {1, . . . , n}, by

H(ρ, π) =

n∑

i=1

ρi log
ρi

πi
∈ [0,+∞[, ρ ∈ P.

For t ≥ 0, the quantity H(χ(t), π) will also be more simply denoted H(t). The
process (H(t), t ≥ 0) will spontaneously appear in the expression of the key mar-
tingale Jα introduced in the next section.

The different deviation times of χ(t) from π, or conversely, the time needed
for χ(t) to reach a given neighborhood of π, will be of particular interest. For
any ε > 0, Tε (resp. T ε) denotes the first time when the ℓ∞ distance between χ(t)
and π is smaller (resp. larger) than ε:

Tε = inf{t ≥ 0 : ‖χ(t) − π‖ ≤ ε} and T ε = inf{t ≥ 0 : ‖χ(t) − π‖ > ε}.
Most results will be written down in terms of these two stopping times, but it will
be sometimes more convenient to work with the deviation time T ε

H from π in terms
of the relative entropy:

T ε
H = inf{t ≥ 0 : H(t) > ε}.

All results on deviation times of χ(t) from π defined in terms of the ℓ∞ dis-
tance ‖χ(t)−π‖ can be translated into analogous estimates in terms of the relative
entropy H(t) thanks to the following classical result:



I.3 Martingale 49

Lemma 2.1. There exist two π-depending positive constants C1 and C2 such that,
for all ρ ∈ P:

C1‖ρ − π‖2 ≤ H(ρ, π) ≤ C2‖ρ − π‖2.

In particular, for any ε > 0, TC1ε2

H ≤ T ε ≤ TC2ε2

H .

Another stopping time will play a central role: namely the first time, denoted
by T0, when the system has an empty node. Formally,

T0 = inf{t ≥ 0 : ∃i ∈ {1, . . . , n}, Xi(t) = 0}.
Indeed, the martingale property for the family of integrals presented in Section 3
will hold only up to time T0, i.e., as long as the output rate at each node i is exactly
equal to µi. In the same way, it will be easily shown that, for t < T0, L(t) behaves
exactly like the M/M/1 queue with input rate λ and output rate µ.

A last useful remark concerning these stopping times is that, when T0 is finite,
‖χ(T0) − π‖ ≥ min πi (> 0). Together with Lemma 2.1, this immediately gives the
following result:

Lemma 2.2. There exists ε0 > 0 such that T ε ∨ T ε
H ≤ T0 holds for any ε ≤ ε0.

3. Martingale

The results of this section are twofold: Theorem 3.1 gives the (almost) explicit
expression of a local martingale Jα(· ∧ T0), indexed by some positive parameter α,
and Proposition 3.2 derives the main estimate on deviation times T ε

H of χ(t) from π,
that will be used in Sections 6 and 7. Concerning the construction of Jα, the present
section only aims at giving the main lines. The (numerous) technical details are
postponed to the Appendix A.

The approach for constructing the martingale Jα is similar to the approach used
in Fricker [FRT99] for the M/M/∞ queue. The idea is to first exhibit a family of
space-time harmonic functions (hv(t, x), v ∈ R

n) for the generator Ω given by (1),
and then to integrate hv(t, x)f(v) with respect to v for some suitable function f , on
some well chosen time dependent domain. The last step is then to make a change
of variables so that the new harmonic function is split into two factors, respectively
depending on time and space. The resulting local martingale is then adapted for
an optional stopping use, leading to hitting times estimations.

Some notations are required at this point. Denote by (Pt, t ∈ R) the Q-
generated Markov semi-group of linear operators in R

n: Pt = etQ, extended to
all real indices t into a group. For v ∈ R

n and t ∈ R, define

φ(v, t) = (φi(v, t), 1 ≤ i ≤ n) = P−tv.

Theorem 3.1 below requires the technical assumption that Q is diagonalizable. Let θ
be the trace of −Q, so that θ > 0, and let S ⊂ R

n−1 be the projection of P̊ ⊂ R
n

on the n − 1 first coordinates, i.e.,

S =

{
u = (u1, . . . , un−1) ∈ R

n−1 : ∀i = 1, . . . , n − 1, ui > 0 and
n−1∑

i=1

ui < 1

}
.
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For any u ∈ S, denote by ũ ∈ P̊ the nth dimensional vector which completes u into
a probability distribution, i.e., ũi = ui for any 1 ≤ i ≤ n−1 and ũn = 1−∑n−1

1 ui.
The following proposition describes a family of space-time harmonic functions.

Proposition 3.1. Let v ∈ R
n be fixed and let ϕ(v, ·) be any primitive of

n∑

i=1

(
µi

φi(v, ·)
1 + φi(v, ·) − λiφi(v, ·)

)

on any open subset V of {t ≥ 0 : 1 + φi(v, t) 6= 0 for i = 1, . . . , n}. The function

hv(t, x) = eϕ(v,t)
n∏

i=1

(1 + φi(v, t))
xi , t ∈ V, x ∈ N

n,

is space-time harmonic with respect to Ω in the domain V × N
∗n.

Proof. It must be shown that ∂hv(t, x)/∂t + Ω
(
hv(t, ·)

)
(x) = 0 on the above

domain. For x ∈ N
∗n and t ∈ V , hv(t, x) 6= 0, and one easily computes:

1

hv(t, x)

∂hv

∂t
(t, x) =

∂ϕ

∂t
(v, t) +

n∑

i=1

xi
∂φi(v, t)/∂t

1 + φi(v, t)

and

1

hv(t, x)
Ω

(
hv(t, ·)

)
(x) =

n∑

i=1

λiφi(v, t) −
n∑

i=1

µi
φi(v, t)

1 + φi(v, t)

+
∑

1≤i6=j≤n

xiqij
φj(v, t) − φi(v, t)

1 + φi(v, t)
.

The last term in the right-hand side is equal to
n∑

i=1

xi

1 + φi(v, t)
(Qφ(v, t))i .

By definition φ satisfies ∂φ(v, t)/∂t = −Qφ(v, t) and the result follows. ¥

Remark 3.1. The product form of these space-time harmonic functions is quite
similar to that of the harmonic functions introduced in Fricker [FRT99] for the
M/M/∞ queue.

In addition, it is easily checked that, choosing v = (u − 1, . . . , u − 1) for some
u 6= 0, so that v is some eigenvector of Pt, t ∈ R, associated to eigenvalue 1,
yields hv(t,X(t)) = uL(t)e[λ(1−u)+µ(1−1/u)]t, which is the martingale associated
to an M/M/1 queue L with arrival rate λ and service rate µ (see for example
Robert [Rob03]).

Starting from hv(t, x), two steps lead to Jα: (i) integration of hv(t, x) over v
against some function f(v) on a suitable time-dependent domain D(t); (ii) change
of variables. These two steps are detailed and justified in the Appendix A, yielding
the following family of local martingales:

Theorem 3.1. There exist two positive, continuous, bounded functions F and G
on P̊ such that for any α > 0, u 7→ F (ũ)α−1 is integrable on S and (Jα(t∧T0), t ≥ 0)
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is a nonnegative local martingale, where Jα(t) is defined for α > 0 and t ≥ 0 by:

Jα(t) = e−αθt

∫

S

n∏

i=1

(
ũi

πi

)Xi(t)

G(ũ)F (ũ)α−1du,

or equivalently:

Jα(t) = e−αθt

∫

S
eL(t)(H(t)−H(χ(t),ũ))G(ũ)F (ũ)α−1du.(2)

Moreover, F satisfies

sup
0<α≤1

(
αn

∫

S
F (ũ)α−1du

)
< +∞.(3)

The advantage of Jα(t) (as compared to hv(t,X(t))), is that the dependence
in time is there splitted into two factors: e−αθt is a direct function of time, and
the integral is a function of the state of the system at time t, X(t) or equivalently
(L(t), χ(t)).

The next proposition gives the fundamental estimate obtained through optional
stopping and used several times throughout the chapter.

Proposition 3.2. For any δ such that 0 < δ < ε0, where ε0 is given by Lemma 2.2,
there exists some constant Cδ such that

Ex

(
e−αθT ε

H ;L(T ε
H) ≥ ℓ

)
≤ Cδ α−ne|x|H(x/|x|,π)−(ε−δ)ℓ

holds for any initial state x ∈ N
n and any ε ∈]δ, ε0[, ℓ > 0 and α ∈]0, 1].

Proposition 3.2 is derived from the two following lemmas by choosing T = T ε
H

(so that, by Lemma 2.2, T ∧ T0 = T when ε < ε0). Note that only Lemma 3.1 uses
the fact that Jα is a local martingale, whereas Lemma 3.2 stems directly from the
expression of Jα provided by (2).

Lemma 3.1. There exists some constant C3 > 0 such that, for any α ∈]0, 1], any
initial state x ∈ N

n and any stopping time T , the following inequality holds:

Ex [Jα(T ∧ T0)] ≤ C3α
−ne|x|H(x/|x|,π).

Proof. Fix α ∈]0, 1] and x ∈ N
n. Since Jα(·∧T0) is a nonnegative local martingale,

it is a supermartingale, and so is (Jα(t∧T ∧T0), t ≥ 0) by Doob’s optional stopping
theorem. In particular, for any t ≥ 0:

Ex

[
Jα(0)

]
≥ Ex

[
Jα(t ∧ T ∧ T0)

]
,

and Fatou’s lemma gives:

Ex

[
Jα(0)

]
≥ lim inf

t→+∞
Ex

[
Jα(t∧T∧T0)

]
≥ Ex

[
lim inf
t→+∞

Jα(t∧T∧T0)
]

= Ex

[
Jα(T∧T0)

]
,

(where Jα(T ∧ T0) makes sense a.s. when T ∧ T0 = +∞ since any nonnegative
supermartingale almost surely converges to some variable at infinity).

From the definition of Jα given by (2), using e−y ≤ 1 for y ≥ 0, one gets

Ex [Jα(0)] ≤ sup
P̊

(G) e|x|H(x/|x|,π)

∫

S
F (ũ)α−1du ≤ C3e

|x|H(x/|x|,π)α−n

where C3 = supP̊(G) sup0<α≤1

(
αn

∫
S F (ũ)α−1du

)
is finite by (3), which proves

the lemma. ¥
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Lemma 3.2. For any positive δ, there exists some positive constant Bδ such that
the following implication holds for any α ∈]0, 1], ℓ > 0, ε > δ and t ≥ 0:

L(t) ≥ ℓ and H(t) ≥ ε =⇒ Jα(t) ≥ Bδ · e−αθt+(ε−δ)ℓ.

Proof. Fix ε > δ, α ∈]0, 1], ℓ > 0 and t ≥ 0. A lower bound on the integral part
of (2) is obtained when L(t) ≥ ℓ and H(t) ≥ ε. For v ∈ P, define the set Sδ(v) ⊂ S
by

Sδ(v) = {u ∈ S : H(v, ũ) ≤ δ} .

If H(t) ≥ ε and L(t) ≥ ℓ, then
∫

S
eL(t)(H(t)−H(χ(t),ũ))G(ũ)F (ũ)α−1du ≥ β eℓ(ε−δ)

∫

Sδ(χ(t))

G(ũ)du,

where β = min{(supP̊ F )−1, 1}. Indeed, α being smaller than 1, β is a lower bound
for F (ũ)α−1 on S. Consider now the function Φδ : P → R

+ defined by

Φδ(v) =

∫

Sδ(v)

G(ũ)du.

Since G is bounded, Φδ can be shown to be continuous (using for example Lebesgue’s
theorem). Moreover, Φδ(v) > 0 for any v ∈ P (because G > 0 and the interior of
Sδ(v) is not empty), and since P is compact, infP Φδ > 0. Setting Bδ = β infP Φδ

achieves the proof. ¥

4. Two Key Representations

The Markov process (X(t), t ≥ 0) with infinitesimal generator Ω defined by (1)
can be seen as a particle system involving three types of transitions: births, deaths
and migrations of particles from one site to another. The main purpose of this
section is to show that X can be decomposed into the difference of two pure birth
and migration processes, up to some reflection term (Theorem 4.1). A simpler result
(Proposition 4.1) tells that, as long as X does not hit the axis, the process L of
the total number of particles just behaves as a random walk (or equivalently as an
M/M/1 queue). Finally, a representation of process X involving labelled particles
is given in the case of null death rates.

Theorem 4.1, together with the latter representation, will be crucial for de-
scribing the unstable regime in Section 6, while Proposition 4.1 will be repeatedly
used in the study of both the super and subcritical regimes.

The idea for decomposing X is the following: when µ = 0, the system con-
sists of immortal particles generated at rate λ and performing independent Markov
trajectories. Introducing a death procedure, i.e., some positive µ, amounts to elim-
inating particles (at rate µi at site i) if possible. Up to some correction due to
the fact that no death can actually occur at an empty site, this is equivalent to
subtracting some analogous process with birth rates µi (1 ≤ i ≤ n), zero death
rates and migration rate matrix Q.

This can be formalized by introducing an enlarged Markov process involving
three types of particles. Define (X,Y,Z) as a Markov process in N

3n with genera-
tor Γ characterized by the following transitions and rates: for any (x, y, z) ∈ N

3n
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and i, j ∈ {1, . . . , n} such that i 6= j,

(x, y, z) −→





(x + ei, y, z) at rate λi

(x − ei, y + ei, z) µi1{xi≥1}
(x, y, z + ei) µi1{xi=0}
(x − ei + ej , y, z) qijxi

(x, y − ei + ej , z) qijyi

(x, y, z − ei + ej) qijzi

.

The process X keeps track of the “real” particles, Y of the killed ones and Z of
virtual particles generated at some site when no particle has been found to be
killed.

It is clear from these transitions and rates that, indexing generator Ω by its
birth and death rate vectors: λ = (λi, 1 ≤ i ≤ n) and µ = (µi, 1 ≤ i ≤ n)
(λ, µ ∈ [0,+∞[n) and denoting by 0 the null vector in R

n:
(i) X is a Markov process in N

n with generator Ωλ,µ,
(ii) X + Y is also Markov in N

n, with generator Ωλ,0,
(iii) Y + Z is Markov in N

n with generator Ωµ,0,
(iv) |X + Y | − (|X(0) + Y (0)|) is some Poisson process with intensity λ,
(v) |Y + Z| − (|Y (0) + Z(0)|) is some Poisson process with intensity µ,
(vi) these two Poisson processes are independent.

Now from (i), any process X with generator Ω can be considered as the first
component of some Markov process with generator Γ and initial state (X(0), 0, 0).

The two next results are easily derived from this construction and from re-
marks (i) to (vi). In order to state the main theorem, it is convenient to index the
process X both by its initial state and by its birth and death parameters, writing
Xx

λ,µ for the process X with initial state x ∈ N
n, migration rate matrix Q and birth

and death parameters λ = (λi, 1 ≤ i ≤ n) and µ = (µi, 1 ≤ i ≤ n) respectively.

Theorem 4.1. For any x ∈ N
n and λ, µ ∈ [0,+∞[n, there exist versions of Xx

λ,µ,

Xx
λ,0 and X0

µ,0 such that

Xx
λ,µ = Xx

λ,0 − X0
µ,0 + Z,

where Z is an N
n-valued process such that |Z| is nondecreasing, initially zero, and

increases only at times when some Xi(t) is zero.

Proof. Write X = X + Y − (Y + Z) + Z, where (X(0), Y (0), Z(0)) = (x, 0, 0)
and (X,Y,Z) is Markov with generator Γ, so that X is some version of Xx

λ,µ, and

by (ii) and (iii), X + Y is some version of Xx
λ,0 and Y + Z some version of X0

µ,0.

The theorem is proved, since |Z| has the stated properties as can be seen on Γ. ¥

Remark 4.1. The process Z in Theorem 4.1 appears as a reflection term: it guar-
antees that X stays nonnegative, compensating by adding some virtual particle for
a jump of X0

µ,0 that would get some Xi to the value −1.
However, contrary to usual multidimensional Skorokhod reflection terms, here,

due to the movements of particles, components Zi’s are not necessarily nondecreas-
ing in time: only their sum is; also Zi can increase at times when Xi is not zero.
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Theorem 4.1 and its proof, together with properties (iv), (v) and (vi), give the
following proposition, which constitutes one of the key ingredients for deriving the
fluid limits in Sections 6 and 7.

Proposition 4.1. For all t ≤ T0, the following equality holds:

L(t) = L(0) + Nλ(t) −Nµ(t),

where Nλ and Nµ are independent Poisson processes with respective intensities λ
and µ. Moreover, L(t) ≥ L(0) + Nλ(t) −Nµ(t) holds for any t ≥ 0.

We conclude this section with a representation of process Xx
λ,0 that will notably

be used in Section 6, in conjunction with Theorem 4.1, for analyzing the unstable
regime. The process Xx

λ,0 is here obtained as function of a Poisson process with
intensity λ and a sequence of Markov processes with infinitesimal generator Q
(representing the trajectories of the successively generated particles).

More precisely, Xx
λ,0 admits the following representation:

Xx
λ,0(t) =

( ∑

k≥1

1{ξk(t−σk)=i, σk≤t}, 1 ≤ i ≤ n
)
, t ≥ 0,(4)

where

• σk = 0 for 1 ≤ k ≤ |x|,
• Nλ = (σk, k ≥ |x| + 1) is a Poisson process with parameter λ,
• ξk, k ≥ 1, are Markov jump processes in {1, . . . , n} with generator Q and

initial distribution
–

∑n
i=1(λi/λ) δi for k ≥ |x| + 1,

– δi for xi arbitrarily chosen indices k ∈ {1, . . . , |x|} (1 ≤ i ≤ n),
• Nλ and the ξk, k ≥ 1, are mutually independent.

The vector (ξk, 1 ≤ k ≤ |x|) holds for the trajectories of the initial particles and
(ξk, k ≥ |x|+1) for those of the successive newborn particles; the Poisson process Nλ

holds for the global birth process. For k ≥ 1, particle k is in the system from time σk,
with σk = 0 for k ≤ |x|.

Similarly as in the previous construction, a formal proof of Equation (4) can
be provided by constructing Xx

λ,0 as function of a more complete process (that also
contains Nλ and the ξk’s, k ≥ 1), characterized through its infinitesimal generator
and describing the list of current positions of particles present in the system, ordered
according to their birth rank.

5. The Space Renormalized Process

The stability property of the system for λ < µ will be derived in Section 7
from a fluid scaling analysis, that is, from the study of the space-time renormalized
process

X
x
(t) =

Xx(|x| t)
|x| , t ≥ 0,

as |x| goes to infinity, where Xx is the Markov process X initiated at x. It will be
underlain by the M/M/1 behavior of the total occupancy process L (only valid as
long as no Xi is zero, hence the intricacies of the analysis).
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The particular behavior of X
x

at t = 0+ will result from the short term behavior
of the only space renormalized process X̂, defined as the the family of processes

X̂x(t) =
Xx(t)

|x| , t ≥ 0, for x ∈ N
n \ {0}.

The simpler notation X̂(t), where X̂(t) = X(t)/|X(0)|, will also be used in situa-
tions where |X(0)| is clearly non zero.

As highlighted in the introduction, this scaling is natural and analogous to
the Kelly scaling for the M/M/∞ queue. This analogy appears in Proposition 5.3
below, that states convergence of X̂x as |x| → +∞ to some dynamical system hav-
ing π as its limiting point. In particular, for large |x|, X̂x reaches any neighborhood
of π in a quasi-deterministic finite time. And this will show (Sections 6 and 7) that
asymptotically, X

x
is instantaneously at π.

The results of this section are quite standard, essentially based on law of large
numbers principles. The simple underlying idea is that, as far as X̂x is only observed
over a finite time window, since the number |x| of initial particles goes to infinity
while the numbers of births and deaths within the given window remain of the
order of 1 (time is not rescaled here), the initial particles asymptotically dominate
the system and mostly stay alive all along the time window, thus behaving as |x|
independent Markov processes with generator Q.

For the same reasons, the process X̂ is not different, in the limit |x| → +∞, from
the process χ = X/L of the spatial distribution of particles: The same convergence
results hold for both processes; once proved for X̂, they easily extend to χ.

Formalizing the above argument, the following coupling is intuitively clear. It
compares the general model to the “closed” one (with no births nor deaths, but only
initial particles). As in Section 4, generator Ω is indexed by its birth and death
parameters λ and µ.

Lemma 5.1. For any x ∈ N
n, there exists a coupling between the process Xx with

initial state x and generator Ωλ,µ, and the process Ux with initial state x and
generator Ω0,0 , such that, for t ≥ 0 and i = 1, . . . , n:

Ux
i (t) −Nµ(t) ≤ Xx

i (t) ≤ Ux
i (t) + Nλ(t),

where Nλ and Nµ are two Poisson processes with respective parameters λ and µ.
The process Xx moreover satisfies

|x| − Nµ(t) ≤ |Xx(t)| ≤ |x| + Nλ(t), t ≥ 0.

Proof. The case µ = 0 is a straightforward consequence of the representation (4)
of X from Section 4. Indeed if µ = 0, then (4) gives for 1 ≤ i ≤ n,

Ux
i (t) ≤ Xx

i (t) =
∑

1≤k≤|x|
1{ξk(t)=i} +

∑

k≥|x|+1

1{ξk(t−σk)=i, σk≤t} ≤ Ux
i (t) + Nλ(t),

where Ux(t) is constructed as
∑|x|

k=1 1{ξk(t)=i} and Nλ = (σk, k ≥ |x| + 1).
One moreover gets |Ux(t)| ≤ |Xx(t)| ≤ |Ux(t)| + Nλ(t) by summing up over i

the previous first inequalities. The lemma is proved in this case since |Ux(t)| = |x|
for any t ≥ 0 .

The general case is then derived, using the first part of Section 4. Indeed,
consider Xx as the first component of a random process (Xx, Y, Z) in N

3n such
that Y (0) = Z(0) = 0, Xx + Y is some process with generator Ωλ,0 and |Y + Z| is
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some Poisson process Nµ with intensity µ . The first part of the proof then applies
to Xx + Y and gives, for t ≥ 0:

Ux(t) ≤ Xx(t) + Y (t) ≤ Ux(t) + Nλ(t)

componentwise, as well as |x| ≤ |Xx(t) + Y (t)| ≤ |x| + Nλ(t).
The lemma follows by noticing that

0 ≤ Yi(t) ≤ |Y (t)| ≤ |Y (t) + Z(t)| = Nµ(t)

holds for any 1 ≤ i ≤ n. ¥

The two main results of this section concern the hitting time of some neighbor-
hood of π by the space renormalized process X̂: namely, for any positive δ,

T̂δ = inf
{

t ≥ 0 :
∥∥∥X̂(t) − π

∥∥∥ ≤ δ
}

.

Recall that the analogous time with χ in place of X̂ is denoted by Tδ.

Proposition 5.1. For any positive δ, there exists some deterministic time tδ ≥ 0
such that

lim
|x|→+∞

Px(T̂δ > tδ) = 0.

The same result holds for the stopping time Tδ.

Proof. We refer to the proof of Proposition 5.2 below. Proposition 5.1 is obtained
in the same way, just changing δN , sN and tN into δ, s = −(1/η) log(δ/2B) and
t = −1/η log(δ/4B). ¥

The following more accurate result will be required for analyzing the subcritical
case λ < µ.

Proposition 5.2. There exist two positive constants A and η such that, for any
sequence of positive numbers (δN , N ≥ 1) satisfying

lim
N→+∞

δN = 0 and lim
N→+∞

δN

√
N = +∞,

then

lim
N→+∞

[
max

x∈Nn:|x|=N
Px

(
T̂δN

> tN

)]
= 0, where tN = −1

η
log

δN

A
.

The same result holds for the stopping time TδN
.

Proof. First consider a closed system, i.e., assume λ = µ = 0; the general case
will then be deduced from Lemma 5.1. As in Lemma 5.1, let Ux be the closed
process with initial state x ∈ N

n, where |x| = N . In this case (4) becomes

Ux
i (t) =

N∑

k=1

1{ξk(t)=i}, 1 ≤ i ≤ n, t ≥ 0,

where ξk, 1 ≤ k ≤ N , are independent Markov processes with the same generator Q
and different initial conditions: for any i, 1 ≤ i ≤ n, ξk(0) = i for xi of the N indices
k = 1, . . . , N .

As introduced in Section 3, let (Pt, t ≥ 0) denote the transition semi-group
associated to Q. The exponentially fast convergence of any irreducible finite state
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space Markov semi-group to its stationary distribution, tells existence of B > 0
and η > 0 such that

max
1≤i,j≤n

|Pt(j, i) − πi| ≤ Be−ηt, t ≥ 0.

In particular, for sN = −(1/η) log(δN/2B),

max
1≤i,j≤n

|PsN
(j, i) − πi| ≤ δN/2.

The outline of the proof for the closed case is the following: At time sN , all tra-
jectories ξk, 1 ≤ k ≤ N , are very close to π in distribution (by the order of δN ).
Since Ûx(t) represents the empirical distribution of the N particles at time t, the
law of large numbers shows that for large N , Ûx(sN ) is also close to π (by the same
order), because δN tends to 0 not too fast

Precisely, for any N ≥ 1 and x ∈ N
n such that |x| = N :

‖E
(
Ûx(sN )

)
− π‖=

∥∥∥∥E

(
Ux(sN )

N

)
− π

∥∥∥∥ =

∥∥∥∥∥
1

N

N∑

k=1

(
P(ξk(sN ) = ·) − π

)∥∥∥∥∥ ≤ δN

2
.

Thus, for any N ≥ 1, using Chebychev’s inequality for the last step:

P

(
‖Ûx(sN ) − π‖ > δN

)
≤ P

(∥∥∥Ûx(sN ) − E

(
Ûx(sN )

)∥∥∥ >
δN

2

)

≤
n∑

i=1

P

(∣∣∣ Ûx
i (sN ) − E

(
Ûx

i (sN )
)∣∣∣ >

δN

2

)
≤

n∑

i=1

Var (Ux
i (sN ))

δ2
NN2/4

.

Independence of the processes (ξk, 1 ≤ k ≤ N) yields

Var (Ux
i (sN )) =

N∑

k=1

Var
(
1{ξk(sN )=i}

)
≤ N

4

(bounding the variance of any Bernoulli random variable by 1/4). Finally

max
x∈Nn:|x|=N

P

(
‖Ûx(sN ) − π‖ > δN

)
≤ n

δ2
NN

.(5)

Now consider the process Xx associated to any family (λi, µi, 1 ≤ i ≤ n) of
parameters and any initial state x such that |x| = N . Still denote by Ux the
associated closed process with the same initial state x.

Define tN = −(1/η) log(δN/4B). The first part of Lemma 5.1 implies that, for
any N ≥ 1,

‖X̂x(tN ) − π‖ ≤ ‖Ûx(tN ) − π‖ +

∥∥∥∥
1

N

(
Nλ(tN ) + Nµ(tN )

)∥∥∥∥ ,

so that

Px(T̂δN
> tN ) ≤ P

(
‖Ûx(tN ) − π‖ >

δN

2

)
+ P

(
‖Nλ(tN ) + Nµ(tN )‖ >

NδN

2

)
.

By (5) the first term tends to zero uniformly in x as N goes to infinity, since tN
is associated to δN/2 in the same way as sN was to δN . The second one is also
easily shown to converge to zero, using Chebychev’s inequality for the Poisson
variable Nλ(tN ) + Nµ(tN ), together with the relation δN

√
N ≫ 1 that implies

NδN ≫
√

N ≫ 1/δN ≫ tN .
The first part of the proposition is thus proved with A = 4B.
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Using the last assertion of Lemma 5.1, it is not difficult to show that the same
result holds for TδN

. ¥

We finally just mention for the sake of completeness (it will not be used in the
sequel) the following result that describes the asymptotic dynamics, as |x| → +∞,
of the empirical distribution of the particles: it evolves as the distribution, as
function of time, of a Markov process with generator Q.

Not surprisingly, this can be proved using the same standard arguments as for
studying the M/M/∞ queue under the Kelly scaling (see Robert [Rob03]).

Proposition 5.3. Consider the processes (X̂xN (t), t ≥ 0) associated to some se-

quence (xN , N ≥ 1) of initial states satisfying: lim
N→+∞

xN

N
= ρ for some ρ ∈ P.

For any T > 0, as N → +∞, (X̂xN (t), t ≥ 0) converges in distribution with
respect to the uniform norm topology on [0, T ], to the deterministic trajectory:

ρ(t) = ρPt.

In other words, for any positive δ:

lim
N→+∞

P

(
sup

0≤t≤T
‖X̂xN (t) − ρPt‖ > δ

)
= 0.

The same convergence holds for the corresponding processes (χxN (t), t ≥ 0), N ≥ 1.

6. The Supercritical Regime

This section deals with the supercritical regime λ > µ. As the next proposition
shows, the unstability of the system is straightforward in this case. Theorem 6.1
establishes an almost sure result describing the long term behavior, and Theorem 6.2
presents a surprising phenomenon.

Proposition 6.1. When λ > µ the process X is not ergodic.

Proof. Just remark, using Proposition 4.1, that if x ∈ N
n is the initial state:

L(t) ≥ |x| + Nλ(t) −Nµ(t).

Hence for any initial state, L(t) almost surely goes to +∞ as t tends to +∞. ¥

The following theorem gives an almost sure description of the divergence of X(t)
for t large. Among other arguments, the proof makes use for the first time of the
martingale estimate provided by Proposition 3.2, and involves the representations
of X given in Section 4.

Theorem 6.1. Assume λ > µ. Then, for any initial state x ∈ N
n, the following

convergence holds almost surely:

lim
t→+∞

Xx(t)

t
= (λ − µ)π.

Remark 6.1. This theorem has a double meaning: it tells almost sure convergence
both of χ(t) to π and of L(t)/t to λ − µ as t → +∞.
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Proof. Assume the theorem is true when µ = 0. Then, using the notations of
Theorem 4.1, t−1(Xx

λ,0(t)−X0
µ,0(t)) converges a.s. to (λ− µ)π and the componen-

twise inequality Xx
λ,µ ≥ Xx

λ,0 − X0
µ,0 derived from Theorem 4.1, implies that each

Xx
i (t) tends to infinity almost surely as t goes to infinity.

As a consequence, since |Z(t)| can increase only when some Xi(t) is zero, then,
with probability 1, limt→+∞ |Z(t)| is finite and limt→+∞ Z(t)/t = 0, so that:

lim
t→+∞

Xx(t)

t
= lim

t→+∞

Xx
λ,0(t) − X0

µ,0(t)

t
= (λ − µ)π

holds almost surely, which is the stated result.
The theorem must now be proved in the case where µ = 0. In this case with

no deaths, using representation (4), the process Xx splits into two (independent)
processes: Xx = Ux + X0, where Ux is associated to a “closed” system with |x|
particles moving independently, and X0 has no initial particles, birth rates λ and
null death rates. Then t−1Ux(t) obviously tends to zero almost surely as t tends to
infinity, and all is left to show is that t−1X0(t) converges almost surely to λπ.

So, dropping for simplicity the superscript 0, consider the process X with initial
state 0, birth rates λ and null death rates. Equation (4) here becomes, for t ≥ 0:

Xi(t) =

Nλ(t)∑

k=1

1{ξk(t−σk)=i} , 1 ≤ i ≤ n,

where (ξk, k ≥ 1), have initial distribution
∑n

i=1(λi/λ) δi.
It will first be shown that the analysis can be reduced to the case of stationary

trajectories (i.e., the case when λi/λ = πi for 1 ≤ i ≤ n) by using a coupling
argument.

Indeed, associate to each ξk a stationary process ξ′k with the same generator,
such that ((ξk, ξ′k), k ≥ 1) is a sequence of independent processes in {1, . . . , n}2,
and, for k ≥ 1, ξk, ξ′k are coupled in the classical following way: ξk and ξ′k are
independent until the first time Tk when they meet, and after that stay equal for
ever. Recall that the “coupling times” Tk, k ≥ 1, are integrable. Moreover assume
the (ξk, ξ′k), k ≥ 1, independent from Nλ.

Define the process (X ′(t), t ≥ 0) on N
n analogously to X, with the same Nλ,

but with ξ′k in place of ξk (k ≥ 1). Then, for each i ∈ {1, . . . , n}

|Xi(t) − X ′
i(t)| =

∣∣∣∣∣∣

Nλ(t)∑

k=1

(
1{ξk(t−σk)=i} − 1{ξ′

k(t−σk)=i}
)
∣∣∣∣∣∣
≤

Nλ(t)∑

k=1

1{Tk>t−σk}.

Define the right hand side of the above equation as A(t): then for any t ≥ 0, A(t) is
exactly the number of customers at time t in an M/G/∞ queue with no customer
at time 0, arrival process Nλ, and services given by the i.i.d. integrable variables
Tk, k ≥ 1. It is easily proved that A(t)/t converges almost surely to zero as t tends
to infinity. It is then enough to prove a.s. convergence of process X ′ to λπ, and so
we assume from now on that (ξk, k ≥ 1) are stationary.

Since L(t)/t = Nλ(t)/t converges a.s. to λ as t tends to infinity, the problem
is equivalent to proving that χ(t) converges almost surely to π, i.e., by Lemma 2.1
that:

∀ε > 0, P(∃T < +∞ : ∀t ≥ T,H(t) ≤ ε) = 1.
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This will be done using Borel-Cantelli lemma and showing that:

∀ε > 0,

+∞∑

k=1

P(∃t ∈ [σk, σk+1[ : H(t) > ε) < +∞,

Writing, for any fixed ε:

(6) P (∃t ∈ [σk, σk+1[: H(t) > ε)

≤ P

(
H(σk) >

ε

2

)
+ P

(
H(σk) ≤ ε

2
and ∃t ∈]σk, σk+1[: H(t) > ε

)
,

we will show that both series associated to both terms in the right hand side con-
verge for ε sufficiently small (which is enough by monotonicity of the left hand side
of (6)).

Let us begin with the first term. Note that for k ≥ 1, χ(σk) = X(σk)/k. Then
due to Lemma 2.1, it is enough to show that, for small ε and any i ∈ {1, . . . , n},

+∞∑

k=1

P

(∣∣∣∣
Xi(σk)

k
− πi

∣∣∣∣ > ε

)
< +∞.(7)

This is obtained by using Chernoff’s inequality, that we recall in Lemma 6.1.

Lemma 6.1. (Chernoff’s inequality) Let Zh, 1 ≤ h ≤ k, be k independent random
variables such that |Zh| ≤ 1 and E(Zh) = 0 for 1 ≤ h ≤ k.

The following bound holds for any η ∈ [0, 2σ], where σ2 = Var
(∑k

h=1 Zh

)
:

P

(∣∣∣∣∣

k∑

h=1

Zh

∣∣∣∣∣ ≥ ησ

)
≤ 2e−η2/4.

Write for 1 ≤ i ≤ n

Xi(σk)

k
− πi =

1

k

k∑

h=1

Z
(i)
k,h with Z

(i)
k,h = 1{ξh(σk−σh)=i} − πi.

Since ξh, h ≥ 1, are stationary, then for each fixed i ∈ {1, . . . , n} and k ≥ 1, the k

variables Z
(i)
k,h, 1 ≤ h ≤ k, are i.i.d. centered random variables, bounded by 1 in

modulus. (Notice that independence is only true in this stationary case).
We can thus apply Chernoff’s inequality, which gives, for each fixed k and i:

P

(∣∣∣∣
Xi(σk)

k
− πi

∣∣∣∣ > ε

)
= P

(∣∣∣∣∣

k∑

h=1

Z
(i)
k,h

∣∣∣∣∣ > kε

)
≤ 2e

− ε2k
4vi ,

if ε ≤ 2vi, where vi = πi(1 − πi) is the common variance of the variables Z
(i)
k,h.

Property (7) is then proved (for small ε, hence for any ε by monotonicity).

Now it must be shown that the second term in the right hand side of (6) is
summable as well for ε small enough. Here, the stationarity of the movements will
play no special role.

By definition of σk, χ(t) = X(t)/k for any t ∈ [σk, σk+1[. Moreover, σk is a
stopping time for the Markov process (X(t), t ≥ 0), because it is the first time
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when L(t) = k. Hence the strong Markov property yields

P0

(
H(σk) ≤ ε

2
and ∃t ∈]σk, σk+1[: H(t) > ε

)
≤ max

x∈N
n:|x|=k and

H(x/|x|,π)≤ε/2

Px (T ε
H < σ1) .

Clearly, the last event only depends on σ1 and on the movements of the |x| initial
particles, so that by independence of these variable and processes, one obtains, for
any x ∈ N

n:

Px (T ε
H < σ1) = Ex

(
e−λT̃ ε

H

)
≤ Ex

(
e−(λ∧θ)T̃ ε

H

)
,

where T̃ ε
H is the first time the entropy associated to the initial particles is larger

than ε. Then, using Proposition 3.2 in the case of a closed system with δ = ε/4,
α = (λ/θ) ∧ 1 and ℓ = k gives:

Px (T ε
H < σ1) ≤ Cε/4[(λ/θ) ∧ 1)]−ne−εk/4,

for any x ∈ N
n such that |x| = k and H(x/|x|, π) ≤ ε/2. The second term in (6) is

thus summable over k for ε small enough. ¥

Along the preceding proof, we used σ1, in the particular case µ = 0, as an
asymptotic lower bound (as the initial state grows to infinity) for the exit time
of χ(t) from some neighborhood of π. This is a very crude underestimation, as the
following result shows that this exit time is actually infinite with high probability.

Theorem 6.2. Assume λ > µ, and fix δ and ε such that 0 < δ < ε < ε0, where ε0 is
given by Lemma 2.2. Consider a sequence (xN , N ≥ 1) with limN→+∞ |xN |/N = 1
and H(xN/|xN |, π) ≤ δ. Then:

lim
N→+∞

PxN
(T ε

H = +∞) = 1.

Proof. By definition of T ε
H , PxN

(T ε
H < +∞) = PxN

(∃t ≥ 0 : H(t) ≥ ε), and so
we need to study the behavior of H(t) for all time t ≥ 0. The idea of the proof
is twofold: First, the estimate given by Proposition 3.2 is precise enough to show
that T ε

H is much larger than N , say T ε
H ≥ N2. After this time, the initial particles

are negligible, and Theorem 6.1 then gives a control on the rest of the trajectory
by reducing the problem to the case where the system starts empty. So we use the
following decomposition:

PxN
(T ε

H < +∞) ≤ PxN

(
T ε

H ≤ N2
)

+ PxN

(
∃t ≥ N2 : H(t) ≥ ε

)
.

For the first term, Markov’s inequality gives

PxN

(
T ε

H ≤ N2
)
≤ eExN

(
e−T ε

H/N2
)

.(8)

Let δ′ < ε − δ: by choice of ε and δ, and since H(xN/|xN |, π) ≤ δ, Proposition 3.2
shows that there exists a constant Cδ′ such that by choosing α = 1/(θN2), for
any N large enough and any ℓN ,

ExN

(
e−T ε

H/N2

;L(T ε
H) ≥ ℓN

)
≤ Cδ′eδ|xN |+2n log N−(ε−δ′)ℓN .

The choice of ℓN requires some care: as N grows, it must be both of order |xN | and
smaller than L(T ε

H) with high probability. Since |xN | ∼ N , write |xN | = N + uN

with uN = o(N), and choose ℓN = N−√
NvN with vN = |uN |∨1. With this choice,

ℓN ∼ N and ℓN − |xN | → −∞. The first relation implies, since ε − δ′ − δ > 0,

lim
N→+∞

eδ|xN |+2n log N−(ε−δ′)ℓN = 0.
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Moreover, since T ε
H ≤ T0 because ε < ε0, Proposition 4.1 implies that L(T ε

H) =
L(0) + Nλ(T ε

H) −Nµ(T ε
H), hence

PxN
(L(T ε

H) ≤ ℓN ) = PxN
(|xN | + Nλ(T ε

H) −Nµ(T ε
H) ≤ ℓN )

≤ P

(
inf
t≥0

(Nλ(t) −Nµ(t)) ≤ ℓN − |xN |
)

where the last bound vanishes because λ > µ, and so inft≥0 (Nλ(t) −Nµ(t)) is finite
with probability one, whereas ℓN −|xN | goes to −∞. It results that PxN

(
T ε

H ≤ N2
)

goes to 0 thanks to (8) and to the following inequality:

ExN

(
e−T ε

H/N2
)
≤ ExN

(
e−T ε

H/N2

;L(T ε
H) ≥ ℓN

)
+ PxN

(L(T ε
H) ≤ ℓN ) ,

and it has been shown that each term goes to 0.

All is left to prove now is that limN→+∞ PxN

(
∃t ≥ N2 : H(t) ≥ ε

)
= 0, or,

by Lemma 2.1, that PxN

(
∃t ≥ N2 : ‖χ(t) − π‖ ≥ ε

)
vanishes. After time N2, the

initial particles are negligible since a number of new particles of the order of N2

have arrived. So the behavior of the system will be similar to that of a system
starting empty, to which we can apply Theorem 6.1 (since in this case the initial
state is fixed).

To formalize this argument, a coupling between the processes Xx and X0, for
any x ∈ N

n, is required:

Lemma 6.2. For any x, y ∈ N
n with x ≥ y componentwise, it is possible to couple

the two processes Xx and Xy in such a way that for any t ≥ 0, Lx(t) − Ly(t) ≤
|x| − |y| and the inequality Xx(t) ≥ Xy(t) holds componentwise.

The proof of this lemma is postponed at the end of the current proof. Let X0

be the process starting empty coupled with XxN , and let L0 = |X0|, LxN = |XxN |,
χ0 = X0/L0 and χxN = XxN /LxN be the corresponding quantities. The triangular
inequality gives

(9) P(∃t ≥ N2 : ‖χxN (t) − π‖ ≥ ε) ≤ P(∃t ≥ N2 : ‖χxN (t) − χ0(t)‖ ≥ ε/2)

+ P(∃t ≥ N2 : ‖χ0(t) − π‖ ≥ ε/2).

Theorem 6.1 states that χ0(t) converges to π almost surely, which shows that the
last term goes to 0. For the first term, write for each i = 1, . . . , n,

χxN
i (t) − χ0

i (t) =
XxN

i (t)

LxN (t)
− X0

i (t)

L0(t)
=

(
XxN

i (t) − X0
i (t)

)
L0(t) − X0

i (t)∆xN (t)

L0(t)
(
∆xN (t) + L0(t)

) ,

where ∆xN (t) = LxN (t) − L0(t). Lemma 6.2 implies that |XxN
i (t) − X0

i (t)| ≤
∆xN (t) ≤ |xN |, hence, since the function z 7→ z/(z +a) is decreasing for any a ≥ 0,

|χxN
i (t) − χ0

i (t)| ≤
2∆xN (t)

∆xN (t) + L0(t)
≤ 2|xN |

|xN | + L0(t)
=

2

1 + L0(t)/|xN | .

This yields in turn, using t ≥ N2 for the second inequality,

P(∃t ≥ N2 : ‖χxN (t) − χ0(t)‖ ≥ ε/2) ≤ P

(
∃t ≥ N2 :

2

1 + L0(t)/|xN | ≥ ε/2

)

≤ P

(
inf

t≥N2

(
1 + L0(t)/t · N2/|xN |

)
≤ 4/ε

)
,
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Theorem 6.1 shows that L0(t)/t → λ − µ almost surely as t → +∞, and N2/|xN |
goes to infinity as N goes to infinity by choice of xN . Hence almost surely,

lim
N→+∞

inf
t≥N2

(
1 + L0(t)/t · N2/|xN |

)
= +∞,

and the theorem is proved. ¥

We now fill in the gap in this proof by proving Lemma 6.2.

Proof of Lemma 6.2. Process X admits the following representation as the so-
lution of a system of integral equations:

Xi(t) = Xi(0) + Nλi
(t) −

∫ t

0

1{Xi(s−)≥1}Nµi
(ds)

+
∑

j 6=i

∫ t

0

Xj(s
−)∑

k=1

N k
qji

(ds) −
∑

j 6=i

∫ t

0

Xi(s
−)∑

k=1

N k
qij

(ds) 1 ≤ i ≤ n,

where Nλi
and Nµi

, for i = 1, . . . , n, are Poisson processes with respective param-
eters λi and µi, and for (i, j) ∈ {1, . . . , n}2, i 6= j, (N k

qij
, k ≥ 1) is a sequence of

Poisson processes with parameter qij , all these processes being independent.
Now using the same Poisson processes for Xx and Xy, it is easy to check that

the inequalities Xx
i (t) ≥ Xy

i (t) true at t = 0 are preserved at each jump of any of
the Poisson processes involved, and that |Xx| − |Xy| is decreasing over time. ¥

The previous results make it possible to establish the fluid regime of the system
by studying the rescaled process XN defined by

XN (t) =
X(Nt)

N
, t ≥ 0.(10)

In the following, LN denotes the rescaled number of particles, i.e., LN (t) = L(Nt)/N ,
and χN = XN/LN is the corresponding proportions. Note that any fluid limit is
discontinuous at 0+ (so that strictly speaking, X does not have any fluid limit),
because Proposition 5.1 will show that the fluid limit is at π at time 0+, and
Theorem 6.2 will imply that it stays forever proportional to π.

Corollary 6.1. Assume λ > µ, and let x : [0,+∞[→ R
n be defined by

x(t) =
(
1 + (λ − µ)t

)
π.

Then, for any sequence (xN , N ≥ 1) with |xN | = N , any s, t such that 0 < s < t
and any ε > 0:

lim
N→+∞

PxN

(
sup

s≤u≤t

∥∥XN (u) − x(u)
∥∥ ≥ ε

)
= 0.

Proof. Since the size of the initial state goes to infinity, Proposition 5.1 shows
that for any δ > 0, the event {Tδ ≤ tδ} occurs with high probability. Since Tδ

is a stopping time, the strong Markov property makes it possible to use XTδ
as a

new initial point, which is as close to equilibrium as desired. Since moreover the
total number of customers did not significantly evolve in this time interval, this
initial point will satisfy the hypotheses of Theorem 6.2, which makes it possible to
conclude.
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Denote ∆N (s, t) the distance of interest:

∆N (s, t) = sup
s≤u≤t

∥∥XN (u) − x(u)
∥∥ .(11)

First, the following decomposition makes it possible to consider all further conver-
gences on the set {Tδ ≤ tδ}:

PxN
(∆N (s, t) ≥ ε) ≤ PxN

(∆N (s, t) ≥ ε, Tδ ≤ tδ) + PxN
(Tδ > tδ),

and the last term goes to 0 by Proposition 5.1. The strong Markov property used
with the stopping time Tδ then shows that

PxN
(∆N (s, t) ≥ ε, Tδ ≤ tδ) ≤ ExN

[
PX(Tδ) (∆N (0, t) ≥ ε)

]
.

Now, we isolate the event of interest {
∣∣L(Tδ) − |xN |

∣∣ ≤
√

N} by writing:

ExN

[
PX(Tδ) (∆N (0, t) ≥ ε) ;

∣∣L(Tδ) − |xN |
∣∣ ≤

√
N

]

≤ max
y∈N

n:
∣∣|y|−|xN |

∣∣≤√
N

and ‖y/|y|−π‖≤δ

Py (∆N (0, t) ≥ ε) ,

therefore, if we note yN the value that realizes this maximum (the set over which
the maximum is considered is finite),

ExN

[
PX(Tδ) (∆N (0, t) ≥ ε)

]
≤ PxN

(∣∣L(Tδ) − |xN |
∣∣ ≥

√
N

)
+ PyN

(∆N (0, t) ≥ ε) .

The following inequality holds for any time u ≥ 0 and any initial state:

|L(u) − L(0)| ≤ Nλ(u) + Nµ(u)
def.
= Nλ+µ(u),

and yields

PxN

(∣∣L(Tδ) − |xN |
∣∣ ≥

√
N

)
≤ PxN

(
Nλ+µ(Tδ) ≥

√
N,Tδ ≤ tδ

)
+ PxN

(Tδ > tδ)

≤ P

(
Nλ+µ(tδ) ≥

√
N

)
+ PxN

(Tδ > tδ) .

This last sum vanishes, so that all is left to prove is that as N → +∞,

PyN
(∆N (0, t) ≥ ε) = PyN

(
sup

0≤u≤t

∥∥XN (u) − x(u)
∥∥ ≥ ε

)
→ 0.

Note that the initial state yN is now such that |yN |/N goes to 1 (because |xN | = N

and
∣∣|yN | − |xN |

∣∣ ≤
√

N), and H(yN/|yN |, π) is as small as needed to apply Theo-
rem 6.2, since ‖yN/|yN | − π‖ ≤ δ and δ > 0 is arbitrary small.

The triangular inequality and the definition of x give for any 0 ≤ u ≤ t
∥∥XN (u) − x(u)

∥∥ ≤
∥∥XN (u) − LN (u)π

∥∥ +
∥∥[

LN (u) − (1 + (λ − µ)u)
]
π
∥∥

≤ ‖χN (u) − π‖ sup
0≤u≤t

LN (u) + ‖π‖ sup
0≤u≤t

∣∣LN (u) − (1 + (λ − µ)u)
∣∣ ,

and so

(12) PyN
(∆N (0, t) ≥ ε) ≤ PyN

(
sup

0≤u≤t
‖χN (u) − π‖ ≥ ε/

(
2 sup

0≤u≤t
LN (u)

))

+ PyN

(
sup

0≤u≤t

∣∣LN (u) − (1 + (λ − µ)u)
∣∣ ≥ ε/(2‖π‖)

)
.
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Under PyN
, a trivial upper bound for LN (u) for 0 ≤ u ≤ t is given by

LN (u) ≤ 1

N
(|yN | + Nλ(Nt))

def.
= AN (t),

therefore for any constant C > 0,

PyN

(
sup

0≤u≤t
‖χN (u) − π‖ ≥ ε/

(
2 sup

0≤u≤t
LN (u)

))

≤ PyN

(
sup

0≤u≤t
‖χN (u) − π‖ ≥ ε/ (2C)

)
+ P(AN (t) ≥ C).

For any t ≥ 0, AN (t) converges almost surely to 1 + λt as N goes to infinity,
therefore P(AN (t) ≥ C) goes to 0 for C = 2(1 + λt). The other term vanishes as
well. Indeed,

PyN

(
sup

0≤u≤t
‖χN (u) − π‖ ≥ ε/ (2C)

)
= PyN

(
T ε/(2C) ≤ Nt

)
,

and by Lemma 2.1, there exists some ε′ > 0 such that T ε/(2C) ≥ T ε′

H , hence

PyN

(
T ε/(2C) ≤ Nt

)
≤ PyN

(
T ε′

H ≤ Nt
)
≤ PyN

(
T ε′

H < +∞
)

.

One can moreover assume ε′ < ε0 without loss of generality. Observe that so far,
δ is arbitrary: it can be chosen small enough, say δ ≤ δ0 so that using Lemma 2.1,
H(yN/|yN |, π) ≤ ε′/2. Thus yN satisfies the hypotheses of Theorem 6.2, which
shows that PyN

(T ε′

H < +∞), and hence the first term in the upper bound of (12),
vanishes in the limit N → +∞.

The second term of (12) is easier to deal with. We reduce the problem to the
event {T0 = +∞} by using the following upper bound:

(13) PyN

(
sup

0≤u≤t

∣∣L(u) − (1 + (λ − µ)u)
∣∣ ≥ ε/(2‖π‖)

)
≤ PyN

(T0 < +∞)

+ PyN

(
sup

0≤u≤t

∣∣L(u) − (1 + (λ − µ)u)
∣∣ ≥ ε/(2‖π‖), T0 = +∞

)
.

The first term PyN
(T0 < +∞) in the right hand side of (13) goes to 0 since, by

Lemma 2.2, PyN
(T0 < +∞) ≤ PyN

(T ε′

H < +∞) which has just been proved to
vanish as N → +∞.

Because L(u) = L(0) +Nλ(u)−Nµ(u) for all u ≥ 0 on {T0 = +∞}, we get the
following upper bound for the second term:

P

(
sup

0≤u≤t

∣∣∣∣
1

N
(|yN | + Nλ(Nu) −Nµ(Nu)) − (1 + (λ − µ)u)

∣∣∣∣ ≥ ε/(2‖π‖)
)

,

and this term goes to 0 thanks to Doob’s inequality. The proof is complete. ¥
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7. Stability of the Subcritical Regime

In this section we consider the subcritical regime λ < µ that is, the case when
the input rate is smaller than the maximal output rate. As in the previous section,
the key ingredients are the short and long term “homogenization” property and the
M/M/1-like behavior of the total number of customers. The next lemma will be
useful for establishing the fluid behavior of the system. It gives a control on the
stopping time T ε

H , or equivalently T ε: with high probability, T ε
H is larger than the

time needed for a stable M/M/1 queue to empty.

Lemma 7.1. Assume λ < µ. Fix some a > 0 and let (xN , N ≥ 1) be any sequence
in N

n such that

lim
N→+∞

|xN |
N

= a and lim
N→+∞

H(xN/|xN |, π) = 0.

Then, for any t < a/(µ − λ) and any ε < ε0, where ε0 is given by Lemma 2.2,

lim
N→+∞

PxN
(T ε

H ≤ Nt) = 0.

Proof. Denote HN = H(xN/|xN |, π), and let (ℓN , N ≥ 1) be a sequence of inte-
gers such that N ≫ ℓN ≫ NHN and ℓN ≫ log N (such a sequence clearly exists,
e.g., ℓN = N

√
HN ∨ (log N)2). Proposition 3.2 with α = 1/N2 and δ = ε/2 gives

ExN

(
e−θT ε

H/N2

;L(T ε
H) ≥ ℓN

)
≤ Cε/2e

2n log N+|xN |HN−εℓN /2,(14)

where the last bound goes to 0 by choice of ℓN . Let now τN be defined by τN =
inf{t ≥ 0 : L(t) ≤ ℓN}. Since ℓN is an integer and L has jumps ±1, we have
L(τN ) = ℓN , and consequently, for any t > 0,

(15) ExN

(
e−θT ε

H/N2

;L(T ε
H) ≥ ℓN

)
≥ ExN

(
e−θT ε

H/N2

;T ε
H ≤ τN

)

≥ e−θt/N
PxN

(T ε
H ≤ τN ∧ Nt) .

Inequalities (14) and (15) together imply that PxN
(T ε

H ≤ τN ∧ Nt) goes to 0 as N
goes to infinity. Since

PxN
(T ε

H ≤ Nt) ≤ PxN
(T ε

H ≤ τN ∧ Nt) + PxN
(τN < Nt) ,

all is left to prove is that PxN
(τN < Nt) goes to 0 if t < a/(µ − λ). Using the

lower bound L(t) ≥ L(0) + Nλ(t) − Nµ(t) from Proposition 4.1 and the fact that
|xN | ≥ (µ − λ)Nt + ℓN for N large enough if t < a/(µ − λ), we get for such a t

PxN
(τN < Nt) ≤ PxN

(∃s ∈ [0, Nt] : L(0) + Nλ(s) −Nµ(s) ≤ ℓN )

≤ PxN

(
sup

0≤s≤Nt
(Nµ(s) −Nλ(s) − (µ − λ)s) ≥ |xN | − (µ − λ)Nt − ℓN

)

≤ PxN

(
sup

0≤s≤Nt
(Nµ(s) −Nλ(s) − (µ − λ)s)

2 ≥ (|xN | − (µ − λ)Nt − ℓN )2
)

.

Since (Nµ(s) − Nλ(s) − (µ − λ)s, s ≥ 0) is a martingale, Doob’s inequality yields
that the last term is in turn upper bounded by

Var (Nλ(Nt)) + Var (Nµ(Nt))

(|xN | − (µ − λ)Nt − ℓN )2
∼ (λ + µ)Nt

(a − (µ − λ)t)2N2
→ 0,

which completes the proof. ¥
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The fluid behavior can now be established. Recall that the rescaled pro-
cess (XN (t)) is defined by XN (t) = X(Nt)/N for any t ≥ 0. In what follows,
for u ∈ R, u+ denotes max(u, 0).

Proposition 7.1. Let x : [0,+∞[→ R
n be defined by

x(t) =
(
1 + (λ − µ)t

)+
π.

Then for all 0 < s < t and all ε > 0:

lim
N→+∞

[
max

x∈Nn:|x|=N
Px

(
sup

s≤u≤t

∥∥XN (u) − x(u)
∥∥ ≥ ε

)]
= 0.

Proof. Lemma 7.1 makes it possible to study the system for t < 1/(µ − λ). An
additional coupling argument, involving larger initial states, is then required to
show that fluid limits stay at 0 after that time. For this technical reason, initial
states of size equivalent to aN for some a > 0 will be considered, and the following
more general result will be established: For a > 0, let xa : [0,+∞[→ R

n be defined
by

xa(t) =
(
a + (λ − µ)t

)+
π.

It will be proved that for any a > 0, any s, t with 0 < s < t and all ε > 0:

lim
N→+∞

[
max

x∈Nn:|x|=⌊aN⌋
Px

(
sup

s≤u≤t

∥∥XN (u) − xa(u)
∥∥ ≥ ε

)]
= 0,

where the notations of the previous section are used.
First assume t < ta = a/(µ−λ), and set ∆N (s, t) = sups≤u≤t

∥∥XN (u) − xa(u)
∥∥:

the first steps of the proof are similar to the underloaded regime, namely using the
strong Markov property to replace the arbitrary initial state by some initial state
with low entropy. More precisely, let δN and tN be as in Proposition 5.2: for any
x ∈ N

n with |x| = N , one has

Px (∆N (s, t) ≥ ε) ≤ Px (∆N (s, t) ≥ ε, TδN
≤ Ns) + Px(TδN

> Ns).

Since tN/N goes to 0, Proposition 5.2 gives that the last term Px(TδN
> Ns) goes

to 0 uniformly in x ∈ N
n with |x| = ⌊aN⌋. As for the first term, we write

Px (∆N (s, t) ≥ ε, TδN
≤ Ns) ≤ Ex

[
PX(TδN

) (∆N (0, t) ≥ ε)
]

≤ PyN
(∆N (0, t) ≥ ε) + Px

(∣∣L(TδN
) − L(0)

∣∣ ≥
√

N
)

,

where yN ∈ N
n is such that

PyN
(∆N (0, t) ≥ ε) = max

y∈N
n:

∣∣|y|−⌊aN⌋
∣∣≤√

N

and ‖y/|y|−π‖≤δN

Py (∆N (0, t) ≥ ε) .

Because TδN
≤ tN with high probability, and because tN/

√
N → 0, one can show

similarly as in Section 6 that as N goes to infinity,

max
x∈Nn:|x|=⌊aN⌋

Px

(∣∣L(TδN
) − L(0)

∣∣ ≥
√

N
)
→ 0.
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Along the same lines as in the overloaded case, one gets, by introducing the
term LN (u)π that for any C > 0

(16) PyN
(∆N (0, t) ≥ ε) ≤ PyN

(
sup

0≤u≤t
‖χN (u) − π‖ ≥ ε/ (2C)

)

+PyN

(
sup

0≤u≤t
LN (u) ≥ C

)
+PyN

(
sup

0≤u≤t

∣∣LN (u) − (a + (λ − µ)u)
∣∣ ≥ ε/(2‖π‖)

)
.

Note that since t < ta, xa(u) = (a + (λ− µ)u)π for 0 ≤ u ≤ t. For C large enough,
PyN

(
sup0≤u≤t LN (u) ≥ C

)
goes to 0 as N goes to infinity. Moreover, Lemma 2.1

gives

PyN

(
sup

0≤u≤t
‖χN (u) − π‖ ≥ ε/ (2C)

)
= PyN

(
T ε/(2C) ≤ Nt

)
≤ PyN

(
T ε′

H ≤ Nt
)

for some ε′ > 0 that can be assumed to satisfy ε′ < ε0. Since the sequence
(yN , N ≥ 1) satisfies the hypotheses of Lemma 7.1 and since t < ta, this last upper
bound goes to 0. Moreover, since

PyN

(
sup

0≤u≤t

∣∣LN (u) − (a + (λ − µ)u)
∣∣ ≥ ε/(2‖π‖)

)
≤ PyN

(T0 ≤ Nt)

+ PyN

(
sup

0≤u≤t

∣∣LN (u) − (a + (λ − µ)u)
∣∣ ≥ ε/(2‖π‖), T0 > Nt

)
,

we conclude, using Lemma 7.1 together with Lemma 2.2 for the first term and
Doob’s inequality for the second one, that

PyN

(
sup

0≤u≤t

∣∣LN (u) − (a + (λ − µ)u)
∣∣ ≥ ε/(2‖π‖)

)
→ 0.

The proof in the case 0 < s < t < ta is thus complete.

To conclude in the other cases, a monotonicity argument derived from the
above Lemma 6.2 is used. Let 0 < s < t and t ≥ ta, and assume in a first step that
t − s < ε/(2(µ − λ)). In addition, let b > (µ − λ)t be fixed, and let tb = b/(µ − λ)
be the corresponding time. Note that t ≥ ta implies that b > a, so that for any
x ∈ N

n with |x| = ⌊aN⌋, there exists some y ∈ N
n such that y ≥ x componentwise

and |y| = ⌊bN⌋. For such x, y, Lemma 6.2 shows that Xx and Xy can be coupled
in such a way that |Xx(t)| ≤ |Xy(t)| for any t ≥ 0. Hence for any u ≥ s, using the
inequality ‖v‖ ≤ |v| ≤ n‖v‖ for any v ∈ R

n, one gets
∥∥∥X

x

N (u) − xa(u)
∥∥∥ ≤

∣∣∣Xx

N (u)
∣∣∣ + |xa(s)| ≤

∣∣∣Xy

N (u)
∣∣∣ + |xa(s)|

≤ n
∥∥∥X

y

N (u) − xb(u)
∥∥∥ + |xb(s)| + |xa(s)|.

By definition

|xb(s)| + |xa(s)| = (µ − λ)(tb − s) + (µ − λ)(ta − s)+ ≤ 2(µ − λ)(tb − s).

This yields in turn

Px

(
sup

s≤u≤t

∥∥XN (u) − xa(u)
∥∥ ≥ ε

)
≤ Py

(
sup

s≤u≤t

∥∥XN (u) − xb(u)
∥∥ ≥ ε′′

)
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where ε′′ =
(
ε − 2(µ − λ)(tb − s)

)
/n, and finally

max
x∈Nn:|x|=⌊aN⌋

Px

(
sup

s≤u≤t

∥∥XN (u) − xa(u)
∥∥ ≥ ε

)

≤ max
y∈Nn:|y|=⌊bN⌋

Py

(
sup

s≤u≤t

∥∥XN (u) − xb(u)
∥∥ ≥ ε′′

)
.

Since it has been assumed that t − s < ε/(2(µ − λ)), b > (µ − λ)t can be chosen
small enough so that ε′′ > 0. Since t < tb, the first part of the proof implies that

lim
N→+∞

[
max

y∈Nn:|y|=⌊bN⌋
Py

(
sup

s≤u≤t

∥∥XN (u) − xb(u)
∥∥ ≥ ε′′

)]
= 0.

This proves in particular that when 0 < s < t and t − s < ε/(2(µ − λ)), then
max|x|=⌊aN⌋ Px (∆N (s, t) ≥ ε) → 0. It is now left to extend this result to any s, t
such that s < t, which is a consequence of the following decomposition:

max
x∈Nn:|x|=⌊aN⌋

Px (∆N (s, t) ≥ ε) ≤
q∑

j=1

(
max

x∈Nn:|x|=⌊aN⌋
Px (∆N (sj−1, sj) ≥ ε)

)

where s0 = s < s1 < . . . < sq = t and sj − sj−1 < ε/(2(µ − λ)) for 1 ≤ j ≤ q.
Indeed, it has just been shown that each term of this finite sum goes to 0. ¥

Remark 7.1. It can be proved that in the critical case λ = µ > 0, the fluid limit
is constant and equal to π, i.e., if λ = µ > 0, then for all 0 < s < t and all ε > 0,

lim
N→+∞

[
max

x∈Nn:|x|=N
Px

(
sup

s≤u≤t

∥∥XN (u) − π
∥∥ ≥ ε

)]
= 0.

This convergence follows readily from Proposition 7.1 and the following coupling.
For 0 ≤ η ≤ λ, if Xη is a subcritical process with arrival rate λ−η and departure rate
λ = µ, then X and Xη can be coupled in such a way that ‖X(t)−X

η
(t)‖ ≤ Nη(t)

for all t ≥ 0, where Nη is a Poisson process with intensity η.
Note that the behavior of the fluid limit in the critical case does not make it

possible to infer the stability or the transience of process X. The analogy with the
M/M/1 queue nevertheless suggests that it could be recurrent null in this case.

In contrast, the behavior of the fluid limit shows that X is ergodic in the
subcritical case λ < µ:

Proposition 7.2. When λ < µ, the Markov process X is ergodic.

Proof. According to [Rob03, Corollary 9.8 p. 259], it is enough to show that for
some deterministic time T > 0,

lim
N→+∞

max
x∈Nn:|x|=N

Ex(LN (T )) = 0.

Recall that LN (T ) = L(NT )/N , and let ε > 0 be fixed: then, for x ∈ N
n with

|x| = N :

Ex

(
LN (T )

)
≤ ε + Ex

(
LN (T );LN (T ) > ε

)
≤ ε + (1 + λT )Px

(
LN (T ) > ε

)

+
1

N
Ex

(
Nλ(NT ) − λNT ;LN (T ) > ε

)
.
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where the second inequality comes from LN (T ) ≤ LN (0) + Nλ(NT )/N . For any
T ≥ 0, using Cauchy-Schwartz inequality, an upper bound on the last term is given
by

1

N
Ex

(
Nλ(NT ) − λNT ;LN (T ) > ε

)
≤ 1

N
E (|Nλ(NT ) − λNT |) ≤

√
λT

N
,

so that finally

max
x∈Nn:|x|=N

Ex

(
LN (T )

)
≤ ε + (1 + λT ) max

x∈Nn:|x|=N
Px

(
LN (T ) > ε

)
+

√
λT

N
,

and all is left to prove is that for some T > 0, max|x|=N Px

(
LN (T ) > ε

)
goes

to 0 as N grows to infinity: this is a direct consequence of Proposition 7.1 with
T = 1/(µ − λ) since x(T ) = 0. The proof is now complete. ¥
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Appendix A. Martingale Construction

This appendix is devoted to proving Theorem 3.1, which states the existence
of a fundamental family of local martingales. In Proposition A.1, we first establish
the harmonicity of a special function g, which has an integral form. Then a change
of variables leads to the local martingale introduced in Theorem 3.1.

A.1. An Integral Harmonic Function. The starting point is the generator Ω
of the Markov process X given, for any x ∈ N

n and any function f : R
n → R, by:

Ω(f)(x) =

n∑

i=1

λi

(
f(x + ei) − f(x)

)
+

n∑

i=1

µi

(
f(x − ei) − f(x)

)
1{xi>0}

+
∑

1≤i6=j≤n

qijxi

(
f(x + ej − ei) − f(x)

)
.

In addition to the irreducibility of Q = (qij)1≤i,j≤n, we will require that Q is diag-
onalizable in C, i.e., that there exists a set (ωj , 1 ≤ j ≤ n) of eigenvectors of Q that
generate R

n. The complex square matrix ω = (ωi,j)1≤i,j≤n where ωj = (ωi,j)1≤i≤n

is invertible.
We can assume without loss of generality that ωn = 1, denoting by 1 the

vector in R
n with all coordinates equal to 1, so that ωn is associated to the null

eigenvalue; more generally, for 1 ≤ j ≤ n, θj will denote the (possibly complex)
eigenvalue associated to ωj . The negative trace of Q is then given by −θ =

∑n
1 θi

with θ > 0.
In the sequel H will denote the hyperplane of R

n defined by

H =

{
v ∈ R

n :

n∑

i=1

πivi = 0

}
.

For j = 1, . . . , n − 1, ωj ∈ H since Qωj = θjωj for θj 6= 0 implies (in a matricial
form, where π is a row and ωj a column): πωj = (θj)

−1πQωj which is 0 since
πQ = 0. These n − 1 eigenvectors then generate H.

We recall some notations and results of Section 3. (Pt, t ∈ R) denotes the
Q-generated Markov semi-group of linear operators in R

n: Pt = etQ, extended to
all real indices t into a group. Each Pt has eigenvalues eθjt and eigenvectors ωj ,
j = 1, . . . , n. For any v ∈ R

n and t ≥ 0, we define

φ(v, t) = (φi(v, t), 1 ≤ i ≤ n) = P−tv.

If v ∈ R
n and ϕ(v, ·) is any primitive of

∑n
i=1 [µiφi(v, ·)/(1 + φi(v, ·)) − λiφi(v, ·)]

on some open subset V of {t ≥ 0 : ∀i = 1, . . . , n, 1 + φi(v, t) 6= 0}, then the
function hv(t, x) defined by

hv(t, x) = eϕ(v,t)
n∏

i=1

(1 + φi(v, t))
xi(17)

is space-time harmonic with respect to Ω in the domain V × N
∗n (see Proposi-

tion 3.1).
The suitable domain of integration for constructing our martingale will be:

D(t) = {v ∈ H : 1 + φ(v, t) > 0} , t ∈ R,
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where, for any u ∈ R
n, u ≥ 0 (resp. u > 0) means that ui ≥ 0 (resp. ui > 0) for

every i = 1, . . . , n.
For each t ∈ R, D(t) is an open subset of H. Moreover, it is clear from

the definition of D(t) and from the invariance of H under the group of operators
(Ps, s ∈ R) that, for any v ∈ R

n and any t ≥ 0,

v ∈ D(t) ⇐⇒ P−tv ∈ D(0).

So, for any t ∈ R, D(t) = Pt(D(0)). Then, since D(0) = {v ∈ R
n :

∑n
1 πivi =

0,1+v > 0} is clearly bounded, each D(t) = Pt(D(0)) for t ∈ R is bounded as well.
Define the subset A of H× R by:

A = {(v, t) : t ∈ R and v ∈ D(t)}.
The first step is to show that the following choice of ϕ makes sense:

ϕ(v, t) =

∫ t

−∞

n∑

i=1

(
µi

φi(v, s)

1 + φi(v, s)
− λiφi(v, s)

)
ds(18)

for (v, t) ∈ A. This is the object of the following two lemmas, which will also give
some regularity properties of ϕ in view of Proposition A.1.

Lemma A.1. If (v, t) ∈ R
n × R satisfies 1 + φ(v, t) ≥ 0 and v 6= −1, then

1 + φ(v, s) > 0 for all s < t. As a consequence:

t > s =⇒ D(t) ⊂ D(s), s, t ∈ R,(19)

and

D(t0) =
⋃

t>t0

D(t), t0 ∈ R.(20)

Proof. Let first remark that the irreducibility of Q implies that, for any r > 0 and
any (i, j) ∈ {1, . . . , n}, the probability Pr(i, j) that a Markov process with genera-
tor Q initiated at i is in state j at time r is positive. Indeed, if i = i0, i1, . . . , ik = j
is a path from i to j such that qil−1,il

> 0 for l = 1, . . . , k, then there is a positive
probability that the process has exactly followed this path by time r.
This implies that Pru > 0 for any r > 0 and u ∈ R

n such that u ≥ 0 and u 6= 0.
Now let (v, t) satisfy the hypotheses in the lemma, then 1 + φ(v, t) 6= 0 since

0 6= 1 + v = Pt

(
1 + P−tv

)
= Pt

(
1 + φ(v, t)

)
,

and the previous property applied to u = 1 + φ(v, t) and r = t − s for s < t gives,

1 + φ(v, s) = 1 + P−sv = Pt−s

(
1 + P−tv

)
= Pt−s

(
1 + φ(v, t)

)
> 0.

The implication t > s =⇒ D(t) ⊂ D(s) follows, noticing that −1 /∈ H.
To show (20) for t0 ∈ R, note that D(t0) contains the right hand side union

by (19), and that the reverse holds since the inequality 1 + φ(v, t0) > 0 extends to
some neighborhood of t0 for v ∈ D(t0). ¥

Lemma A.2. (i) For any i ∈ {1, . . . , n}, the two integrals
∫ 0

−∞
φi(v, s)ds and

∫ 0

−∞

φi(v, s)

1 + φi(v, s)
ds

are well defined for v ∈ D(0), continuous as functions of v on this domain and
respectively bounded and bounded above on D(0).
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The function ϕ0 can then be defined on D(0) by

ϕ0(v) =

∫ 0

−∞

n∑

i=1

(
µi

φi(v, s)

1 + φi(v, s)
− λiφi(v, s)

)
ds

and is continuous and bounded above on D(0).
(ii) The function ϕ given by (18) is well defined for (v, t) ∈ A and satisfies:

ϕ(v, t) = ϕ0(P−tv) (v, t) ∈ A.

The function ϕ is bounded above on A and continuous with respect to v ∈ D(t) for
fixed t ∈ R.

Proof. (i) Notice that, for fixed v ∈ R
n, the map s 7→ φ(v, s) = e−sQv is contin-

uous on R (with values in R
n). Moreover, if v ∈ H, it has a fast decay as s tends

to −∞ as a consequence of the exponential fast convergence of Pt(i, ·) to π (already
used in Section 5):

There exist some positive constants η and B1 such that, for any s ≤ 0

max
1≤i,j≤n

|P−s(i, j) − πj | ≤ B1 · eηs.(21)

This gives, for s ≤ 0 and v ∈ H,

‖φ(v, s)‖ ≤ B2 · eηs‖v‖,(22)

where B2 = nB1, which ensures the existence of the vectorial integral
∫ 0

−∞ φ(v, s)ds
for any v ∈ H. This integral is continuous with respect to v in H since, for v ∈ H,

∫ 0

−∞
P−svds =

∫ 0

−∞
(P−s − Π) vds =

(∫ 0

−∞
(P−s − Π) ds

)
v

where Π is the square matrix with all lines equal to π = (π1, . . . , πn) and the last
matricial integral has a coefficientwise meaning (and is well defined due to (21)).
This shows the integral

∫ 0

−∞ φ(v, s)ds as a linear function of v ∈ H, thus proving
its continuity with respect to v ∈ H. The boundedness of this function on D(0)
follows since D(0) has compact closure in H.

For the second integral, Lemma A.1 and the condition v ∈ D(0) first ensure
that 1 + φ(v, s) > 0 for s ≤ 0. The existence of this integral then again follows
from the continuity of s 7→ φ(v, s) and from the exponential decay in (22).

Let us now begin by proving that it is bounded above on D(0), writing
∫ 0

−∞

φi(v, s)

1 + φi(v, s)
ds =

∫ −1

−∞

φi(v, s)

1 + φi(v, s)
ds +

∫ 0

−1

φi(v, s)

1 + φi(v, s)
ds,

and upperbounding each term.
It is easy for the second one, since 1 + φi(v, s) > 0 implies that φi(v, s)/(1 +

φi(v, s)) ≤ 1. In particular,
∫ 0

−1

φi(v, s)

1 + φi(v, s)
ds ≤ 1.

The first term can be extended to v ∈ D(0) (again by Lemma A.1 and by the
exponential decay in (22)) and can be shown to be bounded on D(0). Indeed, for
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v ∈ D(0) and s ≤ −1, 1 + φi(v, s) is positive and tends to 1 as s tends to −∞
uniformly in v ∈ D(0) since, by (22),

sup
v∈D(0)

‖φ(v, s)‖ ≤ B2 · eηs sup
v∈D(0)

‖v‖.(23)

Then 1 + φi(v, s) is bounded below by some positive δ for (v, s) ∈ D(0)×]−∞,−1]

(by (23), this is the case on D(0)×]−∞,−κ] for κ large enough, and D(0)×[−κ,−1]

is compact), and the following bound holds for v ∈ D(0), using (23):
∣∣∣∣
∫ −1

−∞

φi(v, s)

1 + φi(v, s)
ds

∣∣∣∣ ≤
B2

δ
· sup

u∈D(0)

‖u‖
∫ −1

−∞
eηsds =

B2e
−η

δη
sup

u∈D(0)

‖u‖.

Let us now show the continuity of
∫ 0

−∞ φi(v, s)/(1 + φi(v, s))ds with respect
to v ∈ D(0), using the continuity of φi(v, s) for fixed s, together with Lebesgue’s
dominated convergence theorem. The difficulty is that φi(v, s)/(1 + φi(v, s)) is
not clearly dominated uniformly in v ∈ D(0) by some integrable function of s
on ]−∞, 0], since for s close to 0 and v close to the the portion of ∂D(0) where
1+vi = 0, the ratio φi(v, s)/(1+φi(v, s)) goes to infinity and is not easily controlled.

It is however possible to show local domination, using (20) in the particular
case t0 = 0 and dominating the integrand on each D(t), t > 0. This will prove
continuity on each D(t), t > 0, hence continuity on D(0) since the D(t), t > 0, are
open subsets of D(0). The domination uses the same argument as in the last point:
if t > 0, then

δ(t) = inf
{

1 + φi(v, s), (v, s) ∈ D(t)×]−∞, 0]
}

is positive. Then, for any v ∈ D(t) and s ≤ 0,
∣∣∣∣

φi(v, s)

1 + φi(v, s)

∣∣∣∣ ≤
B2

δ(t)
· eηs sup

u∈D(t)

‖u‖

where the right hand side is integrable on ]−∞, 0], and hence provides the required
domination.

(ii) We use the group structure of (Ps, s ∈ R) to rewrite both integrals as:
∫ t

−∞
φi(v, s)ds =

∫ 0

−∞
φi(v, s + t)ds =

∫ 0

−∞
φi(P−tv, s)ds

and
∫ t

−∞

φi(v, s)

1 + φi(v, s)
ds =

∫ 0

−∞

φi(v, s + t)

1 + φi(v, s + t)
ds =

∫ 0

−∞

φi(P−tv, s)

1 + φi(P−tv, s)
ds,

which ensures their existence for Ptv ∈ D(0), i.e., v ∈ D(t) or equivalently (v, t) ∈ A,
and proves the connexion between ϕ and ϕ0, hence the stated properties of ϕ. ¥

The function ϕ is now legitimately defined by (18) for t ∈ R and v ∈ D(t).
For fixed t ∈ R , ϕ(·, t) is continuous (hence measurable) with respect to v

in D(t) and bounded above on this domain.
Reversely, for fixed v ∈ D(0), ϕ(v, ·) is clearly C1 on the interval ] − ∞, tv[,

where tv = sup{t ≥ 0 : 1 + φ(v, t) > 0} > 0 (by continuity of φ(v, ·) on R), and
∂ϕ(v, t)/∂t =

∑n
1 [µiφi(v, t)/(1 + φi(v, t)) − λiφi(v, t)] on this interval.
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The following proposition constitutes the first step in defining a new space-
time harmonic function, obtained by integrating with respect to v ∈ D(t) the
parametrized family of functions hv given by (17), with ϕ given by (18).

As D(t) ⊂ H and H is an n−1 dimensional subspace of R
n which is isomorphic

to R
n−1 through the one to one linear mapping

H :
R

n−1 −→ H
u 7−→ û = (u,−∑n−1

i=1 πiui/πn)
,

the new harmonic function will rather take the form of an integral over the following
subset of R

n−1:

C(t) = H−1(D(t)) =
{
u ∈ R

n−1 : û ∈ D(t)
}

=
{
u ∈ R

n−1 : 1 + φ(û, t) > 0
}

.

Proposition A.1. For any locally Lebesgue-integrable f on R
n−1, the function

g(t, x) given by the formula

g(t, x) =

∫

C(t)

hû(t, x)f(u)du =

∫

C(t)

eϕ(û,t) ·
n∏

i=1

(1 + φi(û, t))
xi · f(u)du(24)

is space-time harmonic in the domain [0,+∞[×N
∗n.

Proof. The function g is well-defined on [0,+∞[×N
∗n. Indeed

∏n
1 (1 + φi(̂·, t))xi

is continuous on R
n−1 for fixed t ≥ 0 and x ∈ N

∗n, hence bounded on the bounded
set C(t) (since C(t) corresponds to D(t) through H−1). By Lemma A.2, eϕ(̂·,t) also
is continuous and bounded on C(t) since ϕ(·, t) is continuous and bounded above
on D(t). Then, since f is locally integrable, the product of these three functions is
integrable on C(t).

We have to show that ∂g/∂t exists and satisfies ∂g(t, x)/∂t + Ω(g(t, ·))(x) = 0.
As a rough argument, one expects that

∂g

∂t
(t, x) =

∫

C(t)

∂hû

∂t
(t, x) · f(u)du.(25)

Indeed the additional derivation term resulting from the t-dependency of the do-
main C(t) is bound to vanish, since hû(t, x) is zero for u on the frontier of C(t)
(recall that x ∈ N

∗n). Therefore, since Ω commutes with integration,

∂g

∂t
(t, x) + Ω(g(t, ·))(x) =

∫

C(t)

[
∂hû

∂t
(t, x) + Ω(hû(t, ·))(x)

]
· f(u)du = 0

by harmonicity of the functions hv, using Proposition 3.1 with V = [0, tv[.
To make this rigorous, all is needed is to prove Equation (25), by fixing some

arbitrary x ∈ N
∗n and t0 ≥ 0 and studying the ratio [g(t0 + δ, x) − g(t0, x)]/δ as δ

tends to zero. The monotonicity of the family of sets C(t) forces to distinguish the
two cases δ > 0 and (for t0 > 0) δ < 0. For the sake of shortness we will only present
here the case δ > 0, the other side being similar: both cases make a repeated use
of the mean-value theorem and of Lebesgue’s dominated convergence theorem.

To simplify notations, define for u ∈ C(t), t ≥ 0 and x ∈ N
∗n,

h(u, t, x) = hû(t, x) = eϕ(û,t)
n∏

i=1

(1 + φi(û, t))
xi .

Note that h inherits the derivability properties of ϕ with respect to t (the factor
involving φ being C1 on R): for fixed u ∈ C(0) and x ∈ N

∗n, h is C1 on ]−∞, tû[.
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Let x ∈ N
∗n and t0 ≥ 0 be fixed. For any positive δ, using the inclusion

D(t0 + δ) ⊂ D(t0) one can write:

g(t0 + δ, x) − g(t0, x)

δ
=

∫

C(t0+δ)

h(u, t0 + δ, x) − h(u, t0, x)

δ
f(u)du

−
∫

C(t0)\C(t0+δ)

h(u, t0, x)

δ
f(u)du.

Let first show that the first term tends to
∫
C(t0)

∂h
∂t (u, t0, x)f(u)du as δ tends to zero.

Using the mean value theorem, since h(u, ·, x) is C1 on [0, t0 + δ] for u ∈ C(t0 + δ),
this first term can be rewritten as∫

C(t0+δ)

∂h

∂t
(u, t0 + p(u)δ, x)f(u)du

for some p(u) ∈]0, 1[ depending on u, t0, x and δ.
As δ goes to zero, ∂h

∂t (u, t0 + p(u)δ, x)f(u) tends to ∂h
∂t (u, t0, x)f(u) and the

indicator function of C(t0 + δ) tends to the indicator function of C(t0) due to rela-
tion (20) which obviously extends to the sets C(t). The convergence of the first term
will then result from Lebesgue’s theorem by computing (we omit the variable (û, t)
under φ):

∂h

∂t
(u, t, x) = eϕ(û,t)

n∑

i=1

(1 + φi)
xi−1

∏

j 6=i

(1 + φj)
xj

(
µi − λiφi(1 + φi) + xi

∂φi

∂t

)
,

and then using the following domination. For 0 < δ < 1 and u ∈ R
n−1,

∣∣∣∣
∂h

∂t
(u, t0 + p(u)δ, x)f(u)1C(t0+δ)

∣∣∣∣ ≤ k(t0, x) · |f(u)| · 1C(t0),

where the right hand side is integrable on R
n−1, and k(t0, x) holds for:

sup
A

eϕ × sup
D(t0)×[0,t0+1]

∣∣∣∣∣∣

n∑

i=1

(1 + φi)
xi−1

∏

j 6=i

(1 + φj)
xj

(
µi − λiφi(1 + φi) + xi

∂φi

∂t

)∣∣∣∣∣∣
.

The convergence of the first term is thus proved.
We now prove that the second term vanishes as δ tends to 0. For any u ∈

C(t0)\C(t0+δ) there exists some index i (depending on u) such that 1+φi(û, t0) > 0
while 1 + φi(û, t0 + δ) ≤ 0, and this implies by the mean value theorem that

0 < 1 + φi(û, t0) ≤ −δ
∂φi

∂t
(û, t0 + q(u)δ) for some q(u) ∈]0, 1[ depending on u, t0

and δ. One can deduce the following upper bound, again assuming 0 < δ < 1:∣∣∣∣∣

∫

C(t0)\C(t0+δ)

h(u, t0, x)

δ
f(u)du

∣∣∣∣∣ ≤ k

∫

C(t0)\C(t0+δ)

|f(u)|du,

where k is the following constant:

sup
A

eϕ × max
1≤i≤n



 sup

D(t0)×[0,t0+1]

∣∣∣∣
∂φi

∂t

∣∣∣∣ × sup
D(t0)×{t0}

∣∣∣(1 + φi)
xi−1

∏

j 6=i

(1 + φj)
xj

∣∣∣



 .

The right hand side of the previous inequality converges to zero, again by
Lebesgue’s theorem, because f is integrable on the bounded set C(t0), and the sets
C(t0) \ C(t0 + δ) decrease to ∅ as δ decreases to zero, due to relation (20). ¥
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A.2. Change of Variables. The last step is now a change of variables in the
harmonic function given by the integral (24), for a suitable choice of f so as to
separate the time and space variables.

It informally consists in choosing as new variables the quantities πi

(
1+φi(v, t)

)

(1 ≤ i ≤ n), changing the domain D(t) into P = {v ∈ R
n : v > 0 and

∑n
i vi = 1}.

Formally, it will be slightly more complicated due to integration with respect to
Lebesgue’s measure on subdomains of R

n−1 (the C(t)’s), which forces to a round
trip from R

n−1 through R
n. So, to be correct, this change of variables will rather

transform the domain C(t) into the following one:

S =

{
u ∈ R

n−1 : u > 0 and
n−1∑

i=1

ui < 1

}
.(26)

We need to introduce some additional notations. Denote by ∆ the diagonal n × n
square matrix having π1, . . . , πn as its diagonal elements, by J the projection

J :
R

n −→ R
n−1

(v1, . . . , vn) 7−→ (v1, . . . , vn−1)
,

and by K, the hyperplane of R
n defined by

K =

{
v ∈ R

n :
n∑

i=1

vi = 1

}
.

The hyperplane K corresponds to R
n−1 through the one to one affine transformation

(analogous to H from R
n−1 to H):

K :
R

n−1 −→ K
u 7−→ ũ = (u, 1 − ∑n−1

i=1 ui)
,

Notice that the inverse mapping of K (resp. H) is given by the restriction of J
to K (resp. H). The announced change of variables is given by the t-depending
transformation

Ψt :
R

n−1 −→ R
n−1

u 7−→ J∆(P−tHu + 1)
.

The next lemma shows that Ψt can be considered for a change of variables:

Lemma A.3. For any t ≥ 0, Ψt is a one to one affine transformation on R
n−1

which inverse mapping is given by

Ψ−1
t (u) = JPt(∆

−1Ku − 1)

and which Jacobian is Jac(Ψt) = eθt
∏n−1

i=1 πi. Moreover, Ψt(C(t)) = S.

Proof. Since Ψt is clearly an affine transformation in R
n−1, its Jacobian is the one

of its linear part J∆P−tH. Now J∆ = ∆′J , where ∆′ is the diagonal (n−1)×(n−1)
square matrix having π1, . . . , πn−1 as its diagonal elements, so that

Jac (J∆P−tH) =
( n−1∏

i=1

πi

)
Jac (JP−tH) =

( n−1∏

i=1

πi

)
Jac (P−t) = eθt

n−1∏

i=1

πi.

The second equality results from the facts that J restricted to H coincides with H−1

and that H is generated by the first n − 1 eigenvectors of P−t, so that H is invari-
ant under P−t, which restriction to H has Jacobian

∏n−1
i=1 e−θit =

∏n
i=1 e−θit =

Jac (P−t) (= eθt) since θn = 0. In particular Jac(Ψt) 6= 0, so that Ψt is invertible.
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The formula for Ψ−1 easily results from the fact that ∆(·+ 1) maps H onto K
and that the inverse mapping of K is given by the restriction of J to K.

Now using C(t) =
{
u ∈ R

n−1 : 1 + P−tHu > 0
}

together with the facts that ∆
preserves the relation v > 0 and (again) that ∆(· + 1) maps H onto K, one gets
that Ψt(C(t)) is included in J({v ∈ K : v > 0}) = S. Equality results from a similar
argument for Ψ−1

t (S) ⊂ C(t). ¥

The transformation Ψt hence corresponds to the two following diagrams:

H ⊂ R
n K ⊂ R

n H ⊂ R
n K ⊂ R

n

C(t) ⊂ R
n−1 S ⊂ R

n−1 C(t) ⊂ R
n−1 S ⊂ R

n−1

H

∆(P−t·+1)

J

Ψt

J K

Pt(∆
−1·−1)

Ψ−1
t

All is left now is to choose for (24) a family of locally integrable functions
in R

n−1 which behave nicely with respect to the change of variables Ψt. It will be
given by the functions fα−1 for positive α’s, where, for u ∈ R

n−1 and v ∈ R
n,

f(u) = ψ(Hu) = ψ(û) and ψ(v) =

n−1∏

i=1

|(ω−1v)i|.

Here, for any v ∈ R
n and 1 ≤ i ≤ n, vi denotes the ith coordinate of v, so that the

(ω−1v)i’s (1 ≤ i ≤ n−1) are the first n−1 coordinates of v in the base (ω1, . . . , ωn)
of eigenvectors of Q. As will become clear in (29), the next lemma establishes the
property of ψ that makes it behave nicely with respect to the change of variables
given by Ψt, by isolating the dependency in time in a separate factor:

Lemma A.4. For any t ≥ 0 and v ∈ R
n, ψ(Ptv) = e−θtψ(v).

Proof. This result stems from diagonalizing Pt as ω−1Ptω = e−tΘ, where Θ is
the diagonal n × n square matrix having θ1, . . . , θn as its diagonal elements. This
readily gives ψ(Ptv) =

∏n−1
i=1 |(e−tΘω−1v)i| = e−θtψ(v). ¥

The main technical point is to establish that fα−1 is locally integrable: the
next lemma provides in addition a useful upper bound.

Lemma A.5. The function fα−1 is locally integrable on R
n−1 for any α > 0. More-

over, for any compact set T ⊂ R
n−1,

sup
0<α≤1

(
αn

∫

T

f(u)α−1du

)
< +∞.(27)

Proof. If α ≥ 1, fα−1 is continuous on R
n−1, hence locally integrable. So consider

only the case when 0 < α < 1
If the matrix ω has real coefficients (it can be chosen such when the eigenval-

ues θj of Q are real, which is in particular the case for a reversible Q), fα−1 is easily
shown to be integrable on any compact set T of R

n−1 by operating the change of
variable:

R
n−1 −→ R

n−1

u 7−→
(
(ω−1Hu)i

)
1≤i≤n−1

= Jω−1Hu
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which is linear and one to one, and transforms
∫

T
f(u)α−1du into the integral over

some compact subset of R
n−1 of the locally integrable function

∏n−1
i=1 |ui|α−1 (up

to the Jacobian constant factor). Then by considering A large enough so that
Jω−1H(T ) ⊂ [−A,A]n−1 and A ≥ 1, (27) is obtained from the fact that

∫

[−A,A]n−1

n−1∏

i=1

|ui|α−1
du = (2Aα)n−1α−(n−1) ≤ (2A)n−1α−n.

This is not directly possible when ω has non real coefficients. In this case
we can show that fα−1 is upper bounded by

∏n−1
i=1 |(Lu)i|α−1 for some invertible

(n−1) × (n−1) square matrix L with real coefficients. The change of variables
u 7→ Lu is then possible, showing (27) in this case similarly as before, which implies
the local integrability of fα−1 for 0 < α < 1.

Since α < 1 this amounts to lower bounding f by
∏n−1

i=1 |(Lu)i|.
Call C the complex invertible (n − 1) × (n − 1) square matrix associated to

the linear mapping Jω−1H on R
n−1, so that f(u) =

∏n−1
j=1 |(Cu)j |, and write

C = A + iB where A and B are real square matrices. For any p ∈ [0, 1], u ∈ R
n−1

and j ∈ {1, . . . , n − 1} , the following inequalities hold:

|(Cu)j | ≥ max{|(Au)j |, |(Bu)j |} ≥ |p(Au)j +(1−p)(Bu)j | =
∣∣((pA+(1−p)B)u

)
j

∣∣.

All is left now is to prove the existence of some p ∈ [0, 1] such that pA+(1− p)B is
invertible. It is done through considering the degree n−1 polynomial with complex
variable: det(A+zB), which is non zero at z = i (since det C 6= 0), hence not equal
to the null polynomial. It then cannot be zero on the whole real interval [0, 1],
which gives the result. ¥

Proof of Theorem 3.1. The previous lemma shows that fα−1 is a suitable func-
tion to plug in (24): since ϕ(v, t) = ϕ0(P−tv) for (v, t) ∈ A, rewriting (24) and using
the definition of f gives

g(t, x) =

∫

C(t)

eϕ(û,t)
n∏

i=1

(1 + φi(û, t))
xi f(u)α−1du

=

∫

C(t)

eϕ0(P−tHu)
n∏

i=1

(1 + P−tHu)
xi

i ψ(PtP−tHu)α−1du.

Expressing P−tHu through Ψtu for u ∈ R
n−1, one gets, since K is the inverse of J

restricted to K and ∆(P−tHu + 1) ∈ K,

P−tHu = ∆−1KΨtu − 1, u ∈ C(t),(28)

so that operating the change of variables given by Ψt yields by Lemma A.3

g(t, x) = eθt
n−1∏

i=1

πi

∫

S
eϕ0(∆

−1ũ−1)
n∏

i=1

(
∆−1ũ

)xi

i
ψ

(
Pt(∆

−1ũ − 1)
)α−1

du.(29)

Since ωn = 1, we have ψ(v −1) = ψ(v) for any v ∈ R
n, hence ψ

(
Pt(∆

−1ũ − 1)
)

=

ψ
(
Pt∆

−1ũ
)

= e−θtψ(∆−1ũ), where the last equality comes from Lemma A.4. The
following function g′, which only differs from g by a multiplicative factor, is thus
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again space-time harmonic:

g′(t, x) = eθt

∫

S
G(ũ)

n∏

i=1

(
∆−1ũ

)xi

i

(
e−θtψ(∆−1ũ)

)α−1
du

= e−αθt

∫

S
G(ũ)

n∏

i=1

(
ũi

πi

)xi

ψ(∆−1ũ)α−1du,

where we have defined

G(v) = eϕ0(∆
−1v−1), v ∈ P.

Hence defining F as
F (v) = ψ(∆−1v), v ∈ R

n

yields exactly the local martingale of Theorem 3.1. The second expression (2) is
easily obtained. All one needs to do to complete the proof of Theorem 3.1 is to
check the announced properties of these two functions F and G.

First, G is continuous and bounded on P since, by Lemma A.2, ϕ0 is continu-
ous and bounded above on D(0) (if v ∈ P, then ∆−1v − 1 ∈ H and ∆−1v > 0, so
that ∆−1v − 1 ∈ D(0)).

Moreover, F is clearly positive and continuous on R
n, and thus bounded on

the bounded subset P of R
n, and so (3) is the only property left to be checked.

Relation (28) and the fact that ψ(· − 1) = ψ(·), together with the definitions
of F and f , yield that F (ũ) = f(Ψ−1

0 u) according to the following steps:

F (ũ) = ψ(∆−1Ku) = ψ(∆−1KΨ0(Ψ
−1
0 u) − 1) = ψ(HΨ−1

0 u) = f(Ψ−1
0 u).

It follows by the change of variables induced by Ψ0 that, for α ≤ 1,∫

S
F (ũ)α−1du =

∫

S
f(Ψ−1

0 u)α−1du = Jac(Ψ0)

∫

T

f(u)α−1du,

where T = Ψ−1
0 (S). The property (3) then follows using Lemma A.5. ¥
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1. Introduction

File-sharing networks are distributed systems used to disseminate information
among a subset of the nodes of the Internet (overlay network). The general simple
principle is the following: once a node of the system has retrieved a file it becomes a
server for this file. The advantage of this scheme is that it disseminates information
in a very efficient way as long as the number of servers is growing rapidly. The
growth of the number of servers is not necessarily without bounds since a node
having this file may stop being a server after some time. These schemes have been
used for some time now in peer-to-peer systems such as BitTorrent or Emule, for
example to distribute large files over the Internet.

An improved version of this principle consists in splitting the original file into
several pieces (called “chunks”) so that a given node can retrieve simultaneously
several chunks of the same file from different servers. In this case, the rate to get a
given file may thus increase significantly. At the same time, the global capacity of
the file-sharing system is also increased since a node becomes a server of a chunk
as soon as it has retrieved it and not only when it has the whole file. This improve-
ment has interesting algorithmic implications since each node has to establish a
matching between chunks and servers. Strategies to maximize the global efficiency
of the file sharing systems have to be devised. See for instance Massoulié and Vo-
jnović [MV05], Bonald et al. [BMM+08] and Massoulié and Twigg [MT08].

The efficiency of these systems can be considered from different points of view.

Transient behavior: A new file is owned by one node, given there are
potentially N other nodes interested by it, how long does it take so that
a given node retrieves it ? significant fraction α ∈ (0, 1] of the N nodes

83
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retrieve it ? See Yang and de Veciana [YdV04], and Chapters III and IV
(corresponding respectively to [SRG08] and [RS09]).

Stationary behavior: A constant flow of requests enters, is the capacity
of the file-sharing system sufficient to cope with this flow ?

In this chapter, the stationary behavior is investigated in a stochastic context:
arrival times are random as well as chunk transmission times. In this setting
mathematical studies are quite scarce, see Qiu and Srikant [QS04], Simatos et
al. [SRG08], Susitaival et al. [SAV06] and references therein. A simple strat-
egy to disseminate chunks is considered: chunks are retrieved sequentially and a
given node can be the server of only the last chunk it got. See Massoulié and
Vojnović [MV05] and Parvez et al. [PWMC08] for a detailed motivation of this
situation.

In this chapter, the sequential scheme for disseminating a file that is divided
into n chunks is analyzed. New requests arrive according to a Poisson process
at rate λ, and become downloaders of chunk 1. Users who have obtained chunks
1, . . . , k act simultaneously as uploaders of chunk k and downloaders of chunk k+1,
and the users who have all the chunks leave the network at rate ν. The transmission
rate of chunk k is denoted by µk, and xk is the number of users having obtained
chunks 1, . . . , k. In this way, the total transmission rate of chunk k in the network
is µkxk. The flow of users can be modeled as the linear network depicted in Figure 1.

λ
x0 · · ·

µixi
xi

µi+1xi+1

· · ·
µnxn

xn

νxn

Figure 1. Transition rates of the linear network outside boundaries.

The main problem analyzed in the chapter is the determination of a constant λ∗

such that if λ < λ∗ [resp. λ > λ∗], then the associated Markov process is ergodic
[resp. transient]. As it will be seen, the constant λ∗ may be infinite in some cases
so that the file-sharing network is always stable independently of the value of λ.
The main technical difficulty to prove stability/instability results for this class of
stochastic networks is that, except for the input, the Markov process has unbounded
jump rates, in fact proportional to one of the coordinates of the current state. Note
that loss networks have also this characteristic but in this case, the stability problem
is trivial since the state space is finite. See Kelly [Kel91].

Fluid Limits for File-Sharing Networks. Classically, to analyze the stabil-
ity properties of stochastic networks, one can use the limits of a scaling of the
Markov process, the so-called fluid limits. The scaling consists in speeding up time
by the norm ‖x‖ of the initial state x, by scaling the state vector by 1/‖x‖ and
by letting ‖x‖ go to infinity. See Bramson [Bra08], Chen and Yao [CY01] and
Robert [Rob03] for example. This scaling is, however, better suited to “locally
additive” processes, that is, Markov processes that behave locally as random walks.
Since the transition rates are unbounded, it may occur that the corresponding fluid
limits have discontinuities; this complicates a lot the analysis of a possible limiting
dynamical system. Roughly speaking, this is due to the fact that, because of the
unbounded transition rates, events occur on the time scale t 7→ t log ‖x‖ instead of
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t 7→ ‖x‖t. See the case of the M/M/∞ queue in Chapter 9 of Robert [Rob03], and
Simatos and Tibi [ST09] for a discussion of this phenomenon in a related context.

A “fluid scaling” is nevertheless available for file-sharing networks. A possible
description for a possible candidate (xi(t)) for this limiting picture would satisfy
the following differential equations,

(1)





ẋ0(t) = λ − µ1x1(t),

ẋi(t) = µixi(t) − µi+1xi+1(t), 1 ≤ i ≤ n − 1,

ẋn(t) = µnxn(t) − νxn(t).

For the sake of simplicity the behavior at the boundaries {x : xi = 0}, i ≥ 1
is ignored in the above equations. This has been, up to now, one of the main
tools to investigate mathematical models of file-sharing networks. See Qiu and
Srikant [QS04], Núñez-Queija and Prabhu [NQP08] for example. In the context
of loss networks, an analogous limiting picture can be rigorously justified when the
input rates and buffer sizes are scaled by some N and the state variable by 1/N .
This scaling is not useful here, since the problem is precisely of determining the
values of λ for which the associated Markov is ergodic whereas in the above scaling λ
is scaled. From this point of view Equations (1) are therefore quite informal. They
can nevertheless give some insight into the qualitative behavior of these networks
but they cannot apparently be used to prove stability results. Their interpretation
near boundaries is in particular not clear.

Interacting Branching Processes. Since scaling techniques do not apply here,
one needs to resort to different techniques to study stability: coupling the linear
file-sharing network with interacting branching processes is a key idea. For i ≥ 1,
without the departures the process (Xi(t)) would be a branching process where
individuals give birth to one child at rate µi. This description of such a file-sharing
system as a branching process is quite natural. It has been used to analyze the
transient behavior of these systems. See Yang and de Veciana [YdV04], Dang et
al. [DPM07] and Simatos et al. [SRG08]. A departure for (Xi(t)) can be seen as
a death of an individual of class i and at the same time as a birth of an individual of
class i+1. The file-sharing network can thus be described as a system of interacting
branching processes with a constant input rate λ.

To tackle the general problem of stability, several key ingredients are used in
this chapter: Lyapunov functions, coupling arguments and precise estimations of
the growth of a branching process killed by another branching process. As it will
be seen, several results used come from the branching process formulation of the
stochastic model. In particular Section 3 is devoted to the derivation of results
concerning killed branching processes. The stability properties of networks with
a single-chunk file are analyzed in detail in Section 2. In Section 4, file-sharing
networks with n chunks are studied and the case n = 2 is investigated thoroughly.

2. Analysis of the Single-Chunk Network

This section is devoted to the study of a class of two-dimensional Markov jump
processes (X0(t),X1(t)), for x = (x0, x1) ∈ N

2, the corresponding Q-matrix Ωr is
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given by

(2)





Ωr[(x0, x1), (x0 + 1, x1)] = λ,

Ωr[(x0, x1), (x0 − 1, x1 + 1)] = µr(x0, x1)(x1 ∨ 1)1{x0>0},

Ωr[(x0, x1), (x0, x1 − 1)] = νx1,

where x 7→ r(x), referred to as the rate function, is some fixed function on N
2 with

values in [0, 1] and n ∨ m denotes max(n,m) for n, m ∈ N
2. This corresponds to

a more general model than the linear file-sharing network of Figure 1 in the case
n = 1, where for the sake of simplicity µ1 is noted µ in this section.

From a modeling perspective, this Markov process describes the following sys-
tem. Requests for a single file arrive with rate λ, the first component X0(t) is the
number of requests which did not get the file, whereas the second component is the
number of requests having the file and acting as servers until they leave the file-
sharing network. The constant µ can be viewed as the file transmission rate, and ν
as the rate at which servers having all chunks leave. The term r(x0, x1) describes
the interaction of downloaders and uploaders in the system. The term x1 ∨ 1 can
be interpreted so that there is one server permanent server in the network, which
is contacted if there are no other uploader nodes in the system. A related system
where there is always one permanent server for the file can be modeled by replacing
the term x1 ∨ 1 by x1 + 1. See the remark at the end of this section.

Several related examples of this class of models have been recently investigated.
The case

r(x0, x1) =
x0

x0 + x1

is considered in Núñez-Queija and Prabhu [NQP08] and and also in the paper
by Massoulié Vojnović [MV05]; in this case the downloading time of the file is
neglected. Susitaival et al. [SAV06] analyzes the rate function r(x)

r(x0, x1) = 1 ∧
(

α
x0

x1

)

with α > 0 and a∧ b denotes min(a, b) for a, b ∈ R. This model allows to take into
account that a request cannot be served by more than one server. See also Qiu and
Srikant [QS04].

With a slight abuse of notation, for 0 < δ ≤ 1, the matrix Ωδ will refer to
the case when the function r is identically equal to δ. Note that the boundary
condition x1 ∨ 1 for departures from the first queue prevents the second coordinate
from ending up in the absorbing state 0. Other possibilities are discussed at the
end of this section. In the following (Xr(t)) = (Xr

0 (t),Xr
1 (t)) [resp. (Xδ(t))] will

denote a Markov process with Q-matrix Ωr [resp. Ωδ].

Free Process. For δ > 0, Qδ denotes the following Q-matrix

(3)





Qδ[(y0, y1), (y0 + 1, y1)] = λ,

Qδ[(y0, y1), (y0 − 1, y1 + 1)] = µδ(y1 ∨ 1),

Qδ[(y0, y1), (y0, y1 − 1)] = νy1.

The process (Y δ(t)) = (Y δ
0 (t), Y δ

1 (t)), referred to as the free process, will denote a
Markov process with Q-matrix Qδ. Note that the first coordinate Y δ

0 may become
negative. The second coordinate (Y δ

1 (t)) of the free process is a classical birth-and-
death process. It is easily checked that if ρδ defined as δµ/ν is such that ρδ < 1,
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then (Y δ
1 (t)) is an ergodic Markov process converging in distribution to Y δ

1 (∞) and
that

(4) λ∗(δ)
def.
= νE(Y δ

1 (∞)) = µE(Y δ
1 (∞) ∨ 1) =

δµ

(1 − ρδ)(1 − log(1 − ρδ))
.

When ρδ > 1, then the process (Y δ(t)) converges almost surely to infinity. In the
sequel λ∗(1) is simply denoted λ∗.

In the following it will be assumed, Condition (C) below, that the rate function r
converges to 1 as the first coordinate goes to infinity; as will be seen, the special
case r ≡ 1 then plays a special role, and so before analyzing the stability properties
of (Xr(t)), one begins with an informal discussion when the rate function r is
identically equal to 1. Since the departure rate from the system is proportional to
the number of requests/servers in the second queue, a large number of servers in
the second queue gives a high departure rate, irrespectively of the state of the first
queue. The input rate of new requests being constant, the real bottleneck with
respect to stability is therefore when the first queue is large. The interaction of the
two processes (X1

0 (t)) and (X1
1 (t)) is expressed through the indicator function of

the set {X1
0 (t) > 0}. The second queue (X1

1 (t)) locally behaves like the birth-and-
death process (Y 1

1 (t)) as long as (X1
0 (t)) is away from 0. The two cases ρ1 > 1 and

ρ1 < 1 are considered.
If ρ1 > 1, i.e., µ > ν, the process (X1

1 (t)) is a transient process as long as
the first coordinate is non-zero. Consequently, departures from the second queue
occur faster and faster. Since, on the other hand, arrivals occur at a steady rate,
departures eventually outpace arrivals. The fact that the second queue grows when
(X0(t)) is away from 0 stabilizes the system independently of the value of λ, and
so the system should be stable for any λ > 0.

If ρ1 < 1, and as long as (X0(t)) is away from 0, the coordinate (X1
1 (t)) locally

behaves like the ergodic Markov process (Y 1
1 (t)). Hence if (X1

0 (t)) is non-zero for
long enough, the requests in the first queue see in average E(Y 1

1 (∞) ∨ 1) servers
which work at rate µ. Therefore, the stability condition for the first queue should
be

λ < µE(Y 1
1 (∞) ∨ 1) = λ∗

where λ∗ = λ∗(1) is defined by Equation (4). Otherwise if λ > λ∗, the system
should be unstable.

Markovian Notations. In the following, one will use the following convention, if
(U(t)) is a Markov process, the index u of Pu((U(t)) ∈ ·) will refer to the initial
condition of this Markov process.

Transience and Recurrence Criteria for (Xr(t)).

Proposition 2.1 (Coupling). If Xr(0) = Y 1(0) ∈ N
2, there exists a coupling of

the processes (Xr(t)) and (Y 1(t)) such that the relation

(5) Xr
0 (t) ≥ Y 1

0 (t) and Xr
1 (t) ≤ Y 1

1 (t),

holds for all t ≥ 0 and for any sample path.
For any 0 ≤ δ ≤ 1, if

τδ = inf{t ≥ 0 : r(Xr(t)) ≤ δ} and σ = inf{t ≥ 0 : Xr
0 (t) = 0},
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and if X1(0) = Y δ(0) ∈ N
2 then there exists a coupling of the processes (Xr(t))

and (Y δ(t)) such that, for any sample path, the relation

(6) Xr
0 (t) ≤ Y δ

0 (t) and Xr
1 (t) ≥ Y δ

1 (t)

holds for all t ≤ τδ ∧ σ.

Proof. Let Xr(0) = (x0, x1) and Y 1(0) = (y0, y1) be such that x0 ≥ y0 and
x1 ≤ y1, one has to prove that the processes (Xr(t)) and (Y 1(t)) can be constructed
such that Relation (5) holds at the time of the next jump of one of them. See
Leskelä [Les09] for the existence of couplings using analytical, nonconstructive
techniques.

The arrival rates in the first queue are the same for both processes. If x1 < y1,
a departure from the second queue for (Y 1(t)) or (Xr(t)) preserves the order rela-
tion (5) and if x1 = y1, this departure occurs at the same rate for both processes
and thus the corresponding instant can be chosen at the same (exponential) time.
For the departures from the first to the second queue, the departure rate for (Xr(t))
is µr(x0, x1)(x1 ∨ 1)1{x0>0} ≤ µ(y1 ∨ 1) which is the departure rate for (Y 1(t)),
hence the corresponding departure instants can be taken in the reverse order so that
Relation (5) also holds at the next jump instant. The first part of the proposition
is proved.

The rest of the proof is done in a similar way: The initial states Xr(0) = (x0, x1)
and Y δ(0) = (y0, y1) are such that x0 ≤ y0 and x1 ≥ y1. With the killing of the
processes at time τδ ∧ σ one can assume additionally that x0 6= 0 and that the
relation r(x0, x1) ≥ δ holds; Under these assumptions one can check by inspecting
the next transition that (6) holds. The proposition is proved. ¥

Proposition 2.2. Under the condition µ < ν, the relation

lim inf
t→+∞

Xr
0 (t)

t
≥ λ − λ∗

holds almost surely. In particular, if µ < ν and λ > λ∗, then the process (Xr(t)) is
transient.

Proof. By Proposition 2.1, one can assume that there exists a version of (Y 1(t))
such that Xr

0 (0) = Y 1
0 (0) and the relation Xr

0 (t) ≥ Y 1
0 (t) holds for any t ≥ 0. From

Definition (3) of the Q-matrix of (Y 1(t)), one has, for t ≥ 0,

Y 1(t) = Y 1(0) + Nλ(t) − A(t),

where (Nλ(t)) is a Poisson process with parameter λ and (A(t)) is the number of
arrivals (jumps of size 1) for the second coordinate (Y 1

1 (t)): in particular

E(A(t)) = µE

(∫ t

0

Y 1
1 (s) ∨ 1 ds

)
.

Since (Y 1
1 (t)) is an ergodic Markov process under the condition µ < ν, the ergodic

theorem in this setting gives that

lim
t→+∞

1

t
A(t) = lim

t→+∞
1

t
E(A(t)) = µE

(
Y 1

1 (∞) ∨ 1
)

= λ∗,

by Equation (4), hence (Y 1
0 (t)/t) converges almost surely to λ−λ∗. The proposition

is proved. ¥

The next result establishes the ergodicity result of this section.
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Proposition 2.3. If the rate function r is such that, for any x1 ∈ N,

(C) lim
x0→+∞

r(x0, x1) = 1,

and if µ ≥ ν, or if µ < ν and λ < λ∗ with

(7) λ∗ =
µ

(1 − ρ)(1 − log(1 − ρ))
,

and ρ = µ/ν, then (Xr(t)) is an ergodic Markov process.

Note that Condition (C) is satisfied for the functions r considered in the models con-
sidered by Núñez-Queija and Prabhu [NQP08] and in Susitaival et al. [SAV06].
See above.

Proof. If x = (x0, x1) ∈ R
2, |x| denotes the norm of x, |x| = |x0| + |x1|. The

proof uses Foster’s criterion as stated in Robert [Rob03, Theorem 9.7]. If there
exist constants K0, K1, t0, t1 and η > 0 such that, for x = (x0, x1) ∈ N

2,

E(x0,x1)(|Xr(t1)| − |x|) ≤ −t1, if x1 ≥ K1,(8)

E(x0,x1)(|Xr(t0)| − |x|) ≤ −ηt0, if x0 ≥ K0 and x1 < K1,(9)

then the Markov process (Xr(t)) is ergodic.
Relation (8) is straightforward to establish: if x1 ≥ K1, one gets, by considering

only K1 of the x1 initial servers in the second queue and the Poisson arrivals, that

E(x0,x1)(|Xr(1)| − |x|) ≤ λ − K1(1 − e−ν),

hence it is enough to take t1 = 1 and K1 = (λ + 1)/(1− e−ν) to have Relation (8).
One has therefore to establish Inequality (9). Let τδ and σ be the stopping

times introduced in Proposition 2.1, one first proves an intermediate result: for
any t > 0 and any x1 ∈ N,

(10) lim
x0→+∞

P(x0,x1)(σ ∧ τδ ≤ t) = 0.

Fix x1 ∈ N and t ≥ 0: for ε > 0, there exists D1 such that

Px1

(
sup

0≤s≤t
Y 1

1 (s) ≥ D1

)
≤ ε,

from Proposition 2.1, this gives the relation valid for all x0 ≥ 0,

P(x0,x1)

(
sup

0≤s≤t
Xr

1 (s) ≥ D1

)
≤ ε.

By Condition (C), there exists γ ≥ 0 (that depends on x1) such that r(x0, x1) ≥ δ
when x0 ≥ γ. As long as (Xr(t)) stays in the subset {(y0, y1) : y1 ≤ D1}, the tran-
sition rates of the first component (Xr

0 (t)) are uniformly bounded. Consequently,
there exists K such that, for x0 ≥ K,

P(x0,x1)

[
sup
s≤t

Xr
0 (s) ≤ γ, sup

s≤t
Xr

1 (s) ≤ D1,

]
≤ ε.

Relation (10) follows from the last two inequalities and the identity

P(x0,x1)(σ ∧ τδ ≤ t) ≤ P(x0,x1)

(
sup
s≤t

Xr
0 (s) ≤ γ

)
.
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One returns to the proof of Inequality (9). By definition of the Q-matrix of the
process (Xr(t)),

E(x0,x1)(|Xr(t|) − |x|) = λt − ν

∫ t

0

E(x0,x1)(X
r
1 (u))du, x ∈ N

2, t ≥ 0.

For any x ∈ N
2, there exists a version of (Y δ(t)) with initial condition Y δ(0) =

Xr(0) = x, and such that Relation (6) holds for t < τδ ∧ σ, in particular

Ex(Xr
1 (t)) ≥ Ex(Xr

1 (t); t < τδ ∧ σ)

≥ Ex(Y δ
1 (t); t < τδ ∧ σ) = Ex(Y δ

1 (t)) − Ex(Y δ
1 (t); t ≥ τδ ∧ σ).

Cauchy-Schwarz inequality shows that for any t ≥ 0 and x ∈ N
2

∫ t

0

Ex(Y δ
1 (u); τδ ∧ σ ≤ u) du ≤

∫ t

0

√
Ex

[(
Y δ

1 (u)
)2

]√
Px(τδ ∧ σ ≤ u) du

≤
√

Px(τδ ∧ σ ≤ t)

∫ t

0

√
Ex

[(
Y δ

1 (u)
)2

]
du,

by gathering these inequalities, and by using the fact that the process (Y δ
1 (t))

depends only on x1 and not x0, one finally gets the relation

(11)
1

t
Ex(|X(t)| − |x|) ≤ λ − ν

t

∫ t

0

Ex1
(Y δ

1 (u)) du + c(x1, t)
√

Px(τδ ∧ σ ≤ t)

with

c(x1, t) =
ν

t

∫ t

0

√
Ex1

[(
Y δ

1 (u)
)2

]
du.

Two cases are considered.

(1) If µ > ν, if δ < 1 is such that δµ > ν, the process (Y δ
1 (t)) is transient, so

that

lim
t→+∞

1

t

∫ t

0

Ex1
(Y δ

1 (u)) du = +∞,

for each x1 ≥ 0.
(2) If µ < ν, one takes δ = 1, or if µ = ν, one takes δ < 1 close enough to

1 so that λ < λ∗(δ). In both cases, λ < λ∗(δ) and the process (Y δ
1 (t))

converges in distribution, hence

lim
t→+∞

1

t

∫ t

0

Ex1
(Y δ

1 (u)) du = νE
(
Y δ

1 (∞)
)

= λ∗(δ) > λ

for each x1 ≥ 0.

Consequently in both cases, there exist constants η > 0, δ < 1 and t0 > 0 such that
for any x1 ≤ K1,

(12) λ − ν
1

t0

∫ t0

0

Ex1
(Y δ

1 (u))du ≤ −η,

with Relation (11), one gets that if x1 ≤ K1 then

1

t0
Ex(|X(t0)| − |x|) ≤ −η + c∗

√
Px(τδ ∧ σ ≤ t0),
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where c∗ = max(c(n, t0), 0 ≤ n ≤ K1). By Identity (10), there exists K0 such that,
for all x0 ≥ K0 and x1 ≤ K1, the relation

c∗
√

P(x0,x1)(τδ ∧ σ ≤ t0) ≤
η

2

holds. This relation and the inequalities (12) and (11) give Inequality (9). The
proposition is proved. ¥

Another Boundary Condition. The boundary condition x1 ∨ 1 in the transi-
tion rates of (X(t)), Equation (2), prevents the second coordinate from ending
up in the absorbing state 0. It amounts to suppose that a permanent server gets
activated when no node may offer the file. Another way to avoid this absorbing
state is to suppose that a permanent node is always active, which gives transition
rates with x1 + 1 instead. This choice was for instance made in Núñez-Queija and
Prabhu [NQP08]. All our results apply for this other boundary condition: the
only difference that is when ν > µ, the value of the threshold λ∗ of Equation (4) is
given by the quantity λ∗ = µν/(ν − µ).

3. Yule Processes with Deletions

This section introduces the tools which are necessary in order to generalize the
results of the previous section to the multi-chunk case n ≥ 2. A Yule process (Y (t))
with rate µ > 0 is a Markovian branching process with Q-matrix

(13) qY (x, x + 1) = µx, ∀x ≥ 0.

An individual gives birth to a child, or equivalently splits into two particles, with
rate µ. Let (σn) be the split times of a Yule process started with one particle, it is
not difficult to check that, for n ≥ 1,

σn
dist.
=

n∑

ℓ=1

Eµ
ℓ

ℓ

dist.
= max(Eµ

1 , . . . , Eµ
n),

where (Eµ
ℓ ) are i.i.d. exponential random variables with parameter µ. If λ > µ

then, by using Fubini’s Theorem,

E

(
+∞∑

ℓ=1

e−λσℓ

)
= E

(
+∞∑

ℓ=1

∫ +∞

0

λe−λx
1{σℓ≤x} dx

)
=

∫ +∞

0

λe−λx
+∞∑

ℓ=1

P(σℓ ≤ x) dx

=

∫ +∞

0

λe−λx 1 − e−µx

e−µx
dx =

µ

λ − µ
< +∞.(14)

In this section one considers some specific results on variants of this stochastic model
when some individuals are killed. In terms of branching processes, this amounts
to prune the tree, i.e., to cut some edges of the tree, and the subtree attached
to it. This procedure is fairly common for branching processes, in the Crump-
Mode-Jagers model for example, see Kingman [Kin75]. See also Neveu [Nev86] or
Aldous and Pitman [AP98]. Two situations are considered: the first one when the
deletions are part of the internal dynamics, so that each individual dies out after
an exponential time, and the other when killings are given by an exogenous process
and occur at fixed (random or deterministic) epochs.
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Constant Death Rate and Regeneration. Let (Z(t)) be the birth-and-death
process whose Q-matrix QZ is given by, for µZ > 0 and ν > 0,

(15) qZ(z, z + 1) = µZ(z ∨ 1) and qZ(z, z − 1) = νz.

The lifetime of an individual is exponentially distributed with parameter ν, and the
process restarts with one individual after some time when it hits 0. This process
can be described equivalently as a time-changed M/M/1 queue or as a sequence
of independent branching processes. As it will be seen these two viewpoints are
complementary.

In the rest of this part, µZ and ν are fixed, (Z(t)) is the Markov process with
Q-matrix QZ , (σn) is the sequence of times of its positive jumps, the birth instants,
and (Bσ(t)) is the corresponding counting process of (σn), for t ≥ 0,

Bσ(t) =
∑

i≥1

1{σi≤t}.

Proposition 3.1 (Queueing Representation). If Z(0) = z ∈ N, then

(16) (Z(t), t ≥ 0)
dist.
= (L(C(t)), t ≥ 0) ,

where (L(t)) is the process of the number of jobs of an M/M/1 queue with input
rate µZ and service rate ν and with L(0) = z and C(t) = inf {s > 0 : A(s) > t},
where

A(t) =

∫ t

0

1

1 ∨ L(u)
du.

Proof. It is not difficult to check that the process (M(t))
def.
= (L(C(t))) has the

Markov property. Let QM be its Q-matrix. For z ≥ 0,

P(L(C(h)) = z + 1 | L(0) = z) = µZE(C(h)) + o(h) = µZ(z ∨ 1)h + o(h),

hence qM (z, z + 1) = µZ(z ∨ 1). Similarly qM (z, z − 1) = νz. The proposition is
proved. ¥

Corollary 3.1. For any γ > (µZ − ν) ∨ 0 and z = Z(0) ∈ N,

(17) Ez

(
+∞∑

n=1

e−γσn

)
< +∞.

Proof. Proposition 3.1 shows that, in particular, the sequences of positive jumps
of (Z(t)) and of (L(C(t))) have the same distribution. Hence, if NµZ

= (tn) is the
arrival process of the M/M/1 queue, a Poisson process with parameter µZ , then,
with the notations of the above proposition, the relation

(σn)
dist.
= (A(tn))

holds. By using standard martingale properties of stochastic integrals with respect
to Poisson processes, see Rogers and Williams [RW87], one gets for t ≥ 0,

Ez


∑

n≥1

e−γA(tn)


 = Ez

(∫ ∞

0

e−γA(s)NµZ
(ds)

)
= µZEz

(∫ ∞

0

e−γA(s) ds

)

= µZ

∫ ∞

0

e−γu
Ez (Z(u) ∨ 1) du,(18)
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where Relation (16) has been used for the last equality. Kolmogorov’s equation for
the process (Z(t)) gives that

φ(t)
def.
= Ez(Z(t)) = µZ

∫ t

0

Ez (Z(u) ∨ 1) du − ν

∫ t

0

Ez (Z(u)) du

≤ (µZ − ν)

∫ t

0

φ(u) du + µZt,

therefore, by Gronwall’s Lemma,

φ(t) ≤ φ(0) + µZ

∫ t

0

ue(µZ−ν)u du ≤ z +
µZ

µZ − ν
te(µZ−ν)t.

From Equation (18), one concludes that

Ez

(
∑

n

e−γσn

)
= Ez

(
∑

n

e−γA(tn)

)
< +∞.

The proposition is proved. ¥

A Branching Process Before hitting 0, the Markov process (Z(t)) whose Q-matrix
is given by Relation (15) can be seen a Bellman-Harris branching process. Its
Malthusian parameter is given by α = µZ − ν. See Athreya and Ney [AN72].
In this setting, it describes the evolution of a population of independent particles,

at rate λ
def.
= µZ + ν each of these particles either splits into two particles with

probability p
def.
= µZ/(µZ + ν) or dies. These processes will be referred to as (p, λ)-

branching processes in the sequel.
A (p, λ)-branching process survives with positive probability only when p > 1/2,

in which case the probability of extinction q is equal to q = (1− p)/p = ν/µZ . The
main (and only) difference with a branching process is that Z regenerates after
hitting 0. When it regenerates, it again behaves as a (p, λ)-branching process
(started with one particle), until it hits 0 again.

Proposition 3.2 (Branching Representation). If Z(0) = z ∈ N and (Z̃(t)) is a
(p, λ)-branching process started with z ∈ N particles and T̃ its extinction time, then

(Z(t), 0 ≤ t ≤ T )
dist.
= (Z̃(t), 0 ≤ t ≤ T̃ ),

where T = inf{t ≥ 0 : Z(t) = 0} is the hitting time of 0 by (Z(t)).

Corollary 3.2. Suppose that µZ > ν. Then Pz-almost surely for any z ≥ 0, there
exists a finite random variable Z(∞) such that,

lim
t→+∞

e−(µZ−ν)tZ(t) = Z(∞) and Z(∞) > 0.

Proof. When µZ > ν, the process (Z(t)) couples in finite time with a super-
critical (p, λ)-branching process (Z̃(t)) conditioned on non-extinction; this follows
readily from Proposition 3.2 (or see the Appendix for details). Since for any su-
percritical (p, λ)-branching process, (exp(−(µZ − ν)t)Z̃(t)) converges almost surely
to a finite random variable Z̃(∞), positive on the event of non-extinction (see Ner-
man [Ner81]), one gets the desired result. ¥

Due to its technicality, the proof of the following result is postponed to the
Appendix; this result is used in the proof of Proposition 3.5.
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Proposition 3.3. Suppose that µZ > ν, if

(19) η∗(x) =
2 − x −

√
x(4 − 3x)

2(1 − x)
, 0 < x < 1,

then for any 0 < η < η∗(ν/µZ),

sup
z≥0

[
Ez

(
sup
t≥σ1

(
eη(µZ−ν)tBσ(t)−η

))]
< +∞.

A Yule Process Killed at Fixed Instants. In this part, it is assumed that,
provided that it is non-empty, at epochs σn, n ≥ 1, an individual is removed
from the population of an ordinary Yule process (Y (t)) with rate µW starting with
Y (0) = w ∈ N individuals. It is assumed that (σn) is some fixed non-decreasing
sequence. It will be shown that the process (W (t)) obtained by killing one individual
of (Y (t)) at each of the successive instants (σn) survives with positive probability
when the series with general term (exp(−µW σn)) converges.

In the following, a related result will be considered in the case where the se-
quence (σn) is given by the sequence of birth times of the process (Z(t)) introduced
above. See Alsmeyer [Als93] and the references therein for related models.

One denotes
κ = inf{n ≥ 1 : W (σn) = 0}.

The process (W (t)) can be represented in the following way

(20) W (t) = Y (t) −
κ∑

i=1

Xi(t)1{σi≤t},

where, for 1 ≤ i ≤ κ and t ≥ σi, Xi(t) is the total number of children at time t in
the original Yule process of the ith individual killed at time σi. In terms of trees,
(W (t)) can be seen as a subtree of (Y (t)): for 1 ≤ i ≤ κ, (Xi(t)) is the subtree of
(Y (t)) associated with the ith particle killed at time σi.

It is easily checked that (Xi(t− σi), t ≥ σi) is a Yule process starting with one
individual and, since a killed individual cannot have one of his descendants killed,
that the processes

(X̃i(t)) = (Xi(t + σi), t ≥ 0), 1 ≤ i ≤ κ,

are independent Yule processes.
For any process (U(t)), one denotes

(21) (MU (t))
def.
=

(
e−µW tU(t)

)
.

If (X̃(t)) is a Yule process with rate µW , the martingale (M
X̃

(t)) converges almost
surely and in L2 to a random variable M

X̃
(∞) with an exponential distribution

with mean X̃(0), and by Doob’s Inequality

E

(
sup
t≥0

M
X̃

(t)2
)

≤ 2 sup
t≥0

E
(
M

X̃
(t)2

)
< +∞.

See Athreya and Ney [AN72]. Consequently

e−µW tW (t) = MY (t) −
κ∑

i=1

e−µW σiM
X̃i

(t − σi)1{σi≤t},
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and for any t ≥ 0,
κ∑

i=1

e−µW σiM
X̃i

(t − σi)1{σi≤t} ≤
κ∑

i=1

e−µW σi sup
s≥0

M
X̃i

(s).

Assume now that
∑

i≥1 e−µW σi < +∞: then the last expression is integrable, and
Lebesgue’s Theorem implies that (MW (t)) = (exp(−µW t)W (t)) converges almost
surely and in L2 to

MW (∞) = MY (∞) −
κ∑

i=1

e−µW σiM
X̃i

(∞).

Clearly, for some w∗ large enough and then for any w ≥ w∗, one has

Ew(MW (∞)) ≥ w −
+∞∑

i=1

e−µW σi > 0,

in particular Pw(MW (∞) > 0) > 0 and Pw(W (t) ≥ 1,∀t ≥ 0) > 0. If Y (0) = w < w∗

and σ1 > 0, then Pw(Y (σ1) ≥ w∗ +1) > 0 and therefore, by translation at time σ1,
the same conclusion holds when the sequence (exp(−µW σi)) has a finite sum. The
following proposition has thus been proved.

Proposition 3.4. Let (W (t)) be a process growing as a Yule process with rate µW

and for which individuals are killed at non-decreasing instants (σn) with σ1 > 0. If

+∞∑

i=1

e−µW σi < +∞,

then as t gets large, and for any w ≥ 1, the variable (exp(−µW t)W (t)) con-
verges Pw-almost surely and in L2 to a finite random variable MW (∞) such that
Pw(MW (∞) > 0) > 0.

The previous proposition establishes the minimal results needed in Section 4.
However, Kolmogorov’s Three-Series, see Williams [Wil91], can be used in con-
junction with Fatou’s Lemma to show that (W (t)) dies out almost surely when the
series with general term (exp(−µW σn)) diverges.

A Yule Process Killed at the Birth Instants of a Bellman-Harris Process.

In this subsection, one considers a Yule process (Y (t)) with parameter µW with Q-
matrix defined by Relation (13) and an independent Markov process (Z(t)) with
Q-matrix defined by Relation (15). In particular µZ−ν is the Malthusian parameter
of (Z(t)). A process (W (t)) is defined by killing one individual of (Y (t)) at each of
the birth instants (σn) of (Z(t)). As before (Bσ(t)) denotes the counting process
association to the non-decreasing sequence (σn),

Bσ(t) =
∑

i≥1

1{σi≤t}.

Proposition 3.5. Assume that µZ − ν > µW , and let H0 be the extinction time
of (W (t)), i.e.,

H0 = inf{t ≥ 0 : W (t) = 0},
then the random variable H0 is almost surely finite and:



96 Chapter II. Stability Properties of Linear File-Sharing Networks

(i) Z(H0) − Z(0) ≤ eµW H0M∗
Y where

M∗
Y = sup

t≥0
e−µW tY (t).

(ii) There exists a finite constant C such that for any z ≥ 0 and w ≥ 1,

(22) E(w,z)(H0) ≤ C (log(w) + 1) .

Note that the subscript (w, z) refers to the initial state of the Markov process
(W (t), Z(t)).

Proof. Define α = µZ − ν. Concerning the almost sure finiteness of H0, note
that Equation (20) entails that W (t) ≤ Y (t) − Bσ(t) for all t ≥ 0 on the event
{H0 = +∞}. As t goes to infinity, both exp(−µW t)Y (t) and exp(−αt)Bσ(t) con-
verge almost surely to positive and finite random variables (see Nerman [Ner81]),
which implies, when α = µZ−ν > µW , that W (t) converges to −∞ on {H0 = +∞},
and so this event is necessarily of probability zero.

The first point (i) of the proposition comes from Identity (20) at t = H0:

(23) Z(H0) − Z(0) ≤ Bσ(H0) ≤ Y (H0) ≤ eµW H0M∗
Y .

By using the relation exp(x) ≥ x, Equation (22) follows from the following bound:
for any η < η∗(ν/µZ) (recall that η∗ is given by Equation (19)),

(24) sup
w≥1,z≥0

[
w−η

E(w,z)

(
eη(α−µW )H0

)]
< +∞.

So all is left to prove is this bound. Under P(w,z), (Y (t)) can be represented as the
sum of w i.i.d. Yule processes, and so M∗

Y ≤ M∗
Y,1 + · · · + M∗

Y,w with (M∗
Y,i) i.i.d.

distributed like M∗
Y under P(1,z); Inequality (23) then entails that

e(α−µW )H0 ≤
(

w∑

i=1

M∗
Y,i

)
× sup

t≥σ1

(
eαt/Bσ(t)

)
.

By independence of (M∗
Y,i) and (Bσ(t)), Jensen’s inequality gives for any η < 1

E(w,z)

(
eη(α−µW )H0

)
≤ wη

(
E

(
M∗

Y,1

))η
Ez

(
sup
t≥σ1

(
eηαtBσ(t)−η

))
,

hence the bound (24) follows from Proposition 3.3. ¥

One concludes this section with a Markov chain which will be used in Section 4.
Define recursively the sequence (Vn) by, V0 = v and

(25) Vn+1=

An(Vn)∑

k=1

Ik, n ≥ 0,

where (Ik) are identically distributed integer valued random variables independent
of Vn and An(Vn), and such that E(I1) = p for some p ∈ (0, 1). For v > 0, An(v) is
an independent random variable with the same distribution as Z(H0) under P(1,v),
i.e., with the initial condition (W (0), Z(0)) = (1, v).

The above equation (25) can be interpreted as a branching process with immi-
gration, see Seneta [Sen70], or also as an autoregressive model.
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Proposition 3.6. Under the condition µZ − ν > µW , if (Vn) is the Markov chain
defined by Equation (25) and, for K ≥ 0,

NK = inf{n ≥ 0 : Vn ≤ K},
then there exist γ > 0 and K ∈ N such that

(26) E(NK |V0 = v) ≤ 1

γ
log(1 + v), ∀v ≥ 0.

The Markov chain (Vn) is in particular positive recurrent.

Proof. For V0 = v ∈ N, Jensen’s Inequality and Definition (25) give the relation

(27) Ev log

(
1 + V1

1 + v

)
≤ E(1,v) log

[
1 + pZ(H0)

1 + v

]
.

From Proposition 3.5 and by using the same notations, one gets that, under P(1,v),

Z(H0) ≤ v + eµW H0M∗
Y ,

where (Y (t)) is a Yule process starting with one individual. By looking at the birth
instants of (Z(t)), it is easily checked that the random variable H0 under P(1,v) is
stochastically bounded by H0 under P(1,0). The integrability of H0 under P(1,0)

(proved in Proposition 3.5) and of M∗
Y give that the expression

log

(
1 + p(v + eµW H0M∗

Y )

1 + v

)

bounding the right hand side of Relation (27) is also an integrable random variable
under P(1,0). Lebesgue’s Theorem gives therefore that

lim sup
v→+∞

[
Ev log

(
1 + V1

1 + v

)]
≤ log p < 0.

Consequently, one concludes that v 7→ log(1 + v) is a Lyapunov function for the
Markov chain (Vn), i.e., if γ = −(log p)/2, there exists K such that for v ≥ K,

Ev log (1 + V1) − log (1 + v) ≤ −γ.

Foster’s criterion, see Theorem 8.6 of Robert [Rob03], implies that (Vn) is indeed
ergodic and that Relation (26) holds. ¥

4. Analysis of the Multi-Chunk Network

In this section it is assumed that a file of n chunks is distributed by the file-
sharing network within the following framework, corresponding to Figure 1. Chunks
are delivered in the sequential order, and, for k ≥ 1, requests with chunks 1, . . . , k
provide service for requests with one less chunk.

For 0 ≤ k < n and t ≥ 0, the variable Xk(t) denotes the number of requests
downloading the (k+1)st chunk; for k = n, Xn(t) is the number of requests having
all the chunks. When taking into account the boundaries in the transition rates
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described in Figure 1, one gets the following Q-matrix for the (n+1)-dimensional
Markov process (Xk(t), 0 ≤ k ≤ n):

Q(f)(x) = λ[f(x+ e0)− f(x)]+

n∑

k=1

µk(xk ∨ 1)[f(x+ ek − ek−1)− f(x)]1{xk−1>0}

+ νxn[f(x − en) − f(x)],

where x ∈ N
n+1, f : N

n+1 → R+ is a function and, for 0 ≤ k ≤ n, ek ∈ N
n+1 is the

kth unit vector. Note that, as before, to avoid absorbing states, it is assumed that
there is a server for the kth chunk when xk = 0. The first section corresponds to
the case n = 1 in a more general setting.

It is first shown in Proposition 4.1 that the network is stable for sufficiently
small input rate λ. Proposition 4.2 studies the analog of the two-dimensional case
with µ > ν, i.e., when µ1 > · · · > µn−1 > µn − ν > 0, it is proved that the network
is stable for any input rate λ. When this condition fails, it is shown that for n = 2
the network can only accommodate a finite input rate.

Proposition 4.1. Under the condition

(28)
n∑

k=1

λ

µk
< 1,

the Markov process (X(t)) is ergodic for any ν > 0.

Condition (28) is obviously not sharp as can be seen in the case n = 1 analyzed
in Section 2. But the proposition shows that there is always a positive threshold λ∗

such that the system is stable when λ < λ∗.

Proof. For x ∈ N
n+1 and (αk) ∈ R

n+1, define f(x) = α0x0 + · · · + αnxn, then

Q(f)(x) = λα0 −
n∑

k=1

(αk−1 − αk)µk(xk ∨ 1)1{xk−1>0} − νxnαn.

For ε > 0, one can choose (αk) so that α0 = 1 and

αk−1 − αk =
λ

µk
+ ε, 1 ≤ k ≤ n,

hence

αn = 1 −
(

nε +
n∑

i=1

λ

µk

)
,

so that, for ε small enough, the αk’s, 0 ≤ k ≤ n are decreasing and positive under
the condition of the proposition; in particular the set {x : f(x) ≤ K} is finite for
any K ≥ 0.

Take K = (1 + λ)/ν, then if x ∈ N
n+1 is such that f(x) ≥ K, either xk > 0 for

some 0 ≤ k ≤ n−1 and in this case

Q(f)(x) ≤ λ − µk+1(αk − αk+1) = −εµk+1 < 0,

or xn ≥ K so that
Q(f)(x) ≤ λ − νK = −1 < 0.

A Lyapunov function criteria for Markov processes shows that this implies that
the Markov process (X(t)) is ergodic. See Proposition 8.14 of Robert [Rob03] for
example. ¥
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Decreasing Service Rates. The analog of the “good” two-dimensional case µ > ν
is proved in the next proposition.

Proposition 4.2. Under the condition µ1 > µ2 > · · · > µn−1 > µn − ν > 0,
the Markov process (X(t)) = (Xk(t), 0 ≤ k ≤ n) describing the linear file-sharing
network is ergodic for any λ ≥ 0.

Proof. The proof procedes in two steps: first coupling arguments with Yule pro-
cesses allow to prove (30); then one can use the same technique as in the proof of
Proposition 2.3, see Robert [Rob03, Theorem 9.7].

Step 1 (coupling). Let (Wn(t)) be the process with Q-matrix defined by Rela-
tion (15) with µZ = µn and starting at Wn(0) = wn ≥ 1. Since µn > ν, the process
(exp(−(µn−ν)t)Wn(t)) converges almost surely to a finite and positive random vari-
able MWn

(∞) by Corollary 3.2. Moreover, since µn−1 > µn − ν > 0, Corollary 3.1
entails that the birth instants (σn

ℓ ) of this process are such that

∑

ℓ≥1

e−µn−1σn
ℓ < +∞, almost surely.

Let (Yn−1(t)) be an independent Yule process with parameter µn−1 with initial
condition Yn−1(0) = wn−1 ≥ 1 and (Wn−1(t)) the resulting process when its indi-
viduals are killed at the instants (σn

ℓ ) of births of (Wn(t)): the previous equation
and Proposition 3.4 show that (Wn−1(t)) can survive forever with a positive prob-
ability.

Let (Yn−2(t)) be an independent Yule process starting from wn−2 ≥ 1 with
parameter µn−2. Define (Wn−2(t)) the resulting process when the individuals of
(Yn−2(t)) are killed at the birth instants (σn−1

ℓ ) of (Wn−1(t)). Since µn−2 > µn−1,
the birth instants (σ̃n−1

ℓ ) of (Yn−1(t)) satisfy

+∞∑

ℓ=1

e−µn−2σ̃n−1
ℓ < +∞

almost surely by Equation (14) (which still holds for a Yule process starting with
more than one particle). Since the birth instants (σn−1

ℓ ) of (Wn−1(t)) are a sub-
sequence of (σ̃n−1

ℓ ), the same relationship holds for (σn−1
ℓ ), and therefore, with a

positive probability, the three processes (e−(µn−ν)tWn(t)), (e−µn−1tWn−1(t)) and
(e−µn−2tWn−2(t)) converge simultaneously to positive and finite random variables
MWn

(∞), MWn−1
(∞) and MWn−2

(∞), respectively. This construction can be re-
peated inductively to give the existence of n processes (Wk(t), k = 1, . . . , n) such
that (σk

ℓ ) is the sequence of birth times of Wk, Wn is the birth-and-death process
with Q-matrix (15), Wk for 1 ≤ k ≤ n − 1 is a Yule process with parameter µk

killed at (σk+1
ℓ ), and the event E = {MW1

(∞) > 0, . . . ,MWn
(∞) > 0} has a pos-

itive probability. On this event, Wk(t) ≥ 1 for all t ≥ 0 and 1 ≤ k ≤ n − 1,
and

lim
t→+∞

Wn(t) = +∞.
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For 0 ≤ k ≤ n−1, one defines (XS
k (t)) = (XS

k,n−k(t), . . . ,XS
k,n(t)), the kth saturated

system, as the (k+1)-dimensional Markov process with generator

(29) QS
k (f)(x) = µn−k(xn−k ∨ 1)[f(x + en−k) − f(x)]

+
k∑

ℓ=1

µn−k+ℓ(xn−k+ℓ ∨ 1)[f(x + en−k+ℓ − en−k+ℓ−1) − f(x)]1{xn−k+ℓ−1>0}

+ νxn[f(x − en) − f(x)],

where x ∈ N
k+1 and f : N

k+1 → R+ is an arbitrary function. Compared with
the process (Xℓ(t), 1 ≤ ℓ ≤ n) with generator Q, it amounts to look at the k+1
last queues (Xn−k(t), . . . ,Xn(t)) under the assumption that the queue n−k−1 is
saturated, i.e., Xn−k−1(t)≡ + ∞ for all t ≥ 0.

Note that for any 0 ≤ k ≤ n − 1, the transition rates of the Markov processes
(Wn−ℓ(t), 0 ≤ ℓ ≤ k) and (XS

k,n−ℓ(t), 0 ≤ ℓ ≤ k) are identical as long as no
coordinate hits 0; one thus concludes that, with positive probability, the relation

lim
t→+∞

XS
k,n(t) = +∞

holds when XS
k,n−ℓ(0) ≥ 1, ℓ = 0, . . . , k. Consequently, since the set (N − {0})k+1

can be reached with positive probability from any initial state in N
k+1 by (XS

k (t)),
then

(30) lim
t→+∞

E(XS
k,n(t)) = +∞.

Step 2 (Foster’s criterion). We use Foster’s criterion as stated in Theorem 9.7 of
Robert [Rob03]. First we inspect the case when Xn(0) is large, then the case when
Xn(0) is bounded and Xn−1(0) is large, etc. . . The key idea is that when Xn−k−1(0)
is large, then the process (Xn−k(t), . . . ,Xn(t)) essentially behaves as the process
(XS

k (t)), for which Relation (30) ensures that the output rate is arbitrarily large.
Let X(0) = x = (xk) ∈ N

n+1, since the last queue serves at rate ν each request,
for t ≥ 0,

E(‖X(t)‖) ≤ ‖x‖ + λt − xn

(
1 − e−νt

)
,

where ‖x‖ = x0 + · · · + xn for x = (x0, . . . , xn) ∈ N
n+1. Define tn = 1 and let Kn

be such that λtn − K1(1 − exp(−ν)) ≤ −1, so that the relation

Ex(‖X(tn)‖) − ‖x‖ ≤ −1,

holds when xn ≥ Kn.

From Equation (30) with k = 0, one gets that there exists some tn−1 such that
for any xn ≤ Kn,

ν

∫ tn−1

0

Exn

(
XS

0,n(u)
)

du ≥ λtn−1 + 2.

The two processes (XS
0 (t)) and (X(t)) can be built on the same probability space

such that if they start from the same initial state, then the two processes (XS
0,n(t))

and (Xn(t)) are identical as long as Xn−1(t) stays positive. Since moreover the
hitting time inf{t ≥ 0 : Xn−1(t) = 0} goes to infinity as xn−1 goes to infinity
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for any xn ≤ Kn, one gets that there exists Kn−1 such that if xn−1 ≥ Kn−1 and
xn < Kn, then the relation

Ex(‖X(tn−1)‖) − ‖x‖ = λtn−1 − ν

∫ tn−1

0

Ex(Xn(u)) du

≤ λtn−1 −
(

ν

∫ tn−1

0

Exn

(
XS

0,n(u)
)

du − 1

)
≤ −1

holds.

By induction, one gets in a similar way that there exist constants tn, . . . , t0
and Kn, . . . ,K0 such that for any 0 ≤ ℓ ≤ n, if xn ≤ Kn, xn−1 ≤ Kn−1, . . . ,
xn−ℓ+1 ≤ Kn−ℓ+1 and xn−ℓ > Kn−ℓ, then

Ex(‖X(tn−ℓ)‖) − ‖x‖ ≤ −1.

Theorem 8.13 of Robert [Rob03] shows that (X(t)) is an ergodic Markov process.
The proposition is proved. ¥

Analysis of the Two-Chunk Network. In this subsection, one investigates the
case when the monotonicity condition µ1 > · · · > µn−1 > µn − ν > 0 fails. In
general we conjecture the existence of bottlenecks which implies that the network
can only accommodate a finite input rate. For instance, when µn − ν < 0, then
it is easily seen that the network is unstable for λ > λ∗ where λ∗ is defined in
Equation (32) below.

The first non-trivial case occurs for n = 2, for which the monotonicity condition
breaks in two situations, either when µ2 − ν > µ1 or when µ2 < ν. The latter case
can be dealt in fact with the exact same arguments as before. See Proposition 4.4.

The actual difficulty is when µ2 − ν > µ1: then the stationary behavior of
(X2(t)) is linked to the stationary behavior of the first saturated model (XS

1 (t))
defined through its Q-matrix (29). The difficulty in this case is that one needs to
compare two processes which grow exponentially fast.

Proposition 4.3. Assume that µ2−ν > µ1, then the first saturated process (XS
1 (t))

with Q-matrix defined by Equation (29) is ergodic.

Corollary 4.1. If µ2 − ν > µ1 and if

λ∗
2

def.
= νEπS

(
XS

1,2(0)
)
,

where πS is the invariant distribution of the Markov process (XS
1 (t)), then the

process (X(t)) = (Xk(t), k = 0, 1, 2) describing the linear file-sharing network with
parameters λ, µ1, µ2 and ν is ergodic for λ < λ∗

2 and transient for λ > λ∗
2.

Sketch of Proof. The proof of the transience when λ > λ∗
2 follows similarly as

in Section 2: when X0(0) is large, the process (X1(t),X2(t)) can be coupled for
some time with the second saturated system (XS

1 (t)). Since the output rate λ∗
2 of

this system is smaller than the input rate λ, this implies that (X0(t)) builds up,
and it can indeed be shown that X0(t)/t converges almost surely to λ − λ∗

2.
The ergodicity when λ < λ∗

2 is slightly more complicated, but it involves the
same arguments as the ones employed in the proof of Proposition 4.2. The details
are omitted. ¥



102 Chapter II. Stability Properties of Linear File-Sharing Networks

Proof of Proposition 4.3. Denote (XS
1 (t)) = (XS

1,1(t),X
S
1,2(t)), then as long as

the first coordinate XS
1,1 is positive, the process (XS

1 (t)) has the same distribution
as (W (t), Z(t)) introduced in Section 3: (Z(t)) is a Bellman-Harris process with
Malthusian parameter µ2−ν and (W (t)) is a Yule process with parameter µ1 killed
at times of births of (Z(t)).

By Proposition 3.5 and since µ2 − ν > µ1, one has that (XS
1,1(t)) returns

infinitely often to 0. When (XS
1,1(t)) is at 0 it jumps to 1 after an exponential

time with parameter µ1, one denotes by (Eµ1,n) the corresponding i.i.d. sequence
of successive residence times at 0. One defines the sequence (Sn) by induction,
S0 = 0 and then

Sn+1 = inf{t > Sn : XS
1,1(t) = 0} + Eµ1,n+1, n ≥ 0.

For n ≥ 1, XS
1,1(Sn) = 1 and for n ≥ 0, define Mn

def.
= XS

1,2(Sn). With the
notations of Proposition 3.5, (XS

1,1(t)) hits 0 after a duration of H0,n and at that
time (XS

1,2(t)) is at Z(H0,n) with the initial condition Z(0) = Mn; while XS
1,1 is

still at 0, the dynamics of XS
1,2 is simple, since it just empties. Finally, at time

Sn+1 = Sn + H0,n + Eµ1,n+1, (XS
1,1(t)) returns to 1 and at this instant the location

of (XS
1,2(t)) is given by

XS
1,2(Sn+1) = Mn+1 =

Z(H0,n)∑

i=1

1{Eν,i>Eµ1,n+1},

where (Eν,i) are i.i.d. exponential random variables with parameter ν, the ith
variable being the residence time of the ith request in node 2. Consequently,
(Mn, n ≥ 1) is a Markov chain whose transitions are defined by Relation (25)
with p = ν/(ν + µ1); note that (Mn, n ≥ 0) has the same dynamics only when
XS

1,1(0) = 1.
Define for any K > 0 the stopping time TK

TK = inf{t ≥ 0 : XS
1,2(t) ≤ K,XS

1,1(t) = 1}.
The ergodicity of (XS

1 (t)) will follow from the finiteness of E(x1,x2)(TK) for some K

large enough and for arbitrary x = (x1, x2) ∈ N
2. The strong Markov property of

(XS
1 (t)) applied at time S1 gives

E(x1,x2)(TK) ≤ 2E(x1,x2)(S1) + E(x1,x2)

[
E(1,XS

1,2(S1))(TK)
]
,

and so one only needs to study TK conditioned on {XS
1,1(0) = 1} since E(x1,x2)(S1)

is finite in view of Proposition 3.5.
Then, on this event and with NK defined in Proposition 3.6, the identity

(31) TK =

NK∑

i=0

(H0,i + Eµ1,i)

holds. For i ≥ 0, the Markov property of (Mn, n ≥ 0) gives

E(x1,x2)

(
H0,i1{i≤NK}

)
= E(x1,x2)

(
E(1,Mi) (H0)1{i≤NK}

)

With the same argument as in the proof of Proposition 3.6, one has

E(1,Mi)(H0) ≤ E(1,0)(H0) < +∞,
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with Equations (31) and (26) of Proposition (3.6), one gets that for some γ > 0
and some K > 0,

E(x1,x2)(TK) ≤ 2E(x1,x2)(S1) + C
(
1 + E(x1,x2)

[
log

(
1 + XS

1,2(S1)
)])

with the constant C = (E(1,0)(H0)+1/µ2)/γ. This last term is finite for any (x1, x2)
in view of Proposition 3.5, which proves the proposition. ¥

Proposition 4.4. If ν > µ2 and

(32) λ∗ def.
=

µ2

(1 − µ2/ν)(1 − log(1 − µ2/ν))
,

then the Markov process (X(t)) = (Xk(t), k = 0, 1, 2) is transient if λ > λ∗ and
ergodic if λ < λ∗.

Sketch of Proof. The result for transience comes directly from the fact that the
last coordinate is stochastically dominated by the birth-and-death process (Y 1

1 (t))
of Section 2.

As before, the arguments employed in the proof of Proposition 4.2 to prove
ergodicity can also be used, for this reason they are only sketched. One has in fact
to consider the following situations.

• If there are many customers in the last queue, then the total number of
customers instantaneously decreases.

• If there are many customers in the second queue, then the last queue has
time to get close to stationarity, the input rate is λ and the output rate
is λ∗.

• Finally, if there are many customers in the first queue, then it is easily
seen that the second queue builds up, since it grows like a Yule process
killed at times (σn) where the sequence (σn) essentially grows linearly
since the last queue is stable. Hence the second queue reaches high values
and the last queue offers an output rate of λ∗.

Hence when λ < λ∗, the Markov process (X(t)) is ergodic. ¥



104 Chapter II. Stability Properties of Linear File-Sharing Networks

Appendix A. Proof of Proposition 3.3

In this appendix the notations of Section 3 are used. Since the random variable
(Bσ(t) | Z(0) = 0) is stochastically smaller than (Bσ(t) | Z(0) = z) for any z ∈ N,
it is enough to show that for η < η∗(ν/µZ)

E0

[
sup
t≥σ1

(
eηαtBσ(t)−η

)]
< +∞,

where α = µZ − ν > 0.
Note that the process (Bσ(t+σ1), t ≥ 0) under P0 has the same distribution as

(Bσ(t) + 1, t ≥ 0) under P1, and by independence of σ1, an exponentially random
variable with parameter µZ , and (Bσ(t + σ1), t ≥ 0), one gets

E0

[
sup
t≥σ1

(
eηαtBσ(t)−η

)]
= E0 (eηασ1) E1

[
sup
t≥0

(
eηαt (Bσ(t) + 1)

−η
)]

.

Since α < µZ and η∗(ν/µZ) < 1, then E0 (exp(ηασ1)) is finite, and all one needs
to prove is that the second term is finite as well.

Define τ as the last time Z(t) = 0:

τ = sup{t ≥ 0 : Z(t) = 0},
with the convention that τ = +∞ if (Z(t)) never returns to 0. Recall that, because
of the assumption µZ > ν, with probability 1, the process (Z(t)) returns to 0 a
finite number of times.

Conditioned on the event {τ = +∞}, the process (Z(t)) is a (p, λ)-branching
process conditioned on survival, with λ = µZ + ν and p = µZ/λ. Such a branch-
ing process conditioned on survival can be decomposed as Z = Z(1) + Y , where
(Y (t)) is a Yule process (Y (t)) with parameter α. See Athreya and Ney [AN72].
Consequently, for any 0 < η < 1,

E1

[
sup
t≥0

(
eηαt (Bσ(t) + 1)

−η
)
| τ = +∞

]
≤ E1

[
sup
t≥0

(
eηαtY (t)−η

)]
.

Since the nth split time tn of (Y (t)) is distributed like the maximum of n i.i.d.
exponential random variables, Y (t) for t ≥ 0 is geometrically distributed with
parameter 1 − e−αt, hence,

sup
t≥0

[
eηαt

E1

(
1

Y (t)η

)]
= sup

t≥0


e−(1−η)αt

∑

k≥1

(1 − e−αt)k−1

kη




≤ sup
0≤u≤1


(1 − u)1−η

∑

k≥1

uk−1

kη


 .

For 0 < u < 1, the relation

(1 − u)1−η
∑

k≥1

uk−1

kη
≤ (1 − u)1−η

∫ ∞

0

ux

(1 + x)η
dx,

=

(
1 − u

− log u

)1−η ∫ ∞

0

e−x

(x − log u)η
dx,
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holds, hence

sup
t≥0

[
eηαt

E1

(
1

Y (t)η

)]
< +∞.

The process (e−αtY (t)) being a martingale, by convexity the process (eηαtY (t)−η)
is a non-negative sub-martingale. For any η ∈ (0, 1) Doob’s Lp inequality gives the
existence of a finite q(η) > 0 such that

E1

[
sup
t≥0

(
eηαtY (t)−η

)]
≤ q(η) sup

t≥0

[
eηαt

E1

(
1

Y (t)η

)]
< +∞.

The following result has therefore been proved.

Lemma A.1. For any 0 < η < 1,

E1

[
sup
t≥0

(
eηαt (Bσ(t) + 1)

−η
)∣∣∣∣ τ = +∞

]
< +∞.

On the event {τ < +∞}, (Z(t)) hits a geometric number of times 0 and then
couples with a (p, λ)-branching process conditioned on survival. On this event,

sup
t≥0

(
eηαt (Bσ(t) + 1)

−η
)

= max

(
sup

0≤t≤τ

(
eηαt (Bσ(t) + 1)

−η
)

, sup
t≥τ

(
eηαt (Bσ(t) + 1)

−η
))

≤ eηατ

(
1 + sup

t≥0

(
eηαt (B′

σ(t) + 1)
−η

))

where B′
σ(t) for t ≥ τ is the number of births in (τ, t] of a (p, λ)-branching process

conditioned on survival and independent of the variable τ , consequently

E1

[
sup
t≥0

(
eηαt (Bσ(t) + 1)

−η
)∣∣∣∣ τ < +∞

]
≤ E1 (eηατ | τ < +∞)

×
(

1 + E1

[
sup
t≥0

(
eηαt (Bσ(t) + 1)

−η
)∣∣∣∣ τ = +∞

])
.

In view of Lemma A.1, the proof of Proposition 3.3 will be finished if one can prove
that

E1 (eηατ | τ < +∞) < +∞,

which actually comes from the following decomposition: under P1( · | τ < +∞), the
random variable τ can be written as

τ =

1+G∑

k=1

(Tk + EµZ ,k)

where G is a geometric random variable with parameter q = ν/µZ , (Tk) is an i.i.d.
sequence with the same distribution as the extinction time of a (p, λ)-branching
process starting with one particle and conditioned on extinction and (EµZ ,k) are
i.i.d. exponential random variables with parameter µZ .

Since q is the probability of extinction of a (p, λ)-branching process started
with one particle, G + 1 represents the number of times (Z(t)) hits 0 before going
to infinity. This representation entails

E1 (eηατ | τ < +∞) = E
(
γ(η)G+1

)
where γ(η) = E

(
eηα(T1+EµZ,1)

)
.



106 Chapter II. Stability Properties of Linear File-Sharing Networks

A (p, λ)-branching process conditioned on extinction is actually a (1 − p, λ)-
branching process. See again Athreya and Ney [AN72]. Thus T1 satisfies the
following recursive distributional equation:

T1
dist.
= Eλ + 1{ξ=2}(T1 ∨ T2),

where P(ξ = 2) = 1−p and Eλ is an exponential random variable with parameter λ.
This equation yields

P(T1 ≥ t) ≤ e−λt + 2λ(1 − p)

∫ t

0

P(T1 ≥ t − u)e−λu du,

and Gronwall’s Lemma applied to the function t 7→ exp(λt)P(T1 ≥ t) gives that

P(T1 ≥ t) ≤ e(λ−2λp)t = e(ν−µZ)t

hence for any 0 < η < 1,

E1(e
ηαT1) ≤ 1

1 − η
.

Since G is a geometric random variable with parameter q, E
(
γ(η)G

)
is finite if and

only if γ(η) < q. Since finally

γ(η) =
µZ

µZ − ηα
E

(
eηαT1

)
≤ µZ

(1 − η)(µZ − ηα)
,

one can easily check that γ(η) < q for η < η∗(ν/µZ) as defined by Equation (19),
which concludes the proof of Proposition 3.3.
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1. Introduction

This chapter analyzes the performance of a simple file sharing principle during
a flash crowd scenario when a popular content becomes available on a peer-to-
peer network. It is supposed that a peer is willing to share a given file with a
community of N peers, which are initially asleep. An asleep peer becomes active at
some random time, i.e., it tries to download the file from a peer having the complete
file. Once a peer has downloaded the file, it immediately becomes a server from
which another peer can download the file. To simplify the model, we assume that
the file is in one piece and not segmented into chunks; the time needed to download
the file from one server is supposed to be random in order to take into account the
diversity of upload capacities of peers. The goal of this chapter is to understand
how the network builds up in this situation as peers join the system. In particular,
we are interested in analyzing the growth of the number of available servers in the
system. Note that there are eventually N + 1 servers since each peer eventually
completes the file download.

In spite of its apparent simplicity, the analysis of the system is quite difficult
because we have to cope with a network comprising a random number of servers:
When peers complete their download, they become new servers so that the number
of servers is continually increasing. It is assumed that an incoming peer chooses
a server with the smallest number of queued peers. Other routing policies are
considered at the end of the chapter.

The analysis performed in this chapter substantially differs from earlier studies
appeared so far in the technical literature in the sense that we consider the transient
formation of a network of peers. Yang and de Veciana [YdV06] considered a
similar setting which they analyzed with results related to branching processes to
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110 Chapter III. A Queueing Model of a File-Sharing Principle

describe the exponential growth of the number of servers. Our goal in this chapter
is precisely to obtain more detailed asymptotics of this transient regime. Except
the paper by Yang and de Veciana [YdV06], most of the papers published so far
on the performance of peer-to-peer systems assume that peers join and leave the
system and that a steady state regime exists. The problem is then to evaluate the
impact of some parameters of the file sharing protocol on the equilibrium of the
system. Different techniques can be used to perform such an analysis, for instance
by using a Markovian chain to describe the state of the system, possibly by using
approximation techniques when the state space related to the number of peers in
the system is too large. See Ge et al. [GFS+03]. A fluid flow analysis with an
underlying Markovian structure is proposed in Clévenot and Nain [CN04] in order
to model the Squirrel peer-to-peer caching system. In Qiu and Srikant [QS04],
the authors directly use a fluid approximation to study the steady state of a peer-
to-peer network, subsequently complemented by diffusion variations around the
steady state solutions. In Massoulié and Vojnović [MV05], the authors study the
performance of a file sharing system via a stochastic coupon replication formulation,
a coupon corresponding to a chunk of a file. The goal of this study is to understand
the impact of the policy applied by users for choosing coupons on the performance
of the system. The system is studied in equilibrium as in Qiu and Srikant [QS04].

The rest of this chapter is organized as follows: In Section 2, the system under
consideration and some heuristics to study it are presented. It turns out that the its
dynamics can be decomposed in two regimes. In the first one, there are almost no
empty servers and we establish an analogy with a random bins and balls problem on
the real line. By approximating the probability of selecting a bin by its mean value,
we analyze in Section 3 the corresponding deterministic bins and balls problem.
The analysis for the random bins and balls problem is much more complicated to
analyze. The complete analysis is done in Chapter IV, corresponding to the paper
Robert and Simatos [RS09], and the results useful for this chapter are summarized
in Section 5. In Section 6, we support via simulation the different approximations
and heuristics made in this chapter to analyze the file-sharing system, and we
conclude this section by mentioning some possible extensions.

2. Model Description

Problem Formulation. We consider throughout this paper a system composed
of N peers interested in downloading a given file. At the beginning, only one peer
(the initial server) has the file and other peers are asleep. When becoming active,
after an exponentially distributed duration of time with parameter ρ, a peer tries
to download the file from the server that is the less loaded in terms of number
of queued peers. In particular, the first peer becoming active downloads the file
from the initial server. The time needed to download the file is assumed to be
exponentially distributed with mean 1.

The hypothesis on the distribution on the duration of the time for a peer to
become active is quite reasonable: this is a classical situation when a large number
of independent users may access some network. The assumption on the duration
of the time to download is not realistic in practice since this quantity is related to
the size of the file requested whose distribution is more likely to be bounded by
the maximal size of a chunk. As it will be seen, even within this simplified setting
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(in order to have a nice probabilistic description of the process), mathematical
problems turn out to be quite intricate to solve. In this respect, our study could
be seen as a first step in the analysis of flash crowd scenarios. It turns out that
our current investigations in the general case seem to show that the exponential
distribution does not have a critical impact on the qualitative behavior as long as
the FIFO policy is used by servers. Mathematically, however, numerous technical
points are not settled in this case.

We assume that peers requesting the file from the same server are served ac-
cording to the FIFO discipline. Note that, because of the exponential distribution
assumption, this case is equivalent to the Processor-Sharing discipline, i.e., when N
peers are present for a duration of time h, each of them receives the amount of
work h/N . Just after completing the file download, a peer immediately becomes
a server from which other peers can retrieve the file. The problem of “free riders”,
i.e., peers who do not become servers after service completion, is discussed briefly
in Section 6. The conclusion is that this feature does not change significantly the
qualitative properties of the system. The problem of servers who disconnect while
they have downloads in progress will not be discussed in this paper.

It is worth noting that the model under consideration describes a “flash crowd”
scenario. Indeed, a peer having a file accepts to share it with other peers and
we are interested in the dynamics of the sharing process when a large population
of peers tries to download the file. Moreover, since the durations for which these
peers stay inactive are independent and identically distributed, the flow of arrivals
of peers into the system is not stationary, but rather accumulates at the beginning
and is then less and less intense. We are hence interested in the transient regime of
the system. Contrary to the earlier studies [GFS+03, MV05, QS04], we are not
interested in the steady state regime of the system, where peers continually join
and leave the system.

It is intuitively clear that there should exist two different regimes for this sys-
tem. Initially, it starts congested: many peers request the file, and only a few
servers are available. Afterward, the situation is reversed: there are a large number
of servers and only a few requests from the remaining inactive peers.

These two regimes clearly appear in Figure 1 depicting simulation results with
N = 106 peers and ρ = 5/6. It shows that before time T ≈ 7 time units (or
equivalently mean download times), there are almost no empty servers, while after
that time, more and more servers are empty until all peers have completed their
download. But as long as the input rate is high, a new server immediately receives
a customer. This is all the more true under the routing policy considered, since
new peers entering the system choose an empty server if any.

A Non-Trivial Queueing Model. From the above description, the system can
be represented by means of a queueing system with a random number of queues.
Initially, the system is composed of a single server, and once a customer has com-
pleted its service, it becomes a new server. Since only a finite total number of
customers is considered, there are eventually N + 1 servers.

When peer inter-arrival times and file download times are assumed to be expo-
nentially distributed, a minimal Markovian representation of this queueing model
requires the knowledge of the number of peers which are still asleep and the number
of peers connected to each server. Since this Markov process is ultimately absorbing
(all peers are servers at the end), the transient behavior of the system is of course
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Figure 1. Results of a simulation: Fraction of idle servers against
time for N = 106 and ρ = 5/6.

the main object of interest in the analysis. Even in very simple queueing systems,
the transient behavior is delicate to analyze and much more difficult to describe
than the stationary behavior. The classical M/M/1 queue is a good (and simple)
example of such a situation when transient characteristics are not easy to express
with simple closed form formulas. See Asmussen [Asm87] for example.

Given the multi-dimensional description (with unbounded dimension) of the
Markov process, the system considered here is much more intricate and challenging.
To analyze this system, a simpler mathematical model with bins and balls is used
to investigate the duration of the first regime of this system. The specific point
addressed in this paper is to describe the transient behavior when N becomes
large.

Modeling the First Regime. Initially, the input rate is large and therefore a
newly created server receives very quickly many requests from the numerous peers
becoming active. The first regime described in the previous section and illustrated
in Figure 1 is hence characterized by the fact that the duration times during which
some servers are idle are negligible. In a second phase the number of empty servers
begins to be significant before increasing very rapidly in the last phase. This phe-
nomenon is discussed in Section 6. For the first regime, this leads us to describe
the dynamics of the system as follows.

Let Sn be the time at which the nth server is created, with the convention that
S0 = 0 (the initial server has label 0). During the nth time interval (Sn−1, Sn) for
n ≥ 1, there are by definition exactly n servers. So if we neglect empty servers,
Sn − Sn−1 is approximatively given by the minimum of n independent exponen-
tial random variables with parameter 1. The random variable Sn can thus be
represented as Sn−1 + E1

n/n, where E1
n is an exponential random variable with

parameter 1 independent of the past. In particular, during the first regime, the
following approximation is accurate.
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Approximation B. For n ∈ N, as long as the system is still in the first regime,
the instant of creation of the nth server is given by Sn ≈ Tn, where

(1) Tn =
n∑

k=1

E1
k

k
,

and (E1
k, k ≥ 1) being i.i.d. exponential random variables with unit mean.

The letter B used to designate this approximation stands for “branching”: a Yule
process is a special type of branching process where particles live for an exponential
duration with mean 1, and split into two identical and independent particles upon
death; see Athreya and Ney [AN72]. The previous discussion amounts precisely
to say that as long as empty servers can be neglected, then the number of servers
evolves like the population of a Yule process: each server, after a time exponentially
distributed representing the service time, creates a new server. Equivalently, the
old server dies and two new servers are created. The sequence (Tn) is called the
sequence of split times of the Yule process.

Despite this approximation seems to be quite rough (a rigorous mathemati-
cal formulation of the approximation Sn ≈ Tn seems to be difficult to establish),
Proposition 2.1 and the subsequent discussion below provide strong arguments to
support its accuracy. Approximation B only tells about the process of creation of
servers when empty servers can be neglected: it does not tell anything about the
duration of the first regime, i.e., the time until which this approximation indeed
holds. We rely on a heuristic to determine this duration; the heuristic we choose
in Definition 1 is discussed in light of our analytical results of Sections 4 and 5 in
Section 6.

Figure 1 suggests that the last time there is no empty server closely coincides
with the end of the first regime that we want to estimate. This time is unfortunately
not a stopping time and turns out to be much more difficult to study; moreover
Approximation B, which is the fundamental assumption underlying our analysis,
seems to fail long before this time (see Section 6). Rather, we choose our heuristic
according to the following definition; different choices are discussed in Section 6.

Definition 1. The duration of the first regime is defined as Sν , where ν is the
first index n ≥ 1 so that one or no peer arrive between Sn−1 and Sn.

According to this definition, the first regime lasts as long as between the creation
of two successive servers, at least two peers arrive in the system. The intuition
behind this heuristic is that, because of the policy for the choice of servers, if many
peers arrive in any interval, then the least loaded servers will receive requests from
arriving peers. Thus, as long as many peers arrive, it is quite rare for a server to
remain empty.

The phase transition should occur when the number of arrivals between the
creation of two successive servers is not sufficient to give work to empty servers
which are created. In particular, if no peers arrive in some interval, then there will
be at least two empty servers at the beginning of the next time interval. So the first
time when only a few peers arrive in some interval should be a good indication on
the current state of the system. A probably more natural heuristic would have been
to consider the first interval in which no peer arrives. Nevertheless, an argument
in favor of the former heuristic is that it enjoys the following nice property.
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Proposition 2.1. For n < ν, at most two servers are simultaneously empty in the
nth interval (Sn−1, Sn).

Proof. The proof is by induction. For n = 1, the property is trivial, since there is
only one server in the first interval. Consider now 1 < n < ν, and suppose that the
property holds for n − 1. Since at least two peers arrive in the (n − 1)th interval,
and since these peers are necessarily routed to empty servers, if any, there is no
empty server just before Sn−1. Therefore, just after Sn−1, there are at most two
empty servers, and so the property holds as long as n < ν. ¥

We are now able to justify Approximation B for n < ν. The argument is
twofold, depending on whether n is small or large. In the former case, the time
during which servers are empty is neglegible, while in the latter the fraction of
empty servers is negligible.

Indeed, for any n < ν the number of non idle servers is between n−2 and
n as shown by Proposition 2.1. Hence the fraction of empty servers is negligible
for n large, and Sn − Sn−1 should thus be close in distribution to an exponentially
distributed random variable with parameter n.

Now for n bounded, there may be at any time 2 empty servers, and this may
represent some fraction of the total number of servers. However the time during
which there are empty servers is small. For n fixed, it is easy to see that the mean
number of peers that arrive in the nth interval is indeed of order of N . Hence
right after the nth server is created, the next peer arrives very rapidly, after a time
of order of 1/N , which is arbitrarily large when N is large. Hence servers cannot
remain empty for a long time.

From now on, the identification of Sn and Tn, where the sequence (Tn) is defined
by Equation (1), is assumed to hold. Results on Tn can be assumed to hold for Sn

when n < ν.

3. Bins and Balls Problem

Denote by (Eρ
i , 1 ≤ i ≤ N) a sequence of i.i.d. random variables, exponentially

distributed with parameter ρ. For i ≤ N , Eρ
i is the time at which the ith peer

becomes active.
We introduce the following bins and balls model on the real line: The interval

(Tn−1, Tn) is the nth bin and the variables (Eρ
i , 1 ≤ i ≤ N) are the locations of N

balls thrown on the real line. The set {Tn−1 ≤ Eρ
i ≤ Tn} is simply the event that

the ith ball falls into the nth bin. Conditionally on the sizes of the bins, i.e., on
T = (Tn), the probability of such an event (which does not depend on i) is

(2) Pn = P (Tn−1 < Eρ
i < Tn | T ) = e−ρTn−1

(
1 − e−ρE1

n/n
)

,

where the random variables E1
n, n ≥ 1, are independent and exponentially dis-

tributed with mean unity.
With the above formulation, we have then to deal with the following bins and

balls model:

(1) A random probability distribution P = (Pn) is given (bins with random
sizes).

(2) N balls are thrown independently according to the probability distribu-
tion P.
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It is worth noting that the above bins and balls model has an infinite number
of bins. In addition, although bins and balls problems have been widely studied in
the literature, our model presents a remarkable feature: For i ≥ 1, a ball falls into
bin i with probability Pi which is a random variable, but conditionally on the se-
quence (Pn), this is a classical bins and balls problem. Mathematical results for bins
and balls models with random distributions are quite rare. See Kingman [Kin78]
and Gnedin et al. [GHP07] and the references therein where some related models
have been investigated.

The random model under consideration will give us some information on the be-
havior of our system. The following proposition establishes a simple but important
characterization for the asymptotic behavior of (Pn).

Proposition 3.1. Let (E1
i , i ≥ 1) be independent exponential random variables

with parameter 1. Then, for n ∈ N

(3) Tn =

n∑

k=1

E1
k

k

dist.
= max

1≤k≤n
E1

k,

and the sequence (Tn−log n) converges almost surely to a finite random variable T∞
whose distribution is given by P(T∞ ≤ x) = exp(− exp(−x)) for x ∈ R.

The conditional probability Pn of throwing a ball into the nth bin can be written
as

(4) Pn =
ρ

nρ+1
Xn−1Zn,

where
Zn =

n

ρ

(
1 − e−ρE1

n/n
)

and Xn−1 = nρe−ρTn−1

are independent random variables. As n goes to infinity, Xn (resp. Zn) converges
in distribution to X∞ (resp. Z∞). The convergence of (Xn) to X∞ holds almost
surely and in Lq, for any q ≥ 1.

The limiting variable Z∞ has an exponential distribution with parameter 1
and X∞ has a Weibull distribution with parameter 1/ρ,

(5) P(X∞ ≥ x) = e−x1/ρ

, x ≥ 0.

Proof. Let E(1) ≤ E(2) ≤ · · · ≤ E(n) be the variables (E1
k, 1 ≤ k ≤ n) in increas-

ing order. In particular E(n) = max1≤k≤n E1
k. With the convention E(0)=0, due

to standard properties of the exponential distribution, the variables E(i+1)−E(i),
i = 0,. . . , n−1 are independent and the variable E(i+1) − E(i) is the minimum of
n − i exponential variables with parameter 1, i.e., has the same distribution as
E1

n−i/(n−i). The distribution identity (3) then follows.

Since Zn
dist.
= n/ρ(1 − exp(−ρE1/n)), it converges in distribution to an expo-

nential distribution with parameter one.
Define

Mn =
n∑

k=1

E1
k − 1

k
= Tn − Hn,

where (Hn) is the sequence of harmonic numbers, Hn = 1 + 1/2 + · · · + 1/n. The
sequence (Mn) is clearly a martingale, it is bounded in L2 since

EM2
n =

n∑

k=1

E
(
E1

k − 1
)2

k2
=

∞∑

k=1

1

k2
< +∞.
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It therefore converges almost surely. See Williams [Wil91] for example. The almost
sure convergence of (Tn − log n) = (Mn + Hn − log n) is thus proved. Identity (3)
gives that, for x ≥ 0,

P(Tn − log n ≤ x) = (1 − e−x−log n)n ∼ e−e−x

,

as n goes to infinity.
Since

Xn = e−ρMneρ(log(n+1)−Hn),

one gets the almost sure convergence of (Xn). It is easy to check that, for q ≥ 0,

(6) E (Xq
n) = (n + 1)qρ

n∏

i=1

1

1 + qρ/i
= (n + 1)qρ Γ(n)

Γ(n + qρ)
Γ(qρ) ∼ Γ(qρ),

when n → ∞, where Γ is the usual Gamma function, and where the last equivalence
easily comes from Stirling’s Formula. In particular, for any q ≥ 0, the qth moment
of Xn is therefore bounded with respect to n. One deduces the convergence in Lq

of the sequence (Xn). Since Xn = exp(−ρ(Tn − log(n + 1))), one has the equality
in distribution X∞ = exp(−T∞) which gives the law of X∞. ¥

It is important to note that the probability distribution P = (Pn) is a random
element in the set of probability distributions on N. The decay of this distribu-
tion follows a power law with parameter ρ + 1, because according to the previous
proposition, nρ+1Pn converges in distribution to ρX∞Z∞. Using the asymptotic
behavior derived in (6) with q = 1, it is easy to see that the average probability for
a ball to fall into the nth bin satisfies the following relation

(7) E(Pn) ∼ ρΓ(ρ)

nρ+1
.

This equivalence suggests the introduction of a deterministic version of the bins
and balls problem considered.

4. Deterministic Problem

Description. Denote by Q = (qn) a probability distribution on N such that

(8) lim
n→+∞

nδqn = α,

for some α > 0 and δ > 1. For each n, qn can be seen as the probability for a ball
to fall in the nth bin. When δ = ρ + 1 and α = ρΓ(ρ), the sequence (qn) has the
same asymptotic behavior as E(Pn) given by Equation (7). Hence, this model may
be considered as the deterministic equivalent of the bins and balls problem defined
in the previous section. For the sake of clarity, the problem with the probability
distribution P (resp. Q) will be referred to as the random (resp. deterministic)
problem.

The deterministic problem amounts to throwing N exponential variables with
parameter ρ on the half-real line, where this line has been divided into deterministic
intervals (tn−1, tn) with tn = ETn. The main quantity of interest in the following
is the asymptotic behavior with respect to N of the index of the first bin that does
not receive any ball.
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Definition 2. Let us denote by ηR
i (N) (resp. ηD

i (N)) the number of balls in the
ith bin when N balls have been thrown in the random (resp. deterministic) bins
and balls problem, and define

νR(N) = inf{i ≥ 1 : ηR
i (N) = 0},(9)

νD(N) = inf{i ≥ 1 : ηD
i (N) = 0}.

In view of Definition 1, to investigate the duration of the first regime of the
system, the asymptotic behavior of the sequences (νR(N)) and (νD(N)) is an-
alyzed. Since we consider that the first regime lasts until one or no peers ar-
rive between the creation of two successive servers, we should have to consider
ν′(N) = inf{i ≥ 1 : ηi(N) ≤ 1} to be rigorous. In fact, the mathematical analysis
of the index of the first empty bin can easily be extended to the first bin that re-
ceives less than k balls, see the remark following Theorem IV.4.1. For the sake of
simplicity, we therefore only treat the case k = 0. Neither the orders of magnitude
nor the asymptotic behaviors established in the following are affected by the value
of k, and in particular if we consider 1 instead of 0.

To conclude this section, let us give a rough approximation of the correct or-
der of magnitude for νR(N) and νD(N) as N gets large. Rigorous mathematical
analysis is carried out in Section 4, while Section 6 compares the insights provided
by the two models.

For i ≥ 1, E(ηD
i (N)) = Nqi ∼ αN/iρ+1. Hence, in the deterministic model, a

finite number of balls will fall in the ith bin as soon as i is of the order of N1/(ρ+1)

as N becomes large. Hence we expect that in the deterministic model, νD(N)/k(N)
converges in distribution for k(N) = N1/(ρ+1). Theorem 4.1 below shows that the
location of the first empty bin is in fact slightly smaller than N1/(ρ+1), i.e., of the
order of (N/ log N)1/(ρ+1). Nevertheless this heuristic approach gives the correct
exponent in N .

Although E(ηR
i (N)) has the same asymptotic behavior, the corresponding heuris-

tic approach in the case of the random model is more subtle. Indeed, we have

E(ηR
i (N)) = NE(Pi) ∼ NρΓ(ρ)/iρ+1,

so the number of balls falling in the ith bin should be of the order Ni−ρ−1. However,
in the random model, the ith interval is with random length E1

i /i. So from Ti−1, the
next point Ti is at a distance E1

i /i and the first ball is at a distance corresponding
to the minimum of Ni−ρ−1 i.i.d. exponential random variables with parameter 1.
Thus, with this approximation, the ith interval is empty with probability

P

(
E1

i

i
≤ iρ+1

N
E1

0

)
=

1

1 + N/iρ+2
.

When N → ∞, this probability is non negligible as soon as i is of order N1/(ρ+2),
which is significantly below what we found in the deterministic case. Theorem 5.1
below shows that this is indeed the correct answer. The order of magnitude is one
order smaller, compared to the deterministic case, because of the variability of the
intervals size: to some extent, a very small interval is generated, so that no balls
fall in it, while in the deterministic case, some balls would have.

Asymptotic Analysis. Csáki and Földes [CF76] gives the asymptotic behavior
of the distribution of νD when N is large. A more complete description of the
locations of the first empty bins (and not only for the first one) can however be
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achieved. For this purpose, the variable W k
N is defined as the number of empty bins

whose index is less than k when N balls have been thrown. This random variable
is formally defined as

(10) W k
N =

k∑

i=1

IN,i, with IN,i = 1{ηD
i (N)=0}.

The distribution of W k
N is analyzed when k is dependent on N . First, some esti-

mates for the mean value and the variance of W k
N are required.

Proposition 4.1. Assume that the sequence (qi) is non-increasing. For x > 0, if

(11) κx(N) =

⌊(
αδ

N

log N

)1/δ [
1 +

1 + δ

δ

log log N

log N
+

log x

log N

]⌋
,

where ⌊y⌋ is the integral part of y > 0, then

(12) lim
N→+∞

E

(
W

κx(N)
N

)
= (αδ)1/δx.

Proof. For k, N ∈ N

(13) E
(
W k

N

)
=

k∑

i=1

(1 − qi)
N .

For 0 ≤ x ≤ 1,
0 ≤ e−Nx − (1 − x)N ≤ xN (1 − xN )N−1,

where xN is the unique solution to the equation exp(−Nx) = (1−x)N−1, since the
function x → e−Nx − (1 − x)N has a maximum at point xN . It is easily seen that
NxN ≤ 2 (in fact NxN → 2 as N → +∞), so that for N ≥ 1

(14) sup
0≤x≤1

∣∣e−Nx − (1 − x)N
∣∣ ≤ 2

N
.

With this relation, we obtain
∣∣∣∣∣E

(
W k

N

)
−

k∑

i=1

e−Nqi

∣∣∣∣∣ ≤
2k

N
,

so that for k = κx(N) and large N , (1 − qi)
N can be replaced with exp(−Nqi) in

the expression of E(W k
N ).

For the sake of simplicity, we assume that qi = α/iδ, for i ≥ 1. The general
case of a non-increasing sequence (qi) follows along the same lines since the cru-
cial relation below holds true with a convenient function q. One defines q(x) =
α min(x−δ, 1) for x ≥ 0.

∫ k

0

e−Nq(u) du ≤
k∑

i=1

e−Nqi ≤
∫ k+1

1

e−Nq(u) du.

The difference between these two integrals is bounded by 2 exp(−αN/kδ). Now
take k = k(N) with k(N) with the same order of magnitude as (N/ log N)1/δ, say,
k(N) ∼ A(N/ log N)1/δ for some A > 0. We have

E

(
W

k(N)
N

)
=

∫ k(N)

1

e−Nq(u) du + o(1).
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The right hand side of the above equation is given by

(15)
∫ k(N)

1

e−αNu−δ

du =
(αN)1/δ

δ

∫ αN

αNk(N)−δ

e−uu−(δ+1)/δ du.

Now let H(N) = αNk(N)−δ and consider

eH(N)H(N)(1+δ)/δ

∫ αN

H(N)

e−uu−(δ+1)/δ du

=

∫ αN

H(N)

e−(u−H(N))

(
H(N)

u

)−(δ+1)/δ

du

=

∫ αN/H(N)

1

H(N)e−H(N)(u−1) 1

u(δ+1)/δ
du

∼
∫ +∞

0

H(N)e−H(N)u 1

(1 + u)(δ+1)/δ
du ∼ 1,

since N/H(N) → +∞ and H(N) → +∞ as N → +∞. Therefore, an equivalent
expression of the integral in the right hand side of Equation (15) has been obtained.
A careful analysis shows that

lim inf
N→+∞

(
N1/δe−H(N)H(N)−(1+δ)/δ

)
> 0

for k(N) = κx(N), therefore the leading term in E(W
κx(N)
N ) is indeed the integral

given by (15). Gathering these results, we obtain

(16) E

(
W

κx(N)
N

)
=

(αN)1/δ

δ
e−H(N)H(N)−(1+δ)/δ + o(1)

∼ 1

αδ

k(N)1+δ

N
exp

(
−αNκx(N)−δ

)

from which Relation (12) is obtained. ¥

The following proposition shows the equivalence of the variance and the mean
value of W

κx(N)
N under a convenient scaling. This result is crucial to prove the limit

theorems of this section.

Proposition 4.2. Assume that the sequence (qi) is non-increasing. For x > 0,
let κx be defined by Equation (11), then

(17) lim
N→+∞

Var
(
W

κx(N)
N

)/
E

(
W

κx(N)
N

)
= 1.

Proof. For k ≥ 1, by using Equation (13) (which does not depend on α).

(E[W k
N ])2 =

∑

1≤i,j≤k

(1 − qi − qj + qiqj)
N ,

and

E[(W k
N )2] = E[W k

N ] +
∑

1≤i6=j≤k

(1 − qi − qj)
N ,
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so that, to prove the equivalence of Var(W
κx(N)
N ) and E(W

κx(N)
N ), it is sufficient to

show that the quantities

∑

1≤i,j≤κx(N)

[
(1 − qi − qj + qiqj)

N − (1 − qi − qj)
N

]
and

κx(N)∑

i=1

(1 − 2qi)
N

are negligible with respect to E(W
κx(N)
N ). This amounts to show that these quanti-

ties are o(1) by Proposition 4.2. The second term is the expected number of empty
bins for the distribution (q̃i) such that q̃i ∼ 2α/iδ. Estimate (16) shows that

κx(N)∑

i=1

(1 − 2qi)
N ∼ 1

2αδ

κx(N)1+δ

N
exp

(
−2αNκx(N)−δ

)
= o

(
EW

κx(N)
N

)
.

By using the fact that for a ≥ b ≥ 0, aN − bN ≤ N(a − b)aN−1, the second
term satisfies

(18)
∑

1≤i,j≤k

[
(1 − qi − qj + qiqj)

N − (1 − qi − qj)
N

]

≤ N
∑

1≤i,j≤k

qiqj(1 − qi − qj + qiqj)
N−1 =

1

N

(
k∑

i=1

Nqi(1 − qi)
N−1

)2

.

By using a similar method as in the proof of Proposition 4.1, we obtain the equiv-
alence

k(N)∑

i=1

Nqi(1 − qi)
N−1 ∼

∫ k(N)

1

Nq(u)e−Nq(u) du

∼ (αδ)1/δαx
N

κx(N)δ
= (αδ)1/δx log N.

This equivalence together with Equation (18) complete the proof of the proposition.
¥

Theorem 4.1. Let (qn) be a non-increasing sequence satisfying Relation (8). For
x > 0 and N ∈ N, set

κx(N) =

⌊(
αδ

N

log N

)1/δ (
1 +

1 + δ

δ

log log N

log N
+

log x

log N

)⌋
.

When N goes to infinity, the variable W
κx(N)
N converges in distribution to a Poisson

random variable with parameter (αδ)1/δx.
The index νD(N) of the first empty bin defined by Equation (9) is such that

the variable

(19)
(log N)(1+δ)/δ

(αδN)1/δ
νD(N) − log N − 1 + δ

δ
log log N

converges in distribution to a random variable Y defined by

P(Y ≥ x) = exp
(
−(αδ)1/δex

)
, x ∈ R.
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Proof. Chen-Stein’s method is the basic tool in the proof of the theorem. See
Barbour et al. [BHJ92] for a detailed presentation of this powerful method. Let N
and k be in N and 1 ≤ i0 ≤ k. The variable W k

N conditioned on the event {IN,i0 = 1}
has the same distribution as the number of empty bins when the balls in the i0th
bin are thrown again until the i0th bin is empty. It follows that the number of balls
in any other bin is larger than in the case when they are assigned at first draw.
One deduces that for i 6= i0,

P (IN,i = 1 | IN,i0 = 1) ≤ P (IN,i = 1) .

The variables (IN,i, 1 ≤ i ≤ k) are therefore negatively correlated, see Barbour et
al. [BHJ92]. Then, by [BHJ92, Corollary 2.C.2], the following relation holds,

∑

p≥0

∣∣∣∣∣P(W k
n = p) − E

(
W k

N

)p

p!
e−E(W k

N)

∣∣∣∣∣ ≤ 1 − Var
(
W k

N

)/
E

(
W k

N

)
.

By taking k = κx(N) and by using Propositions 4.1 and 4.2, we obtain the

convergence in distribution of W
κx(N)
N to a Poisson distribution with parameter

(αδ)1/δx. The last part of the theorem is a simple consequence of the identity
P(W k

N = 0) = P(νD(N) > k). ¥

The convergence in distribution of νD(N) has been proved previously by Csáki
and Földes [CF76] with a different method. Our result gives a more accurate
description of the location of empty bins (and not only the first one) near the
index κx(N).

The following corollary is a straightforward application of the detailed asymp-
totics obtained in the above theorem.

Corollary 4.1 (Cutoff phenomenon). Under the assumption of Theorem 4.1, if

k(N) = (N/log N)
1/δ

,

then, as N goes to infinity, the following convergence in distribution holds: For β > 0,

W
βk(N)
N −→

{
+∞ if β > (αδ)1/δ,

0 if β < (αδ)1/δ.

So far, only indexes of empty bins have been considered. The result below
shows that the first empty bin is located on the time axis at a time of the order of
log N . It will be discussed in Section 6 why this suggests that the time the system
begins to serve quickly the incoming peers should be of the same order.

Corollary 4.2 (First Empty Bin). Let

(20) TD(N) = TνD(N) =

νD(N)∑

k=1

E1
k

k
.

Under the assumptions of Theorem 4.1, the quantity

δTD(N) − log N + log log N − log(αδ)

converges in distribution to δT∞, where T∞ is the random variable defined in Propo-
sition 3.1.
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Proof. We have

δTD(N) − log N + log log N − log(αδ)

= δ




νD(N)∑

k=1

E1
k

k
− log(νD(N))


 + log

(
(νD(N))δ log N

αδN

)
.

Since (TN − log N) converges almost surely to T∞ and (νD(N))δ log N/N converges
in distribution to 1 by Theorem4.1, Skorokhod representation theorem shows that
one can assume that the two-dimensional sequence (TN −log N, (νD(N))δ log N/N)
converges almost surely to (T∞, 1). In view of the right-hand side of the last display,
one gets that on this probability space the sequence (δTD(N)− log N +log log N −
log(αδ)) converges almost surely to δT∞, hence the convergence holds in law as
well, independently of the probability space. ¥

5. Random Problem

For the random model, the probability Pn of selecting the nth bin is given by
Equation (4) of Proposition 3.1. As n goes to infinity, Xn ∼ X∞ almost surely and
in distribution, Zn is asymptotically an exponentially distributed random variable
with parameter 1. The sequence (Pn) can be approximated by

( ρ

nρ+1
X∞E1

n

)
,

where (E1
n) are i.i.d. exponential variables with unit means.

In spite of the fact that the decay of Pn follows a power law, the random factor
plays an important role. This factor is composed of two variables, one (namely X∞)
is fixed once for all and the other (namely Zn) changes for every bin. The fact
that Zn, related to the “width” of the nth bin, can be arbitrarily small with a posi-
tive probability suggests that the index νR of the first empty bin should be smaller
than the corresponding quantity for the deterministic case. This is indeed true but
the situation in this case is much more complex to analyze. The complete analysis
of the random case is given in the next chapter, and only the results relevant to our
problem are summarized here. It must be noticed that a similar problem where X∞
and the sequence (E1

n, n ≥ 1) are independent is fairly easy to solve. However here,
these random variables are dependent, and this dependency requires quite technical
probabilistic tools.

The asymptotic result on νR of Corollary 5.1 is a reformulation of Corol-
lary IV.4.1 with the notations of this section. The results of Chapter IV deal
with point processes which give comprehensive information on the locations of the
first empty bins; however in order to stick with the results of the previous section,
we rephrase these results in terms of the random variable that counts the number
of empty bins. Hence the asymptotic behavior of the random variable W k

N defined
by

W k
N =

k∑

i=1

IN,i with IN,i = 1{ηR
i (N)=0}.
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is investigated. Although in the deterministic case, Chen-Stein’s method makes
it possible to reduce the analysis of W k

N to its first and second moments, this is
no longer the case for the random problem. Indeed, because of the variability of
the bins sizes, the random variables (IN,i, 1 ≤ i ≤ k) are no longer negatively

correlated. Moreover, the ratio of the expected value to the variance of W
k(N)
N does

not converge to 1 for a convenient sequence (k(N)) as in the deterministic case
(Proposition 4.2), which suggests that if a limit in distribution exists, it cannot be
Poisson.

As was pointed out in Hwang and Janson [HJ08], the sequence (NPi, 1 ≤ i ≤ k)
plays a central role in the limiting behavior of (W k

N ). The intuitive explanation,
developed in the next chapter, is that the first bins with index i such that NPi is
of order of 1 are actually the first empty bins. The following technical proposition
gives a result on the asymptotic behavior of this sequence. It is important since
it introduces the scale N1/(ρ+2) which turns out to be the correct scaling for the
variable νR(N); moreover, it highlights the sequence (NPi, 1 ≤ i ≤ xN1/(ρ+2))
which is important. In the remainder of this section, denote

κ(N) = N1/(ρ+2).

Proposition 5.1. Let x > 0. When N goes to infinity, the random sequence
(NPi, 1 ≤ i ≤ xκ(N)) converges in distribution to a mixed Poisson process with a

random intensity distributed like xρ+2
(
X∞ρ(ρ + 2)

)−1
.

Proof. This is a consequence of Theorem IV.3.1 and of an approximation tech-
nique used in the proof of Proposition IV.3.3. The proof remains very concise in
order to avoid unnecessary repetitions of technical arguments which fit better in the
next chapter. Let g : R+ → R+ be a continuous function with a compact support:
the theorem will be implied by the convergence of Laplace transforms:

lim
N→+∞

E

(
e−

∑xκ(N)
i=1 g(NPi)

)
= E

(
e−xρ+2X−1

∞ /(ρ(ρ+2))
)

.

By defining the function f(u, v) = 1{0≤u≤x}g(v), we see that this convergence is
the same as the convergence (IV.7) but with a function f which is not continuous.
Approximating f with continuous functions similarly as in the proof of Proposi-
tion IV.3.3 then gives the result. ¥

This result together with standard poissonization techniques (and again the
approximation technique of the proof of Proposition IV.3.3) make it possible to
prove the following theorem, which is the main result of this section; see the proof
of Theorem IV.4.1 for details on poissonization techniques.

Theorem 5.1. Let x > 0. When N goes to infinity, W
xκ(N)
N converges in distribu-

tion to a mixed Poisson random variable with parameter xρ+2
(
X∞ρ(ρ + 2)

)−1
.

Corollary 5.1. When N goes to infinity, the random variable νR(N)/κ(N) con-
verges in distribution to a random variable Y such that

P(Y ≥ x) = E

(
e−xρ+2X−1

∞ /(ρ(ρ+2))
)

.

Finally, if TR(N)
def.
= TνR(N) then, for the convergence in distribution,

(21) lim
N→+∞

TR(N)

log(N)
=

1

ρ + 2
.
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Proof. The asymptotic behavior of νR(N) follows from Theorem 5.1 and the
equality

P(νR(N) > n) = P(Wn
N = 0).

The asymptotic behavior of the sequence (TR(N)) follows similarly as in the proof
of Corollary 4.2. ¥

The fact that the parameter of the limiting Poisson law is random has important
effects, especially concerning the expectation. Indeed, it stems from Equation (5)

and Proposition 3.1 that limN→∞ E(W
xκ(N)
N ) is proportional to E(X−1

∞ ) and, from
Proposition 3.1, E(X−1

∞ ) < +∞ if and only if ρ < 1. Note in particular that the
value ρ = 1 plays a special role for our system.

For ρ > 1, the mean value of W
xκ(N)
N diverges because it happens that a finite

number of intervals (actually, the ⌊ρ⌋ first intervals) capture most of the balls. This
event happens with an increasingly small probability, so that in the limit as N goes
to infinity, it does not have any impact on our system. However, for a fixed N ,
this event happens with a fixed probability as well. For instance, we commonly
observed on various simulations for ρ = 2 and N = 10000 that more than 95%
of the peers go to the first server, which is clearly an undesirable behavior of the
system.

6. Discussion

In this section, a set of simulations of the file-sharing principle is presented to
test the different approximations made in this chapter in terms of bins and balls.
These simulations make it possible to confirm three main points:

• The population of servers initially resembles a Yule process, i.e., the
branching Approximation B holds for some time.

• Approximation B holds until the time TD predicted in Corollary 4.2 by
the deterministic bins and balls problem.

• Approximation B does not hold after TD.

Since the deterministic model predicts a first empty bin later than in the random
model, the second point entails that the deterministic model is more accurate than
the random one, and we explain in the following why. Since the branching Approx-
imation B is the cornerstone of our analysis, the last point suggests that a different
technical approach must be used to study the system after TD.

We moreover use these simulations to discuss heuristics different than the one
given by Definition 1 and considered so far, as well as a different server selection
policy, which consists in letting an incoming peer choose the server at random. A
surprising observation made from these simulations is that the branching Approx-
imation B does not hold until empty servers constitute a significant proportion of
the servers: it breaks down even though non-empty servers are still prevailing.

Throughout this section, we discuss the relevance of several random variables.
The goal is to assess the accuracy of the procedure consisting of estimating the
length of the first regime by using the random variable ν specified in Definition 1.
For this purpose, three different times H1, H2 and H3 are discussed based on
simulations:
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Figure 2. log(E(ν1)) (solid) and E(H1) (dashed) against log N .

Heuristic (1): H1 is the first time when two servers are created and less
than 2 peers have arrived.

Heuristic (2): H2 is the last time when there is an empty server.
Heuristic (3): H3 is the first time when a server becomes empty, i.e., when

a peer leaves a server where it was alone.

Note that the difference between H1 and TR is precisely the branching Approxi-
mation B: in the definition of H1, empty servers are not neglected. We also discuss
theoretical results linked with a fourth heuristic:

Heuristic (4): H4 is the first time when the input rate is smaller than the
output rate.

In addition to these times, we consider the corresponding quantities νi: for i =
1, 2, 3, 4, νi is the index of the interval (Si−1, Si) in which the event corresponding
to Hi happens; remember that Si is the time when the ith server is created, so
that νi is the number of servers in the system at time Hi. Note that ν1 corresponds
to Definition 1 (with the same provision between ν1 and νR as between H1 and TR).
In every simulation, for a fixed N , the averages of the quantities νi and Hi are
calculated for the value ρ = 2 over 104 iterations of the system which proved to be
sufficient in term of numerical stability. The number of peers N ranges up to 5.107.

Validation of Approximation B. Proposition 2.1 and the subsequent discussion
suggest that Approximation B holds at least up to time TR: in view of the above
remark on the difference between TR and H1, we justify that Approximation B holds
up to time H1 by comparing E(H1) and E(ν1) to E(TR) and E(νR), respectively.
Corollary 5.1 suggests that E(ν1) ≈ A1N

1/(ρ+2) for some constant A1, and E(H1) ≈
log(N)/(ρ+2). Figure 2 shows the graphs of log(E(ν1)) and E(H1) against log(N):
the straight lines depicted prove a good agreement with the theory. Moreover, via
a fitting procedure, one can compute the slopes of these lines, and the results are
summarized in Table 1 in the row labelled “Min” (each row of the table corresponds
to a routing policy, the row “Min” corresponding to the policy considered so far
when an incoming peer is router to the less loaded server).
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Policy ν1 / H1 ν2 / H2 ν3 / H3

Min 0.248 / 0.256 0.376 / 0.515 0.315 / 0.329
Random 0.247 / 0.257 0.371 / 0.508 0.238 / 0.253

Table 1. Coefficients of growth rates for the three different
Heuristics (1), (2) and (3). For instance, ν2 ≈ N0.38 and H2 ≈
0.51 log N under the Min policy.
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Figure 3. Comparison of E(H1), E(TD) and E(H2) against N .

We see that simulations exhibit a slope of 0.248 for ν1 and of 0.256 for H1,
whereas the theory predicts 0.25 in both cases (because ρ = 2). This justifies
the fact that Approximation B holds at least until H1, so that TR predicted by
Corollary 5.1 is a good estimate of H1.

Accuracy of Bins and Balls Models. We now analyze the analytical results
predicted by the random and deterministic bins and balls models. The time H2,
defined as the last time when there is no empty server in the system, plays a special
role: it appears in Figure 1 that H2 is closely related to the end of the first regime.
Right after H2, the number of servers grows sharply, and before H2 empty servers
seem to be negligible. The question is to know which one of TR ≈ H1 and TD is
closer to H2.

Not surprisingly, Figure 3 shows that H1 is significantly different from H2. The
reason has already been alluded to in Section 2: results obtained for the random
model point out a local behavior. The first empty bin in the random model arrives
in a region where still many peers arrive in each interval: for instance, although
no peer arrives in the first empty interval, it can be shown that a great number of
peers arrive in the surrounding intervals. In some sense, many peers should arrive
in this interval, but they don’t because a server is created very quickly. This is a
rare event which does not give insight into the global equilibrium of the system:
the order of magnitude N1/(ρ+2) provided by the random bins and balls model is
thus misleading.
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The deterministic model provides a better answer. In this model, the sizes of
bins are not random, and the stochastic fluctuations arising in the random model
do not occur. The deterministic model smooths the local behavior that appears in
the random model, and the order of magnitude (N/ log N)1/(ρ+1) gives more insight
into the global situation of the system. When only a few peers arrive in an interval,
it really means that the equilibrium begins to shift. One can check in Figure 3 that
the theoretical result TD predicted in Equation (20) by the deterministic model is
closer to H2 than H1.

Although the deterministic model indeed improves the approximation, H2 still
seems much larger that TD. A first information derived thanks to our bins and
balls models is that the first order approximation of the times Hi is logarithmic,
whereas the first order approximation for the indexes νi is polynomial.

Second, and more interestingly, the deterministic model yields a reasonable
estimate of the number of servers at the end of the first regime, roughly equal
to ν2. Indeed, one can check on Table 1 that simulations give a slope of 0.38 for ν2

when the deterministic model predicts 0.33. The random model predicts 0.25, so
a substantial improvement in accuracy is obtained when using the deterministic
model. As will be seen when discussing the two last Heuristics (3) and (4), Ap-
proximation B is very likely to hold up to time TD and not after, which entails the
following puzzling observation. Between TD and T2, only few servers are created
since νD ≈ ν2; however to create these servers, a time greater than the time pre-
dicted by the branching Assumption B is needed. Indeed, one can see in Table 1
that the coefficient of growth is equal to 0.38 for ν2 and 0.51 for H2, which are
significantly different. This means that the branching Assumption B does not hold
after time TD, and in particular that it does not hold until time H2. Between TD

and H2, it could happen that there is a small fraction of empty servers which has
nonetheless a significant impact on the system. A similar phenomenon has been
observed in Sanghavi et al. [SHM07].

Two Other Heuristics. We now discuss the two last Heuristics (3) and (4) and
conclude that they give the same estimate as TD, with of course less precise as-
ymptotic.

Recall that H3 is the first time when a server empties. This time has an appeal-
ing motivation: since departures occur uniformly at random from any non-empty
server, a departure from a server with only one peer means that such servers rep-
resent a significant proportion of servers. Simulations show that ν3 and H3 have
similar behavior as before (polynomial and logarithmic growths, respectively). Re-
sults in Table 1 show that the slope for H3 is close to the exponent of ν3, suggesting
that Approximation B holds until H3. Moreover, the value 0.31 of the slope is close
to the theoretical value 0.33 predicted by the deterministic model, which supports
the idea that TD is as good an estimate as one can do within the scope of Approx-
imation B.

Finally, let us discuss the last and maybe most natural Heuristic (4). Through-
out this chapter, we have tried to estimate the time when the equilibrium of the
system begins to shift: the time H4 corresponds to the first time the input rate is
smaller than the output rate. More precisely, the input rate i(t) into the system
is simply the number of peers that are not active at time t times ρ. Note that the
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number of asleep peers at time t can be neatly written as

1

ρ
i(t) =

N∑

i=1

1{Eρ
i >t}

if Eρ
i is the time at which the ith peer awakes; the (Eρ

i , i ≥ 1) are then i.i.d. with
common distribution the exponential distribution with parameter ρ. On the other
hand, as long as Approximation B holds, the output rate o(t) is just the number of
servers at time t (since peers require a service of mean one). Initially, i(0) = ρN
and o(0) = 1, and eventually i(∞) = 0 and o(∞) = N . To study the time at
which the equilibrium of the system begins to shift, it is natural to consider the
first time H4 at which i(t) < o(t). As shown in the following, this leads to the order
of magnitude TD given by the deterministic model.

Assuming that Approximation B holds for times t < H4 — note that in contrast
with our heuristic, this assumption is not easy to justify — the problem can be cast
in terms of the random bins and balls problem. Let Zx

N be the number of balls that
fall in the x first intervals:

Zx
N =

x∑

i=1

ηi(N) =

N∑

i=1

1{Eρ
i ≤Tx},

where Tx is given by Equation (1) for any x > 0. The index ν4 then corresponds to

ν4 = inf

{
x : N − Zx

N
def.
= Z̃x

N <
x

ρ

}
.

The asymptotic behavior of E
(
Z̃x

N

)
when x goes to infinity with N is easy to derive:

E
(
Z̃x

N

)
= N

∑

i>x+1

EPi ∼ αN
∑

i>x+1

i−ρ−1 ∼ α

ρ
Nx−ρ.

Therefore E
(
Z̃x

N

)
≈ x for x ≈ N1/(ρ+1), i.e., ν4 is of order N1/(ρ+1), which is essen-

tially the same order of magnitude as in the deterministic model. Although ν4 has
been cast in terms of a random bins and balls problem, there is, in contrast with νR

and νD, no discrepancy to be expected between the random and the deterministic
models. Indeed, Z̃x

N depends on the cumulative number of balls in the last inter-
vals, and not on the number of balls in some interval. Thus a law of large numbers
effect will prevail and Z̃x

N will indeed behave as its first moment, i.e., results of
the random and deterministic models will be the same. Rigorous mathematical
analysis could be done to prove this result, but in our view, considering H1 has
one main advantage: Proposition 2.1 is almost a rigorous justification of Approx-
imation B. When considering H4 and more generally any other time, we were not
able to provide such a strong justification. And as we have seen in the case of H2,
Approximation B does not hold for the whole first regime, and a strong justification
as Proposition 2.1 is therefore valuable.

In conclusion, we have provided numerous arguments showing that Approxima-
tion B holds until times of order of N1/(ρ+1), which corresponds to TD, H4 and —
at least one particular set of simulations — H3; the deterministic model moreover
gives a reasonable estimate on the number of servers at the end of the first regime.
Since finally Proposition 2.1 gives a strong justification of the heuristic underlying
the deterministic model, this technical approach is very valuable.
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Figure 4. Comparison of Min (dotted) and Random (solid) for
the Heuristic (1) corresponding to H1 and ν1.
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Figure 5. Comparison of Min (dotted) and Random (solid) for
the Heuristic (2) corresponding to H2 and ν2.

The branching Approximation B however does not hold until H2, which seems
to best approximate the end of the first regime: between TD and H2, only few
servers are created, which nonetheless amount to a time much larger than the time
predicted by (1). Since Approximation B is the cornerstone of our analysis, differ-
ent tools should be used to approximate H2.

To conclude this chapter, we discuss a possible modification of the system as
well as some natural extensions.

Comparison of Routing Policies. In the system considered so far, an incoming
peer is queued at the server with the least number of queued peers. From a practical
viewpoint it requires the knowledge of the state of every server, which is impractical.
A simpler solution, discussed now, consists in routing a peer to a server chosen
uniformly at random. We discuss through simulations the effect of this new policy
on the different Heuristics (1), (2) and (3); numerical results are summarized in
Table 1 in the row labelled “Random” and in Figures 4, 5 and 6.
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Figure 6. Comparison of Min (dotted) and Random (solid) for
the Heuristic (3) corresponding to H3 and ν3.

First of all we observe that Heuristic (1) is insensitive to the policy: Table 1
shows that the growth rates are not affected by the policy, and the two curves cor-
responding to the Min or Random policy are almost undistinguishable on Figure 4.

A similar observation goes with Heuristic (2): the time H2 is essentially unaf-
fected, and the number of servers ν2 is only affected through a change in constant,
i.e., ν2 ≈ AmN0.37 under the Min policy and ν2 ≈ ArN

0.37 under the random one,
with two different constants Am 6= Ar. Thus for our purposes, the routing policy
seems to have no effect on the length of the first regime.

An interesting exception concerns Heuristic (3): Table 1 shows that for the
first time H3 when a server becomes empty, the policy has a great influence. This
is easily understandable: under the Min policy, it is much harder for a server to
become empty, because least loaded servers are selected by incoming peers.

Extensions. We conclude this chapter with some possible extensions. The first
one consists in allowing peers to leave the system instead of becoming a server, once
downloading the file. This effect is called “free riding”, it has a significant impact on
real peer-to-peer systems. Our results extend to cover this case: the output rate µ
of a server corresponds to the rate at which a peer finishes its download. Hence pµ
corresponds to the rate at which a server creates another new server, if 0 ≤ p ≤ 1
is the probability for a peer to stay in the system once downloading the file. Thus
our results naturally extend by just replacing ρ by ρ/p. On the other hand the
problem of peers who leave while being a server is not that easy to handle, since
one would have to deal with the peers it was serving at the time it disconnects.
This is moreover a question which is more relevant in a stationary context, with a
continuous steady flow of incoming peers, and where one is interested in stability
properties such as in the previous chapter.

Another extension concerns the download time, which was supposed to be ex-
ponentially distributed. If the service discipline is FIFO, then these results could
probably be extended to an arbitrary service distribution. Indeed, there would still
be a period of time during which the population of servers resembles a branch-
ing process, which is no longer a Yule process. It then becomes a general binary
Bellman-Harris process, and the sequence of split times has a structure which closely
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resembles to (1) asymptotically, see for instance Athreya [AK77, Ath69] and Härn-
qvist [H8̈1]. Nonetheless there is an additional technical difficulty, which we were
not able to overcome, see the discussion in Section IV.6. Note that if one wants to
study arbitrary service requirements under the Processor-Sharing discipline, then
results on branching processes become useless, since the departure process from an
overloaded Processor-Sharing queue is in general not easy to describe.



132 Chapter III. A Queueing Model of a File-Sharing Principle

References of Chapter III

[AK77] K. B. Athreya and Niels Keiding. Estimation theory for continuous-
time branching processes. Sankhya: The Indian Journal of Statistics,
89(A):101–123, 1977.

[AN72] K. B. Athreya and P. E. Ney. Branching processes. Springer, 1972.
[Asm87] Søren Asmussen. Applied probability and queues. John Wiley & Sons,

Chichester, 1987.
[Ath69] Krishna B. Athreya. On the supercritical one dimensional age dependent

branching processes. Annals of Mathematical Statistics, 40(3):743–763,
June 1969.

[BHJ92] A. D. Barbour, Lars Holst, and Svante Janson. Poisson approximation.
The Clarendon Press Oxford University Press, New York, 1992.

[CF76] Endre Csáki and Antónia Földes. On the first empty cell. Studia Scien-
tarum Mathematicarum Hungarica, 11:373–382, 1976.

[CN04] F. Clévenot and P. Nain. A simple fluid model for the analysis of the
squirrel peer-to-peer caching system. In Proceedings of IEEE INFOCOM
2004, volume 1, pages 86–95, Hong Kong, March 2004.

[GFS+03] Z. Ge, D. R. Figueiredo, Jaiswal Sharad, J. Kurose, and D. Towsley.
Modeling peer-peer file sharing systems. In Proceedings of IEEE INFO-
COM 2003, volume 3, pages 2188–2198, San Francisco, CA, USA, March
2003.

[GHP07] Alexander V. Gnedin, Ben Hansen, and Jim Pitman. Notes on the oc-
cupancy problem with infinitely many boxes: General asymptotics and
power laws. Probability Surveys, 4:146–171, 2007.

[H8̈1] Martin Härnqvist. Limit theorems for point processes generated in a
general branching process. Advances in Applied Probability, 13:650–668,
1981.

[HJ08] Hsien-Kuei Hwang and Svante Janson. Local limit theorems for finite
and infinite urn models. Annals of Probability, 36(3):992–1022, 2008.

[Kin78] J. F. C. Kingman. Random partitions in population genetics. Proceed-
ings of the Royal Society. London. Series A. Mathematical, Physical and
Engineering Sciences, 361(1704):1–20, 1978.

[MV05] Laurent Massoulié and Milan Vojnović. Coupon replication systems. In
Proceedings of SIGMETRICS’05, volume 33, pages 2–13, Banff, Alberta,
Canada, June 2005.

[QS04] Dongyu Qiu and R. Srikant. Modeling and performance analysis of
bittorrent-like peer-to-peer networks. In Proceedings of SIGCOMM’04,
pages 367–378, New York, NY, USA, August 2004. ACM.

[RS09] Philippe Robert and Florian Simatos. Occupancy schemes associated
to Yule processes. Advances in Applied Probability, 41(2):600–622, June
2009.

[SHM07] S. Sanghavi, B. Hajek, and L. Massoulié. Gossiping with Multiple Mes-
sages. In Proceedings of IEEE INFOCOM 2007, pages 2135–2143, May
2007.

[Wil91] David Williams. Probability with Martingales. Cambridge University
Press, 1991.



References of Chapter III 133

[YdV06] Xiangying Yang and Gustavo de Veciana. Performance of peer-to-peer
networks: service capacity and role of resource sharing policies. Perfor-
mance Evaluations, 63(3):175–194, 2006.





CHAPTER IV

Occupancy Schemes Associated to Yule Processes

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

2. A Bins and Balls Problem in Random Environment . . 137

3. Convergence of Point Processes . . . . . . . . . . . . . . . 138

4. Asymptotic Behavior of the Indices of the First Empty

Bins . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5. Rare Events . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6. Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . 152

7. Comparison with the Renewal Case . . . . . . . . . . . . 154

Appendix A. Proof of Proposition 5.1 . . . . . . . . . . . . 158

References of Chapter IV . . . . . . . . . . . . . . . . . . . . . 161

1. Introduction

Occupancy schemes in terms of bins and balls offer a very flexible and ele-
gant way to formulate various problems in computer science, biology and applied
mathematics for example. One of the earliest models investigated in the literature
consists in throwing m balls at random into n identical bins. Asymptotic behavior
of occupancy variables have been analyzed when n grows to infinity, with different
scalings in n for the variable m. The books by Johnson and Kotz [JK77] and
Kolchin et al. [KS78] are classical references on this topic. See also Chapter 6 of
Barbour et al. [BHJ92] for a recent presentation of these problems.

An extension of these models is when there is an infinite number of bins and a
probability vector (pn) on N describing the way balls are sent: for n ≥ 0, pn is the
probability that a ball is sent into the nth bin. In one of the first studies in this
setting, Karlin [Kar67] analyzed the asymptotic behavior of the number of occupied
bins. More recently Hwang and Janson [HJ08] proves in a quite general framework
central limit results for these quantities. In this setting, some additional variables
are also of interest like the sets of indices of occupied or empty bins, adding a
geometric component to these problems. For specific probability vectors (pn) Csáki
and Földes [CF76] and Flajolet and Martin [FM85] investigated the index of the
first empty bin. See the recent survey Gnedin et al. [GHP07] for more references
on the occupancy problem with infinitely many bins.

A further extension of these stochastic models consists in considering random
probability vectors. Gnedin [Gne04] (and subsequent papers) analyzed the case
where (pn) decays geometrically fast according to some random variables, i.e., for
n ≥ 1, pn =

∏n−1
i=1 Yi(1 − Yn) where (Yi) are i.i.d. random variables on (0, 1).

135
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Various asymptotic results on the number of occupied bins in this case have been
obtained. The random vector can be seen as a “random environment” for the bins
and balls problem, it complicates significantly the asymptotic results in some cases.
In particular, the indices of the bins in which the balls fall are no longer independent
random variables as in the deterministic case.

The general goal of this chapter is to investigate in detail the impact of this
randomness for a bins and balls problem associated to a Yule process, see Athreya
and Ney [AN72] for the definition of a Yule process. This (quite natural) stochastic
model has its origin in network modeling, see Simatos et al. [SRG08] for a detailed
presentation. It can be described as follows: the non-decreasing sequence (tn) of
split times of the Yule process defines the bins, the nth bin, n ≥ 1, being the in-
terval (tn−1, tn]. The locations of balls are represented by independent exponential
random variables with parameter ρ. The main problem investigated here concerns
the asymptotic description of the set of indices of first empty bins when the num-
ber of balls goes to infinity. Mathematically, it is formulated as a convergence in
distribution of rescaled point processes having Dirac masses at the indices of empty
bins.

For n ≥ 1, if Pn is the probability that a ball falls into the nth bin, it is easily
seen that, for a large n, Pn has a power law decay, it can be expressed as V En/nρ+1

where (En) are i.i.d. exponential random variables with parameter 1 and V some
independent random variable related to the limit of a martingale. The randomness
of the probability vector (Pn) has two components: one which is a part of an i.i.d.
sequence, changing from one bin to another, and the other being “fixed once for
all” inducing a dependency structure. As it will be seen, the two components have
separately a significant impact on the qualitative behavior of this model.

Convergence in Distribution and Rare Events. Because the variables (En)
can be arbitrarily small with positive probability, empty bins are likely to be cre-
ated earlier (i.e., with smaller indices) than for a deterministic probability vector
with the same power law decay. It is shown in fact that, for the convergence in dis-
tribution, the first empty bins occur around indices of the order of n1/(ρ+2) instead
of (n/ log n)1/(1+ρ) in the deterministic case.

The variable V has a more subtle impact, when ρ > 1 it is shown that, due
to some heavy tail property of V −1, rare events affect the asymptotic behavior of
averages of some of the characteristics. For α ∈ [1/(2ρ + 1), 1/(ρ + 2)), despite
that the number of empty bins with indices of order nα converges in distribution
to 0, the corresponding average converges to +∞. When ρ < 1, the average is
converging to 0 for any α < 1/(ρ+2). A phase transition phenomenon at ρ = 1 has
been identified through simulations in a related context, communication networks,
in Saddi and Guillemin [SG07]. It is not apparent as long as convergence in
distribution is concerned but it shows up when average quantities are considered.
This phenomenon is due to rare events related to the total size of the ⌊ρ⌋ first bins:
On these events, the indices of the first empty bins are of the order n1/(2ρ+1) ≪
n1/(ρ+2) and a lot them are created at this occasion. See Proposition 5.3 and
Corollary 5.1 for a precise statement of this result. Concerning the generality of
the results obtained, it is believed that some of them hold in a more general setting,
for the underlying branching process for example, see Section 6.
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Point Processes. Technically, one mainly uses point processes on R+ to describe
the asymptotic behavior of the indices of the first empty bins and not only the index
of the first one (or the subsequent ones) as it is usually the case in the literature. It
turns out that it is quite appropriate in our setting to get a full description of the
set of the first empty bins and, moreover, it reduces the technicalities of some of the
proofs. One of the arguments for the proofs of the convergence results is a simple
convergence result of two-dimensional point processes to a Poisson point process
with some intensity measure. A one-dimensional equivalent of this point of view is
implicit in most of the papers of the literature, see Hwang and Janson [HJ08] and
Gnedin et al. [GIR08] in particular.

The chapter is organized as follows. Section 2 introduces the stochastic model
investigated. The main results concerning convergence of related point processes
in R

2
+ are presented in Section 3. Convergence results for the indices of empty bins

are proved in Section 4. Section 5 investigates in detail the case ρ ≥ 1. Section 6
presents some possible extensions and Section 7 compares our results with a related
model investigated by Gnedin et al.. The Appendix A is devoted to the proof of
some technical estimates.

2. A Bins and Balls Problem in Random Environment

The stochastic model is described in detail and some notations are introduced.
The following problem was already introduced in Chapter III with slightly different
notations. In order for this chapter to be self-contained, some simple results already
proved in Chapter III are proved again here.

The Bins. Let (Ei) be a sequence of i.i.d. exponential random variables with
parameter 1. Define the non-decreasing sequence (tn) by, t0 = 0 and, for n ≥ 1,

tn =
n∑

i=1

1

i
Ei.

It is easy to check that for x ≥ 0,

(1) P(tn ≤ x) = P(max(E1, E2, . . . , En) ≤ x) = (1 − e−x)n.

The nth bin will be identified by the interval (tn−1, tn].
If Hn = 1 + 1/2 + · · · + 1/n is the nth harmonic number, since (tn − Hn) is a

square integrable martingale whose increasing process is given by

E
(
(tn − Hn)2

)
=

n∑

i=1

1

i2
,

then (Mn)
def.
= (tn − log(n + 1)) is almost surely converging to some finite random

variable M∞. See Neveu [Nev72] or Williams [Wil91]. By using Equation (1), it
is not difficult to get that the distribution of M∞ is given by

(2) P(M∞ ≤ x) = exp
(
−e−x

)
, x ∈ R.

An alternative description of the sequence (tn) is provided by the split times
of a Yule (branching) process starting with one individual. See Athreya and
Ney [AN72].
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The Balls. The locations of the balls are given by an independent sequence (Bj)
of i.i.d. exponential random variables with parameter ρ for some ρ > 0.

Conditionally on the point process (tn) associated with the location of bins,
the probability that a given ball falls into the nth bin (tn−1, tn] is given by

Pn = P

[
B1 ∈ (tn−1, tn]

∣∣∣(tn)
]

= e−ρtn−1 − e−ρtn = e−ρtn−1

(
1 − e−ρEn/n

)
.

This quantity can be rewritten as

(3) Pn =
1

nρ+1
W ρ

nZn, with Zn = n
(
1 − e−ρEn/n

)
and Wn = e−Mn−1 .

The variables Wn and Zn are independent random variables with different behavior.

(1) The variables (Zn) are independent and converge in distribution to an
exponentially distributed random variable with parameter 1/ρ.

(2) The random variables (Wn) converge almost surely to the finite random
variable W∞ = exp(−M∞) which is exponentially distributed with pa-
rameter 1.

This suggests an asymptotic representation of the sequence (Pn) as

(4)

(
1

nρ+1
W ρ

∞Fn

)
,

where (Fn) is an i.i.d. sequence of exponential random variables with mean ρ inde-
pendent of W∞. The sequence (Pn) has a power law decay with a random coefficient
consisting of the product of two terms: a fixed random variable W ρ

∞ and the other
being an element of an i.i.d. sequence. As it will be seen, these two terms have a
significant impact on the bins and balls problem studied in this paper.

3. Convergence of Point Processes

One of the main result, Theorem 4.1 in the next section, which establishes
convergence results for the indices of the first empty bins is closely related to the
asymptotic behavior of the point process {(i/n1/(2+ρ), nPi), i ≥ 1} on R

2
+. For this

reason, some results on convergence of point processes in R
2
+ are first proved. The

point process associated to the sequence (nPi) appears quite naturally, especially
in view of the Poisson transform used in the proof of Theorem 4.1. This is also a
central variable in Hwang and Janson [HJ08] in some cases.

An important tool to study point processes in R
d
+ for some d ≥ 1 is the Laplace

transform: If N={tn, n ≥ 1} is a point process and f a function in C+
c (Rd

+), the
set of non-negative continuous functions with a compact support, it is defined as
E(exp(−N (f))), where

N (f)
def.
= −

∑

n≥1

f(tn).

This functional uniquely determines the distribution of N and it is a key tool
to establish convergence results. See Neveu [Nev77] and Dawson [Daw93] for a
comprehensive presentation of these questions. In the following, the quantity N (A)
denotes the number of tn’s in the subset A of R

d
+.

The main results of this section establish convergence in distribution to mixed
Poisson point processes, i.e., distributed as a Poisson point process with a param-
eter which is a random variable. A natural tool in this domain is the Chen-Stein
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approach which gives the convergence in distribution and, generally, quite good
bounds on the convergence rate. See Chapter 10 of Barbour et al. [BHJ92] for
example. This has been used in the previous chapter when the probability vector
is deterministic. For some of the results of this section, this approach can probably
also be used. Unfortunately, due to the almost surely converging sequence (Wn)
creating a dependency structure, it does not seem that the main convergence result,
Theorem 3.1, can be proved in a simple way by using Chen-Stein’s method. The
main problem being of conditioning on the variable W∞ and keeping at the same
time upper bounds on the total variation distance converging to 0.

Condition C. A sequence of independent random variables (Xi) satisfies Condi-
tion C if there exist some α > 0 and η > 0 such that, for all i ≥ 1,

(5) |P(Xi ≤ x) − αx| ≤ Cx2, when 0 ≤ x ≤ η.

The following proposition is a preliminary result that will be used to prove the main
convergence results for the indices of the first empty bins.

Proposition 3.1 (Convergence to a Poisson process). For δ > 0 and n ≥ 1, let Pn

be the point process on R
2
+ defined by

Pn
def.
=

{(
i

n1/(δ+1)
,
n

iδ
Xi

)
, i ≥ 1

}
,

where (Xi) is a sequence of non-negative independent random variables satisfying
Condition C. Then the sequence of point processes (Pn) converges in distribution
to a Poisson point process P in R

2
+ with intensity measure xδdx dy on R

2
+. In

particular, its Laplace transform is given by

(6) E(exp[−P(f)]) = exp

(
−α

∫

R2
+

(
1 − e−f(x,y)

)
xδ dx dy

)
, f ∈ C+

c (R2
+).

See Robert [Rob03] for the definition and the main properties of Poisson processes
in general state spaces.

Proof. There exists some η0 > 0 such that P(Xi ≤ x) ≤ 2αx for 0 ≤ x ≤ η0

and all i ≥ 1. Let f ∈ C+
c (R2

+) be such that f is differentiable with respect to
the second variable. There is some K > 0 so that the support of f is included
in [0,K] × [0,K], define g(x, y) = 1 − exp(−f(x, y)), then by independence of the
variables Xi, i ≥ 1,

log E

(
e−Pn(f)

)
=

+∞∑

i=1

log

(
1 − E

[
g

(
i

n1/(δ+1)
,
n

iδ
Xi

)])
.

Since

E

[
g

(
i

n1/(δ+1)
,
n

iδ
Xi

)]
≤ P

(
Xi ≤ K

iδ

n

)
1{i≤Kn1/(δ+1)},
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the elementary inequality | log(1−y) + y| ≤ 3y2/2 valid for 0 ≤ y ≤ 1/2 shows that
there exists some n0 ≥ 1 such that

∣∣∣∣∣log E

(
e−Pn(f)

)
+

+∞∑

i=1

E

[
g

(
i

n1/(δ+1)
,
n

iδ
Xi

)]∣∣∣∣∣

≤ 6(αK)2

n2

⌊Kn1/(δ+1)⌋∑

i=1

i2δ ≤ 6α2K2δ+3 1

n1/(δ+1)

holds for n ≥ n0. It is therefore enough to study the asymptotics of the series of
the left hand side of the above inequality. For x ≥ 0, by using Fubini’s Theorem,
one gets

E

(
g

(
x,

n

iδ
Xi

))
= −

∫ +∞

0

∂g

∂y
(x, y)P

(
Xi ≤ yiδ/n

)
dy.

By using again Condition C, one obtains that the log of the Laplace transform
of Pn has the same asymptotic behavior as

−α
1

n1/(δ+1)

+∞∑

i=1

∫ +∞

0

∂g

∂y

(
i

n1/(δ+1)
, y

)
y

(
i

n1/(δ+1)

)δ

dy

which is a Riemann sum converging to

−α

∫

R2
+

∂g

∂y
(x, y)yxδ dxdy = α

∫

R2
+

(
1 − e−f(x,y)

)
xδ dxdy.

This shows in particular that for any compact set H of R
2
+, then

sup
n≥1

E(Pn(H)) < +∞,

the sequence (Pn) is therefore tight for the weak topology, see Dawson [Daw93].
By the convergence result, if P is any limiting point of the sequence (Pn), for

any function f ∈ C+
c (R2

+) such that y 7→ f(x, y) is differentiable, then the Laplace
transform of P at f is given by the right hand side of Equation (6). By density of
these functions f in C+

c (R2
+) for the uniform topology, this implies that P is indeed

a Poisson point process with intensity measure xδ dxdy on R
2
+. The proposition is

proved. ¥

The above result can be (roughly) restated as follows: for the indices of the
order of n1/(δ+1), the points nXi/iδ lying in some finite fixed interval converge to an
homogeneous Poisson point process. The following proposition gives an asymptotic
description of the indices of the points nXi/iδ but for indices of the order of nκ

with 1/(δ+1) < κ < 1/δ. It shows that, on finite intervals, these points accumulate
at rate n(1+δ)κ−1 according to the Lebesgue measure with some density.

Proposition 3.2 (Law of Large Numbers). If, for 1/(1 + δ) < κ < 1/δ and for
n ≥ 1, Pκ

n is the point process on R
2
+ defined by

Pκ
n(f) =

1

n(1+δ)κ−1

+∞∑

i=1

f

(
i

nκ
,
n

iδ
Xi

)
, f ∈ C+

c (R2
+),

where (Xi) is a sequence of non-negative independent random variables satisfying
Condition C, then the sequence (Pκ

n) converges in distribution to the deterministic
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measure Pκ
∞ defined by

Pκ
∞(f) = α

∫

R2
+

f(x, y)xδ dxdy, f ∈ C+
c (R2

+).

Proof. Let f ∈ C+
c (R2

+) be such that f is differentiable with respect to the second
variable. As before, the convergence result is proved for such a function f , the
generalization to an arbitrary function f ∈ C+

c (R2
+) follows the same lines as the

previous proof (relative compactness argument and identification of the limit). Let
K > 0 such that the support of f is included in [0,K] × [0,K]. One has

E (Pκ
n(f)) = − 1

n(1+δ)κ−1

+∞∑

i=1

∫ +∞

0

∂f

∂y

(
i

nκ
, y

)
P(Xi ≤ yiδ/n) dy,

as in the previous proof, by using Condition (5) and the fact that κ < 1/δ, one gets
the equivalence

E (Pκ
n(f)) ∼ −α

1

nκ

+∞∑

i=1

∫ +∞

0

∂f

∂y

(
i

nκ
, y

)
y

(
i

nκ

)δ

dy,

therefore,

lim
n→+∞

E (Pκ
n(f)) = −α

∫ +∞

0

∫ +∞

0

∂f

∂y
(x, y) yxδ dxdy = α

∫

R2
+

f(x, y)xδ dxdy.

By independence of the Xi’s the second moment of the difference

Pκ
n(f) − E (Pκ

n(f))

= − 1

n(1+δ)κ−1

+∞∑

i=1

∫ +∞

0

∂f

∂y

(
i

nκ
, y

) [
1{Xi≤yiδ/n} − P(Xi ≤ yiδ/n)

]
dy,

can be expressed as

n2((1+δ)κ−1) × E

(
[Pκ

n(f) − E (Pκ
n(f))]

2
)

=

+∞∑

i=1

E

([∫ +∞

0

∂f

∂y

(
i

nκ
, y

) [
1{Xi≤yiδ/n} − P(Xi ≤ yiδ/n)

]
dy

]2
)

≤ K
+∞∑

i=1

∫ +∞

0

[
∂f

∂y

(
i

nκ
, y

)]2

E

([
1{Xi≤yiδ/n} − P(Xi ≤ yiδ/n)

]2)
dy

≤ K

+∞∑

i=1

∫ +∞

0

[
∂f

∂y

(
i

nκ
, y

)]2

P(Xi ≤ yiδ/n) dy,

by Cauchy-Shwartz’s Inequality. The last term is, with the same arguments as for
the asymptotics of E (Pκ

n(f)), equivalent to

Kn(1+δ)κ−1 ×
∫

R2
+

[
∂f

∂y
(x, y)

]2

yxδ dxdy.

In particular, the sequence (Pκ
n(f)) converges in L2 (and therefore in distribution)

to Pκ
∞(f). The proposition is proved. ¥

The main convergence result can now be established.
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Theorem 3.1. If, for n ≥ 1, Pn is the point process on R
2
+ defined by

Pn =

{(
i

n1/(ρ+2)
, nPi

)
, i ≥ 1

}
,

where the random variables Pi, i ≥ 1, are defined by Equation (3), then the se-
quence (Pn) converges in distribution and the relation

(7) lim
n→+∞

E

(
e−Pn(f)

)
= E

[
exp

(
−W−ρ

∞
ρ

∫

R2
+

(
1 − e−f(x,y)

)
xρ+1 dx dy

)]

holds for any f ∈ C+
c (R2

+).

In other words the point process Pn converges in distribution to a mixed Poisson
point process: conditionally on W∞, it is a Poisson process with intensity measure
W−ρ

∞ xρ+1 dx dy/ρ.

Proof. The proof proceeds in several steps. The main objective of these steps
is to decouple the sequences (Wi) and (Zi) defining the (Pi) and then to apply
Proposition 3.1.

Step 1. One defines the sequences

P 1
i =

1

iρ+1
W̃ ρ

∞Z̃i, i ≥ 1, P 2
i =

1

iρ+1
W̃ ρ

βn
Z̃i, i ≥ 1,

where (βn) is some sequence of integers converging to +∞. Note that (P 2
i ) de-

pends on n. The sequences of random variables (W̃i, 1 ≤ i ≤ +∞) and (Z̃i)
are assumed to be independent and to have, respectively, the same distribution
as (Wi, 1 ≤ i ≤ +∞) and (Zi) defined by Equation (3). Recall that the sequence
(W̃i) converges almost surely to W̃∞. These sequences define point processes in the
following way, for j = 1 and 2,

Pj
n =

{(
i

n1/(ρ+2)
, nP j

i

)
, i ≥ 1

}
.

If f is a non-negative continuous function with compact support on R
2
+, because,

conditionally on W̃∞, the variables (W̃∞Zi) satisfy Condition C with α = W̃−ρ
∞ /ρ,

Proposition 3.1, with δ = ρ + 1, shows that

lim
n→+∞

E

(
e−P1

n(f)
∣∣∣ W̃∞

)
= exp

(
−W̃−ρ

∞
ρ

∫

R2
+

(
1 − e−f(x,y)

)
xρ+1 dx dy

)
.

Because of the boundedness of these quantities, by Lebesgue’s Theorem, the same
result holds for the expected values. Therefore, the sequence (P1

n) converges in
distribution to the point process P on R

2
+ whose Laplace transform is given by

Equation (7).
Let K ≥ 2 be such that the support of f is a subset of [0,K]2 and ε > 0. Since

the limiting point process P is almost surely a Radon measure, there exists some
m ∈ N such that P(P1

n([0, 2K]2) ≥ m) ≤ ε for all n ≥ 1. By uniform continuity,
there exists 0 < η < 1/2 such that |f(u) − f(v)| ≤ ε/m for u, v ∈ R

2
+ such that

‖u − v‖ ≤ η. For n ≥ 1, if

A def.
= {|W̃ ρ

βn
/W̃ ρ

∞ − 1| ≥ η/2K} ∪ {P1
n([0, 2K]2) ≥ m}
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then
∣∣E

(
exp

[
−P2

n(f)
])

− E
(
exp

[
−P1

n(f)
])∣∣ ≤ P(A)

+ E





exp


∑

i≥1

∣∣∣∣∣f
(

i

n1/(ρ+2)
,
W̃ ρ

βn

W̃ ρ
∞

nP 1
i

)
− f

(
i

n1/(ρ+2)
, nP 1

i

)∣∣∣∣∣


 − 1


1Ac




≤ P(|W ρ
βn

/W ρ
∞ − 1| ≥ η/2K) + (1 + eε)ε,

hence, by the almost sure convergence of (Wn) to W∞, the right hand side of the
last relation can be arbitrarily small as n goes to infinity. One concludes that the
sequence (P2

n) also converges in distribution to the point process P.

Step 2. For n ≥ 1, define

βn =
⌊
n1/(ρ+2)/log n

⌋
,

then it will be shown that the point processes

Qn =

{(
i

n1/(ρ+2)
, nPi

)
, 1 ≤ i ≤ βn

}

converge to the measure identically null. It is sufficient to prove that for any
f ∈ C+

c (R+), the sequence (Qn(f)) converges in distribution to 0. For a fixed i,
the sequence (nPi) converges in distribution to infinity, since f is continuous with
compact support and therefore bounded, one obtains that, in the definition of Qn,
it can be assumed that the indices i are restricted to the set {⌈ρ⌉, . . . , βn}.

Let K be such that the support of f is included in [0,K]2, if un = log log n,
for i ≥ ⌈ρ⌉,

E

(
f(i/n1/(ρ+2), nPi)1{t⌊ρ⌋≤un}

)
≤ ‖f‖∞P

(
t⌊ρ⌋ ≤ un, nPi ≤ K

)
,

since Pi = e−ρt⌊ρ⌋e−ρ(ti−1−t⌊ρ⌋)
(
1 − e−ρEi/i

)
,

E

(
f(i/n1/(ρ+2), nPi)1{t⌊ρ⌋≤un}

)

≤ ‖f‖∞P

[(
1 − e−ρEi/i

ρ/i

)
≤ i

ρ
Keρuneρ(ti−1−t⌊ρ⌋)/n

]
.

By using the elementary inequality, if E1 is exponentially distributed with mean 1,

(8) P

(
1

y

(
1 − e−yE1

)
≤ x

)
≤ e

(
1 − e−x

)
, y ≤ 1, x ≥ 0,

one gets that, for i > ρ,

E

(
f(i/n1/(ρ+2), nPi)1{t⌊ρ⌋≤un}

)

≤ e‖f‖∞ E

(
1 − exp

[
− i

nρ
Keρuneρ(ti−1−t⌊ρ⌋)

])

≤ eK‖f‖∞
ieρun

nρ
E

(
eρ(ti−1−t⌊ρ⌋)

)

= eK‖f‖∞
ieρun

nρ
eρ

∑i−1
k=⌈ρ⌉ 1/ke

∑i−1
k=⌈ρ⌉ − log(1−ρ/k)−ρ/k.



144 Chapter IV. Occupancy Schemes Associated to Yule Processes

Thus, there exists some finite constant C such that, for i > ρ,

E

(
f(i/n1/(ρ+2), nPi)1{t⌊ρ⌋≤un}

)
≤ C

iρ+1eρun

n
= C

iρ+1(log n)ρ

n
,

consequently,

E

(
Qn(f)1{t⌊ρ⌋≤un}

)
≤ C

βρ+2
n (log n)ρ

n
≤ C

1

(log n)2
.

This relation and the inequality

E

(
1 − e−Qn(f)

)
≤ P(t⌊ρ⌋ > un) + E

(
Qn(f)1{t⌊ρ⌋≤un}

)

give the desired result.

Step 3. The proof of the theorem can be now completed. By Equation (3), for
i ≥ 1, Pi = W ρ

i Zi/iρ+1, by using Step 2 and the same techniques as in Step 1
together with the fact that, for η > 0, the probability of the event

{
sup

(∣∣∣W ρ
i /W ρ

βn
− 1

∣∣∣ : i ≥ βn

)
≥ η

}

converges to 0 as n gets large, it is not difficult to show that the sequences of point
processes

{(
i

n1/(ρ+2)
,

n

iρ+1
W ρ

i Zi

)
, i ≥ 1

}
and

{(
i

n1/(ρ+2)
,

n

iρ+1
W ρ

βn
Zi

)
, i ≥ βn

}

have the same limit in distribution. Because Wβn
is independent of (Zi, i ≥ βn), the

last point process has the same distribution as P2
n (up to the first βn terms which

are negligible similarly as in Step 2). By Step 1, the convergence in distribution is
therefore proved. ¥

The following proposition strengthens the statement of Proposition 3.1, it will
be used to prove the main asymptotic result on the indices of empty bins.

Proposition 3.3. If f : R
2
+ → R+ is a continuous function such that

(1) there exists K such that f(x, y) = 0 for any x ≥ K and y ∈ R+,
(2) for all x ∈ R+, the function y 7→ f(x, y) is differentiable and

y 7→ y

∥∥∥∥
∂f

∂y

∥∥∥∥
y

def.
= y sup

x∈R+

∣∣∣∣
∂f

∂y

∣∣∣∣ (x, y)

is integrable on R+,

then Convergence (7) also holds for f .

Proof. For M , L ≥ 0 and i, n ∈ N, one has

E

(
f

(
i

nρ+2
, nPi

)
1{nPi≥M,t⌊ρ⌋≤L}

)

= −
∫ +∞

0

∂f

∂y

(
i

nρ+2
, y

)
P(M ≤ nPi ≤ y, t⌊ρ⌋ ≤ L) dy.



IV.4 Asymptotic Behavior of the Indices of the First Empty Bins 145

By using similar arguments as in the end of the proof of the above theorem, one
gets

E

(
f

(
i

nρ+2
, nPi

)
1{nPi≥M,t⌊ρ⌋≤L}

)

≤ e

∫ +∞

M

∥∥∥∥
∂f

∂y

∥∥∥∥
y

E

(
1 − exp

[
− i

nρ
yeρLeρ(ti−1−t⌊ρ⌋)

])
dy

≤ ieρL

nρ
eE

(
eρ(ti−1−t⌊ρ⌋)

)∫ +∞

M

y

∥∥∥∥
∂f

∂y

∥∥∥∥
y

dy

≤ C
iρ+1eρL

n

∫ +∞

M

y

∥∥∥∥
∂f

∂y

∥∥∥∥
y

dy,

for some fixed constant C. Define kn = ⌊Kn1/(ρ+2)⌋, by summing up these terms,
this gives the relation

(9) E


∑

i≥1

f

(
i

nρ+2
, nPi

)
1{M≤nPi,t⌊ρ⌋≤L}




≤ C
kρ+2

n eρL

n

∫ +∞

M

y

∥∥∥∥
∂f

∂y

∥∥∥∥
y

dy ≤ CKρ+2eρL

∫ +∞

M

y

∥∥∥∥
∂f

∂y

∥∥∥∥
y

dy.

Define f0(x, y) = f(x, y)1{y≤M}, by using a convolution kernel on the variable y,
there exist sequences (g+

p ) and (g−p ) in C+
c (R+) converging pointwisely to f0 for all

y 6= M such that g−p ≤ f0 ≤ g+
p . See Rudin [Rud87] for example. Proposition 3.1

gives that

E(exp(−P(g+
p ))) ≤ lim inf

n→+∞
E(exp(−Pn(f0)))

≤ lim sup
n→+∞

E(exp(−Pn(f0))) ≤ E(exp(−P(g−p ))),

and Expression (6) shows that, as p goes to infinity, the left and right hand side
terms of this relation converge to the Laplace transform of P at f0. Therefore,
Convergence (7) holds at f0. Since

0 ≤ E

(
e−Pn(f)

)
− E

(
e−Pn(f0)

)

≤ P (t⌊ρ⌋ ≥ L) + E

[(
1 − e−(Pn(f)−Pn(f0))

)
1{t⌊ρ⌋≤L}

]

≤ P (t⌊ρ⌋ ≥ L) + E

[
(Pn(f) − Pn(f0))1{t⌊ρ⌋≤L}

]
,

and the last term being the left hand side of Relation (9), one can choose L and M
sufficiently large so that this difference is arbitrarily small. The proposition is
proved. ¥

4. Asymptotic Behavior of the Indices of the First Empty Bins

It is assumed that a large number n of balls are thrown in the bins according
to the probability distribution (Pi) defined by Equation (3). The purpose of this
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section is to establish limit theorems to describe the limiting distribution of the set
of indices of bins having a fixed number of balls.

Theorem 4.1. The point process of rescaled indices of empty bins associated to the
probability vector (Pi) when n balls have been used

Nn =

{
i

n1/(ρ+2)
: i ≥ 1, the ith bin is empty

}

converges in distribution as n goes to infinity to a point process N∞ whose distri-
bution is given by

E

(
e−N∞(g)

)
= E

[
exp

(
−W−ρ

∞
ρ

∫

R+

(
1 − e−g(x)

)
xρ+1 dx

)]
,

for g ∈ C+
c (R+). Equivalently (Nn) converges in distribution to the point process

(
W ρ/(ρ+2)

∞ t
1/(ρ+2)
i

)
,

where (ti) is a standard Poisson process with parameter [ρ(ρ + 2)]−1/(ρ+2).

It can also be shown that the same result holds when the indices of bins con-
taining k balls are considered. If Nk,n is the corresponding point process, the
limiting point process does not in fact depend on k and, moreover, the sequence
(Nk,n, k ≥ 0) converges in distribution to (Nk,∞, k ≥ 0) and, conditionally on W∞,
the random variables Nk,∞, k ≥ 0 are independent with the same distribution.

Proof. The proof uses the poissonization technique: A closely related model is
first analyzed when Un balls are used, Un being an independent Poisson random
variable with mean n, N 0

n denotes the corresponding point process. For this model,
conditionally on the sequence (Pi), the number of balls in the bins are independent
Poisson random variables with respective parameters (nPi). In a first step, the
convergence in distribution of the sequence (N 0

n) of point processes is investigated.
Let g ∈ C+

c (R+),

E

(
e−N 0

n(g)
)

= E

(
exp

[
+∞∑

i=1

log
[
1 − e−nPi

(
1 − e−g(i/n1/(ρ+2))

)]])
,

if one defines f(x, y) = − log
[
1 − e−y

(
1 − e−g(x)

)]
, then

E
(
exp

[
−N 0

n(g)
])

= E (exp [−Pn(f)]) ,

where Pn is the point process defined in Theorem 3.1. By using Proposition 3.3,
one gets the relation

lim
n→+∞

E

(
e−N 0

n(g)
)

= E

[
exp

(
−W−ρ

∞
ρ

∫

R2
+

(
1 − e−f(x,y)

)
xρ+1 dx dy

)]

= E

[
exp

(
−W−ρ

∞
ρ

∫

R+

(
1 − e−g(x)

)
xρ+1 dx

)]
.

Consequently, the sequence (N 0
n) converges in distribution to N∞. For 0 < α < 1,

it is not difficult to check that the same convergence result holds when Un+nα balls
are used: If N 1

n denotes the associated point process, then (N 1
n) converges also in
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distribution to N∞. For x > 0, the monotonicity property Na([0, x]) ≤ Nb([0, x])
for b ≤ a gives the relation

P(N 1
n([0, x]) ≤ k) ≤ P (Nn([0, x]) ≤ k) + P(Un+nα ≤ n).

The central limit theorem for Poisson processes shows that for α ∈ (1/2, 1), the
quantity P(Un+nα ≤ n) converges to 0 as n gets large, therefore if k ≥ 0,

P(N∞([0, x]) ≤ k) = lim
n→+∞

P(N 1
n([0, x]) ≤ k) ≤ lim inf

n→+∞
P (Nn([0, x]) ≤ k) .

By using a similar argument with the lim sup, one gets that the sequence (Nn([0, x]))
converges in distribution to N∞([0, x]). With the same coupling argument, one gets
that for x1 ≤ x2 ≤ · · · ≤ xp ∈ R+ and (ki, 1 ≤ i ≤ p) ∈ N

p,

lim
n→+∞

P(Nn([0, x1]) ≤ k1,Nn([0, x2]) ≤ k2, . . . ,Nn([0, xp]) ≤ kp)

= P(N∞([0, x1]) ≤ k1,N∞([0, x2]) ≤ k2, . . . ,N∞([0, xp]) ≤ kp),

and therefore the convergence in distribution of (Nn) to N∞. The proposition is
proved. ¥

Corollary 4.1. If νn is the index of the first empty bin when n balls are thrown,
then

lim
n→+∞

P

( νn

n1/(ρ+2)
≥ x

)
= E

(
exp

(
−xρ+2W−ρ

∞
ρ(ρ + 2)

))
, x ≥ 0.

Comparison with Deterministic Power Law Decay. For δ > 1, one considers
the bins and balls problem with the probability vector Q = (Qi, i ≥ 1) =

(
α/iδ

)
.

Note that for the problems analyzed in this paper, only the asymptotic behavior of
the sequence (Qi) matters. The equivalent of Theorem 4.1 can be obtained from
Theorem III.4.1.

Proposition 4.1. As n goes to infinity, the point process
{

i(log n)1/δ+1

(αδn)1/δ
− log n − 1 + δ

δ
log log n : the ith bin is empty

}

converges in distribution to a Poisson point process with the intensity measure
(αδ)1/δex dx on R.

The probability vector considered in the above theorem has an asymptotic
expression of the form (Pi) = (W ρ

∞Fi/iρ+1). In this case, empty bins show up
for indices of the order of n1/(ρ+2), i.e., much earlier than for the deterministic
case where the exponent of n is 1/δ = 1/(ρ + 1) (if one ignores the log). This
can be explained simply by the fact that some of the i.i.d. exponential random
variables (Fi) can be very small thereby creating an additional possibility of having
empty bins.

In this picture, the variable W∞ does not seem to have an influence on the
qualitative behavior of these occupancy schemes other than creating some depen-
dency structure for the vector (Pi). The next section shows that this variable has
nevertheless an important role if one looks at the averages of the number of empty
bins.
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5. Rare Events

From Equation (7) of Theorem 3.1, for x > 0, the limiting number (in distribu-
tion) of empty bins whose index is less than xn1/(ρ+2) has an average value given
by

xρ+2

ρ(ρ + 2)
E

(
W−ρ

∞
)

=
xρ+2

ρ(ρ + 2)

∫ +∞

0

1

uρ
e−u du,

by Equation (2) and since W∞ = exp(−M∞). This quantity is infinite when ρ ≥ 1.
The goal of this section is to investigate this phenomenon which has a significant
impact on the peer-to-peer system of Chapter III, at the origin of this model. For
this purpose a family of rescaled point processes is introduced.

Definition 3. If φ : N → R+ is a non-decreasing function, for n ≥ 1, N φ
n denotes

the point process defined by

N φ
n =

{
i

φ(n)
: i ≥ 1, the ith bin is empty

}
.

For i ≥ 1, recall that, by Equation (3), the probability Pi of throwing a ball in the
ith bin is, with the notations of Section 2,

Pi =
1

iρ+1
W ρ

i Zi, with Zi = i
(
1 − e−ρEi/i

)
and Wi = e−Mi−1 ,

where (Ei) are i.i.d. exponential random variables with parameter 1, and define its
asymptotic representation as

P̃i
def.
=

1

iρ+1
W ρ

∞Fi, with W∞ = e−M∞ ,

where Wi and W∞ are independent of (Fi), an i.i.d. sequence of exponential random
variables with mean ρ.

The following proposition shows that, as in the proof of Theorem 4.1, for some
asymptotics for (N φ

n ), it is enough to analyze the asymptotic behaviour of a func-
tional of the sequence (P̃i).

Proposition 5.1. For x > 0 and a non-decreasing function φ, then

lim
n→+∞

E
(
N φ

n ([0, x])
)
/⌊xφ(n)⌋∑

i=1

E

(
e−nP̃i

)
= 1,

provided that

lim
n→+∞

φ(n)

nα0
= 0 and lim

n→+∞

⌊xφ(n)⌋∑

i=1

E

(
e−nP̃i

)
= +∞,

for some α0 < 1/(ρ + 1).

Proof. See Appendix A. ¥

For i > ⌊ρ⌋, the quantity Pi will be written as Pi = exp(−ρt⌊ρ⌋)DiZi/iρ+1 with

Di
def.
= exp

(
−ρ

[
Mi−1 − M⌊ρ⌋ − log ⌊ρ + 1⌋

])
.

The sequence (Di) converges almost surely to a finite limit Dρ given by

(10) Dρ
def.
= exp

(
−ρ

[
M∞ − M⌊ρ⌋ − log ⌊ρ + 1⌋

])
,
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and, since exp(ρEi/i) is integrable for i > ρ, a similar result holds for the expected
values

lim
i→+∞

E(1/Di) = E(1/Dρ) < +∞.

With this definition, the sequence (P̃i) can be represented as
(
P̃i

)
=

(
e−ρt⌊ρ⌋

iρ+1
DρFi

)
.

Some Preliminary Estimates. For the moment, k ∈ N is fixed, if n ≥ 1, i > ρ,
then

E

(
e−nP̃i

)
= E

[
exp

(
−nρDρe

−ρt⌊ρ⌋F1/iρ+1
)]

= E

(
iρ+1/n

iρ+1/n + e−ρt⌊ρ⌋ρDρ

)
,

by summing up these terms, if εk,n
def.
= k/n1/(ρ+1), one gets that

k∑

i=⌊ρ⌋+1

E

(
e−nP̃i

)
= n1/(ρ+1)

∫ εk,n

0

E

(
vρ+1

vρ+1 + e−ρt⌊ρ⌋ρDρ

)
dv + O (εk,n) ,

which gives the relation

k∑

i=1

E

(
e−nP̃i

)
= n1/(ρ+1)ερ+2

k,n

∫ 1

0

E

(
vρ+1

ερ+1
k,n vρ+1 + e−ρt⌊ρ⌋ρDρ

)
dv + O (εk,n) ,

with a change of variables. By using Equation (1) and again a change of variables,
one obtains the relation

(11)
k∑

i=1

E

(
e−nP̃i

)
=

⌊ρ⌋
ρ

n1/(ρ+1)ε
(2ρ+1)/ρ
k,n

×
∫ 1/ερ+1

0

u1/ρ−1(1 − ε
ρ+1

ρ

k,n u1/ρ)⌊ρ⌋−1du

∫ 1

0

E

(
vρ+1

vρ+1 + uρDρ

)
dv + O (εk,n) .

This quantity is now analyzed according to the values of ρ.

Case ρ > 1.
If kn=⌊xnα⌋ with 1/(2ρ+1) ≤ α < 1/(ρ+1), then εkn,n ∼ xn(α(ρ+1)−1)/(ρ+1) and,
by Relation (11),

lim
n→+∞

1

n((2ρ+1)α−1)/ρ

kn∑

i=1

E

(
e−nP̃i

)

= x(2ρ+1)/ρ ⌊ρ⌋
ρ

∫ +∞

0

u1/ρ−1du

∫ 1

0

E

(
vρ+1

vρ+1 + uρDρ

)
dv.

Case ρ = 1.
Equation (11) is for this case

k∑

i=1

E

(
e−nP̃i

)
=

√
nε3

k,n

∫ 1/ε2
k,n

0

du

∫ 1

0

E

(
v2

v2 + uD1

)
dv + O (εk,n) .
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If kn=⌊xn1/3/ logβ n⌋ with β ∈ R, then εkn,n ∼ x/(n1/6(log n)β) and for β ≤ 1/3,

lim
n→+∞

1

(log n)(1−3β)

kn∑

i=1

E

(
e−nP̃i

)
=

1

9
x3

E

(
1

D1

)
.

The following proposition has therefore been proved.

Proposition 5.2 (Average of the Number of Empty Bins). For α, β > 0, for
n ∈ N, denote by pα,β(n) = nα(log n)−β, and by convention pα = pα,0.

(1) If ρ > 1 and 1/(2ρ + 1) ≤ α < 1/(ρ + 1),

lim
n→+∞

1

n(α(2ρ+1)−1)/ρ
E (N pα

n ([0, x]))

= x(2ρ+1)/ρ ⌊ρ⌋
ρ

∫ +∞

0

u1/ρ−1du

∫ 1

0

E

(
vρ+1

vρ+1 + uρDρ

)
dv.

(2) If ρ = 1 and β ≤ 1/3,

lim
n→+∞

1

(log n)(1−3β)
E (N p1/3,β ([0, x])) =

1

9
x3

E

(
1

D1

)
.

A Double Threshold. For the convergence in distribution of the sequence of point
processes (N φ

n ), Theorem 4.1 has shown that the correct scaling φ for the order of
magnitude of the indices of the first empty bins is given by φ(n) = n1/(ρ+2), n ≥ 1.
For the average number of points in a finite interval, the above proposition states
that, for ρ > 1, the correct scaling is in fact φ(n) = n1/(2ρ+1) ≪ n1/(ρ+2).

For α > 0, with the notations of the above proposition, one concludes that
under the condition ρ > 1 and for 1/(2ρ + 1) < α < 1/(ρ + 2), the following limit
results hold

N pα
n

dist.→ 0 and lim
n→+∞

E (N pα
n [0, x]) = +∞, ∀x > 0.

This suggests that, in this case, with a high probability, all the bins with index
less than n1/(ρ+2) have a large number of balls. But also that there exists some
rare event for which a very large number of empty bins with indices of an order
slightly greater than n1/(2ρ+1) are created. The following proposition shows that
the total size of the first ⌊ρ⌋ bins is the key variable to explain this phenomenon.
It should be of the order of log n in order to have sufficiently many empty bins in
the appropriate region.

Proposition 5.3. For ρ > 1 and if pα(n) = nα, for α ∈ [1/(2ρ + 1), 1/(ρ + 2))
and

δ0(α)
def.
=

1 − α(ρ + 2)

ρ − 1
and δ1(α)

def.
=

1 − α(ρ + 1)

ρ
,

then, for a ∈ R and x > 0,

(1) If δ < δ0(α), then

lim
n→+∞

E

(
N pα

n ([0, x])1{t⌊ρ⌋≤δ log n}
)

= 0.

(2) If δ ∈ [δ0(α), δ1(α)[, then

lim
n→+∞

E

(
N pα

n ([0, x])1{t⌊ρ⌋≤δ log n+a}
)

n(ρ+2)α+δ(ρ−1)−1
=

xρ+2

(ρ + 2)

⌊ρ⌋
(ρ − 1)

E

(
1

ρDρ

)
e(ρ−1)a.
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(3) If δ ≥ δ1(α),

lim
n→+∞

E

(
N pα

n ([0, x])1{t⌊ρ⌋≤δ log n+a}
)

n((2ρ+1)α−1)/ρ

= x(2ρ+1)/ρ ⌊ρ⌋
ρ

∫ +∞

e−ρa1{δ=δ1(α)}

u1/ρ−1du

∫ 1

0

E

(
vρ+1

vρ+1 + uρDρ

)
dv,

where Dρ is the random variable defined by Equation (10).

Proof. To begin with, it is assumed that δ ∈ [δ0(α), δ1(α)). If k ≥ 1, b > 0, εk,n =

k/n1/(ρ+1), k = ⌊xnα⌋ and b = δ log n + a, in the same way as for Equation (11),
one gets

k∑

i=1

E

(
e−nP̃i1{t⌊ρ⌋≤b}

)
=

⌊ρ⌋
ρ

n1/(ρ+1)ε
(2ρ+1)/ρ
k,n

×
∫ 1/ερ+1

k,n

e−ρb/ερ+1
k,n

u1/ρ−1(1 − ε
ρ+1

ρ

k,n u1/ρ)⌊ρ⌋−1du

∫ 1

0

E

(
vρ+1

vρ+1 + uρDρ

)
dv + O(εk,n)

=
⌊ρ⌋
ρ

n
1

ρ+1 ε
2ρ+1

ρ

k,n

∫ 1/ερ+1
k,n

e−ρb/ερ+1
k,n

u1/ρ−2du

∫ 1

0

E

(
uvρ+1

vρ+1 + uρDρ

)
dv+O(εk,n).

(12)

Note that
e−ρb/ερ+1

k,n ∼ n1−ρδ−α(ρ+1)e−ρa ր +∞,

hence the range of the first integral goes to infinity as n gets large. Since
∫ 1

0

E

(
uvρ+1

vρ+1 + uρDρ
− vρ+1

ρDρ

)
dv =

∫ 1

0

E

(
v2(ρ+1)

ρ(vρ+1 + uρDρ)Dρ

)
dv,

by Lebesgue’s Theorem, this integral is arbitrarily small as u gets large, this implies
the equivalence

k∑

i=1

E

(
e−nP̃i1{t⌊ρ⌋≤b}

)
∼ ⌊ρ⌋

ρ(ρ + 2)
E

(
1

ρDρ

)
n1/(ρ+1)ε

(2ρ+1)/ρ
k,n

∫ 1/ερ+1
k,n

e−ρb/ερ+1
k,n

u1/ρ−2du.

If C is the multiplicative constant of the right hand side of the above relation, then
k∑

i=1

E

(
e−nP̃i1{t⌊ρ⌋≤b}

)
∼ Cρ

ρ − 1

kρ+2

n

(
eb(ρ−1) − 1

)
,

this gives the equivalence
k∑

i=1

E

(
e−nP̃i1{t⌊ρ⌋≤b}

)
∼ xρ+2 Cρ

ρ − 1
ea(ρ−1)n(ρ+2)α+δ(ρ−1)−1.

The proof of this case is completed.
The case δ ≥ δ1(α) uses Equation (12). The term e−ρb/ερ+1

k,n converges to e−ρa

if δ = δ1(α) and 0 otherwise. This gives directly the desired convergence.
Finally, if δ < δ0(α), for any a ∈ R, there exists n0 so that if n ≥ n0, then

δ log n ≤ δ0(α) log n + a, in particular

E

(
N pα

n ([0, x])1{t⌊ρ⌋≤δ log n}
)
≤ E

(
N pα

n ([0, x])1{t⌊ρ⌋≤δ0(α) log n+a}
)



152 Chapter IV. Occupancy Schemes Associated to Yule Processes

hence

lim sup
n→+∞

E

(
N pα

n ([0, x])1{t⌊ρ⌋≤δ log n}
)
≤ xρ+2

(ρ + 2)

⌊ρ⌋
(ρ − 1)

E

(
1

ρDρ

)
e(ρ−1)a.

One concludes by letting a go to −∞. ¥

As a consequence of the above proposition, for α ∈ [1/(2ρ + 1), 1/(ρ + 2)), the
average of the variable N pα

n ([0, x]) converges to infinity only when the total size t⌊ρ⌋
of the first ⌊ρ⌋ bins is of the order δ log n for a sufficiently large δ. The following
corollary gives a more precise formulation.

Corollary 5.1. For ρ > 1 and if pα(n) = nα, for α ∈ [1/(2ρ + 1), 1/(ρ + 2))

δ1(α)=(1 − α(ρ + 1))/ρ,

then, for a, b > 0,

lim
n→+∞

E

(
N pα

n ([0, x])1{δ1(α) log n−a≤t⌊ρ⌋≤δ1(α) log n+b}
)

E (N pα
n ([0, x]))

= ψ(−a, b)

where, for y, z ∈ R, ψ(y, z) = φ(y, z)/φ(−∞,+∞) and

φ(y, z) = x(2ρ+1)/ρ ⌊ρ⌋
ρ

∫

[e−ρz,e−ρy]

u1/ρ−1du

∫ 1

0

E

(
vρ+1

vρ+1 + uρDρ

)
dv.

A rough (non-rigorous) interpretation of this result could be as follows: on the
event where “most” (i.e., for the averages) of empty bins are created in the interval
[0, xnα], the random variable t⌊ρ⌋ − δ1(α) log n converges in distribution to some
random variable X on R, such that P(X ≤ a) = ψ(−∞, a).

The following analogous result is proved in a similar way for the critical case ρ =
1.

Proposition 5.4. For ρ = 1 and with the notations of the above proposition then,
for 0 < β < 1/3, x > 0, and for 0 ≤ a ≤ 1/3,

lim
n→+∞

1

(log n)1−3β
E

(
N p1/3,β

n ([0, x])1{t⌊ρ⌋≤a log n}
)

=
a

3
x3

E

(
1

D1

)
,

and for a > 1/3,

lim
n→+∞

1

(log n)1−3β
E

(
N p1/3,β

n ([0, x])1{t⌊ρ⌋≤a log n}
)

=
1

9
x3

E

(
1

D1

)
,

where D1 is the random variable defined by Equation (10).

6. Generalizations

The problem analyzed in the present chapter can be generalized towards two
directions. On the one hand, the sequence (tn) can stem from a general branching
process instead of the particular Yule one; on the other hand, the locations of balls
can have a general distribution. This section discusses these possible extensions.
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Exponential Balls and General Branching Process. Let (tn) be the birth
instants of a general supercritical branching process (Z(t)). See Kingman [Kin75]
and Nerman [Ner81] for example. Let α be the Malthusian parameter, and W the
almost sure limit of (e−αtZ(t)). Under reasonable technical assumptions, Härn-
qvist [H8̈1] has shown the following result:

Theorem 6.1. Define the point process Ψ∗
t by

Ψt =
∑

k≥1

1{t≤tk}δtkeαt ,

as t gets large, Ψt converges in distribution to a mixed Poisson process whose pa-
rameter is distributed as γW for some constant γ > 0.

From this result, it is possible to prove that the process (n(tn+k − tn), k ≥ 1)
converges in distribution, as n goes to infinity, to a Poisson process: clearly

Ψtn
=

∑

k≥1

δ(tn+k−tn)eαtn ,

and provided that, up to a multiplicative constant, eαtk/k converges to W , the
point process

∑
k≥1 δn(tn+k−tn) should converge to a Poisson random variable with

a deterministic parameter. In this case the probability that a ball falls into the nth
bin which is given by

Pn = e−ρtn−1(1 − e−ρ(tn−tn−1)),

has therefore the following asymptotic behavior

Pn ∼ n−ρ/α−1W ρ/αFn,

where (Fi) are i.i.d. exponential random variables with mean ρ. In the Bellman-
Harris case, following Athreya and Kaplan [AK76], it is possible to show that W
and (Fi) are independent, so that in this case, the asymptotic behavior of (Pn) is
exactly the same as in the case of a Yule process. One can conjecture that this
independence property still holds in the general case.

The main obstacle to generalize the results of this chapter, even in the Bellman-
Harris case, is that although W and (Fi) are independent, tn−1 and tn−tn−1 are not
independent. In the proof of Proposition 1, this independence plays a crucial role,
it has therefore to be generalized to variables which are only asymptotically inde-
pendent. Additionally, since the heavy tail property of the limiting variable W−ρ

∞ is
also true in the general case, see e.g., Liu [Liu01], a similar rare events phenomenon
to the one described in Section 5 is plausible in this case.

General Balls and Yule Process. When the underlying branching process is
changed, the above discussion suggests that the asymptotic behavior of the se-
quence (Pn) remains essentially the same as for a Yule process. The situation
changes significantly when the law of the location X of a ball is changed, in this
case with the same notations as before for the Yule process,

Pn = P(tn−1 < X ≤ tn−1 + En/n).

The tail distribution of X then plays a key role. Consider for instance a power law,
i.e., P(X ≥ x) behaves as δx−β for some β and δ > 0: then

Pn+1 ∼ t−β
n − (tn + En+1/(n + 1))−β ∼ βδEn+1

ntβ+1
n

∼ βδEn+1

n(log n)β+1
,
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Figure 1. Renewal bins and balls problem on R+: Sn is a renewal
process, the balls (En) are i.i.d. exponential random variables.

and it can be seen that the random variable W∞ may not play a role anymore in
the asymptotic behavior of the system.

7. Comparison with the Renewal Case

In a series of papers [Gne04, GINR09, GIR08], Gnedin et al. look at the
case where the point process used to divide R+ into random intervals is a renewal
process (Sn), instead of the split times (tn) of a Yule process (see Figure 1). If X
is the law of a step of S, then the random probability distribution (Pn) describing
how balls are thrown is given by

(13) Pn = (1 − Wn)

n−1∏

i=1

Wi,

where (Wn) are i.i.d. random variables on (0, 1) with common distribution W = e−X .
In contrast to our case where (Pn) essentially decays as a power law, here the deter-
ministic analog is a geometric distribution, which gives raise to different behaviors.
We discuss in this section the fact that, as far as the locations of empty bins are
concerned, there are different areas of interest in the Yule case, and only one in
the renewal case. To illustrate this idea, we begin by proving the simple following
lemma for the Yule case, i.e., the case studied so far:

Lemma 7.1. Let Ln be the index of the last bin which contains at least one ball
when n balls are thrown. Then the sequence (Ln/n1/ρ) converges in distribution to
a random variable L∞, positive and finite almost surely.

Proof. The proof relies on building Ln in a probability space where, rescaled
by n1/ρ, it converges almost surely to a finite random variable L∞ > 0. Let (tn)
be the split times of a Yule process, (En) i.i.d. exponential random variables with
mean 1/ρ, and Sn =

∑n
1 Ek/k. Define Λn as the index such that tΛn

≤ Sn < tΛn+1:
since Sn has the same law as the maximum of n i.i.d. exponential random vari-
ables, Λn and Ln have the same law, and so it is enough to show that Λn/n1/ρ

converges almost surely. It has already been seen that Mn = Sn − (1/ρ) log n and
M ′

n = tn − log n both converge almost surely to M∞ and M ′
∞ respectively: by

definition of Λn,

0 ≤ Sn − tΛn
= Mn + (1/ρ) log n − M ′

Λn
− log Λn ≤ tΛn+1 − tΛn

.

Since Λn goes to +∞ with probability one and tn+1 − tn goes to 0 with probability
one as well, one readily gets from the previous inequalities that almost surely,

lim
n→+∞

log
(
n1/ρ/Λn

)
= M ′

∞ − M∞,
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and the result immediately follows. For the sake of completeness, note that we know
the distribution of L∞, since M∞ and M ′

∞ are independent exponential random
variables. ¥

Range of Indexes in the Yule Case. Theorem 4.1 shows that the first empty
bin has an index of order n1/(ρ+2), and states more precisely that asymptotically,
the number of empty bins with indices lying in the range (xn1/(ρ+2), yn1/(ρ+2)) for
x < y is finite. The last empty bin has an index of order n1/ρ by the previous lemma,
and Proposition 3.2 suggests (it can be rigorously proved) that if 1/(ρ + 2) < α,
then the number of empty bins with indices lying in the range (xnα, ynα) for x < y
scales like n1/(α(ρ+2)−1) for α ≤ 1/(ρ+1), and like nα for α ≥ 1/(ρ+1). Hence there
are infinitely many empty bins between the first empty bin and the last non-empty
one, and the density of these bins smoothly increases in between.

Range of Indexes in the Renewal Case. In the renewal case, i.e., when the
random probability distribution (Pn) is given by (13), then there is only one range
of interest: for the sake of simplicity, and unless otherwise specified, we state the re-
sults of Gnedin et al. [GINR09] in the simplest case where both µ = EX and E(X2)
are finite. Under this condition, the indices νn of the first empty bin and Ln of the
last non-empty one are sharply centered around (1/µ) log n: both

νn − (1/µ) log n√
log n

and
Ln − (1/µ) log n√

log n

converge in distribution to normal random variables; thus the first empty bin and
the last empty one are both of order of log n. Concerning the number of empty
bins with index smaller than Ln, Gnedin et al. prove that this number converges,
without rescaling, towards a finite random variable. In the case EX = +∞ of
infinite expectation, this number converges to 0 because νn − Ln converges (in
distribution) to 1: this means that there is no whole, i.e., all bins are non-empty,
and then all bins are empty, which is quite an unexpected property.

These results suggest that not only are Ln and νn of the same order, but they
should be very close to each other. Although Gnedin et al. do not prove this result,
it readily follows from the following very nice construction, which they introduce
in [GIR08] and that we present here. The key idea is that in the renewal case,
there exists a bins and balls problem which represents what happens asymptotically
around the last non-empty bin. It readily follows from this asymptotic problem that
the first empty bin and the last non-empty one are only separated by a finite num-
ber of bins.

Asymptotic Problem. So far, balls were thrown on R+ which was divided into
random intervals. By applying the map x 7→ e−x to both the intervals and the
balls, this problem can be cast on (0, 1) — see Figure 2. With this transformation,
the n balls become n i.i.d. points on (0, 1) uniformly distributed; and the random
intervals (Sn, Sn+1) of R+ become random intervals (Qn+1, Qn) of (0, 1), where Qn

is defined by

Q0 = 1 and Qn = Pn+1 − Pn =
n∏

k=1

Wk = e−Sn , n ≥ 1.
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0 Q0 = 1Q1Q2Q3Q4
. . .

U1U8U3U5U2

Figure 2. Renewal bins and balls problem on (0, 1) obtained by
applying the map x 7→ e−x to the renewal bins and balls problem
on R+: Qn = e−Sn , the balls (Un) are i.i.d. uniform random vari-
ables.

. . . +∞0 . . .
Q̃k Q̃k+1 Q̃k+2 Q̃k+3

σ1 σ2 σ3 σ4 σ5

Figure 3. Asymptotic renewal bins and balls problem on R+:
Q̃k = e−S̃k with S̃n the stationary renewal process on R with step
distribution X, the balls (σn) are the point of a Poisson process
with intensity one.

As usual, we consider that a ball falls in the nth interval if it falls in the inter-
val (Qn, Qn−1).

Of course, the problem on (0, 1) can be considered on any finite interval (0, a),
by just scaling everything by a > 0: the intervals are then of the form (aQn+1, aQn)
and the balls correspond to a sequence (aUn) where (Un) are i.i.d. uniform on (0, 1).
Consider now that n balls are thrown on (0, 1), and consider the specific scaling
factor a = n: balls then form a sequence (nUk, 1 ≤ k ≤ n), and intervals are defined
by the points (e−Sk+log n, k ≥ 1). Quite remarkably, both sequences converge under
mild assumptions on X as n goes to infinity.

On the one hand, it is well-known that the sequence (nUk, 1 ≤ k ≤ n) converges
in distribution to a Poisson process on R+ of intensity one.

On the other hand, the renewal theorem states that as t goes to infinity, the
sequence (Sn − t, n ≥ 1) converges in distribution to a stationary renewal process
on R; see for instance Robert [Rob03, Proposition 1.28]. In particular, the se-
quence (nQk, k ≥ 0) converges in distribution, as n goes to infinity, to a sequence

(e−S̃k ,−∞ < k < +∞) where S̃ is the stationary renewal process on R with step
distribution X.

Finally, the asymptotic bins and balls problem of Figure 3 arises when the two
convergences are considered simultaneously: balls are given by a Poisson process
on R+ with intensity one, whereas bins are defined by the open intervals between
the points of the sequence (e−S̃n ,−∞ < n < +∞) with S̃ a stationary renewal
process on R. In this asymptotic picture, the first non-empty interval (starting
from the left) corresponds to the last non-empty interval.

Intuitively, any quantity of interest for the renewal bins and balls problem
can be read off this limiting problem. For instance, Gnedin et al. show that the
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number of balls in the last non-empty interval for the renewal bins and balls problem
converges in distribution to the number of balls in the first non-empty interval in
the limiting problem; it can be proved similarly that in the limiting problem, there
is a finite index η — where bins are labelled from left to right starting from the first
non-empty one — such that there is no empty bin after this index (observe that
the intervals are larger and larger, whereas the balls are regularly spaced). Then
the difference between the index of the first empty bin and the index of the last
non-empty one in the renewal bins and balls problem converges to η.
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Appendix A. Proof of Proposition 5.1

This section is devoted to the proof of Proposition 5.1. The notations of Section 5
are used. For n ≥ 1, one denotes by kn = ⌊xφ(n)⌋, it is assumed that φ(n) ≪ nα0

for some α0 < 1/(ρ + 1).

For 0 ≤ p ≤ 1 and n ≥ 1, the elementary inequality

∣∣e−np − (1 − p)n
∣∣ ≤ p2

2
ne−np ≤ 2e2

n

and the relation E
(
N φ

n ([0, x])
)

= E[(1−P1)
n]+ · · ·+E[(1−P⌊xφ(n)⌋)n] give directly

the following lemma.

Lemma A.1. For a non-decreasing function φ, x ≥ 0, and n ≥ 1, then
∣∣∣∣∣E

(
N φ

n ([0, x])
)
−

kn∑

i=1

E
(
e−nPi

)
∣∣∣∣∣ ≤ 2e2 kn

n
.

Lemma A.2. There exists η > 0 such that

E

(
sup
n≥1

W−η
n

)
< +∞.

Proof. For n ≥ 1, then Wn = exp(−Vn−1) exp(−(Hn−1 − log n)) where Vn =
tn − Hn and (Hn) is the harmonic sequence. For 0 < η < 1/2, it is easy to check
that

sup {E (exp(2ηVn)) : n ≥ 0} < +∞.

The sequence (Vn) being a martingale, Doob’s inequality that for any n ≥ 0

E

(
sup
n≥1

e2ηVn

)
≤ 4 sup

n≥1
E

(
e2ηVn

)
.

The result is proved. ¥

Lemma A.3. If F is an exponential random variable with mean ρ independent of Wi

then

lim
n→∞

∣∣∣∣∣E
(

kn∑

i=1

e−ni−ρ−1W ρ
i Zi

)
− E

(
kn∑

i=1

e−ni−ρ−1W ρ
i F

)∣∣∣∣∣ = 0.

Proof. Let y > 0 and Z = (1 − e−yF )/y. Then, trite calculations with the
exponential distribution give that, for any β > 0,

0 ≤ E(e−βZ) − E(e−βF ) ≤ e−(1+ρβ)/(2y) +
2y

(1 + ρβ)2
.

For k ≥ 1 and 1 ≤ i ≤ k, since Zi = i
(
1 − e−ρEi/i

)
where Ei is an exponential

random variable with mean 1, by using this relation one obtains that

(14) 0 ≤ E

(
k∑

i=1

e−ni−ρ−1W ρ
i Zi

)
− E

(
k∑

i=1

e−ni−ρ−1W ρ
i F

)

≤ E

(
k∑

i=1

exp

(
− i

2ρ
(1 + ρni−ρ−1W ρ

i )

))
+ E

(
k∑

i=1

2ρ

i(1 + ρni−ρ−1W ρ
i )2

)
.
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Since (i−ρ−1W ρ
i ) is a non-increasing sequence, then

kn∑

i=1

exp

(
− i

2ρ
(1 + ρni−ρ−1W ρ

i )

)
≤

kn∑

i=1

exp

(
− i

2ρ
(1 + ρnkn

−ρ−1W ρ
kn

)

)

≤
exp

(
−(1 + ρnkn

−ρ−1W ρ
kn

)/(2ρ)
)

1 − exp
(
−(1 + ρnkn

−ρ−1W ρ
kn

)/(2ρ)
)

and this last term converges almost surely to 0 because kn ≪ n1/(ρ+1). The relation

kn∑

i=1

exp

(
−(1 + ρni−ρ−1W ρ

i )
i

2ρ

)
≤

∞∑

i=1

exp

(
− i

2ρ

)
< +∞,

gives that the first term in the right hand side of (14) vanishes by Lebesgue’s
Theorem.

The second term in the right hand side of (14) converges almost surely to 0

kn∑

i=1

1

i(1 + ρni−ρ−1W ρ
i )2

≤ 1

(1 + ρnkn
−ρ−1W ρ

kn
)2

kn∑

i=1

1

i
,

since kn ≪ n1/(ρ+1). For ε > 0, again by monotonicity,

kn∑

i=1

1

i(1 + ρni−ρ−1W ρ
i )2

=

kn∑

i=1

iε

i1+ε(1 + ρni−ρ−1W ρ
i )2

≤ Cε
kn

ε

(1 + ρnkn
−ρ−1W ρ

kn
)2

where Cε is a finite constant. By using some elementary calculations and Lemma A.2,
it is not difficult to show that one can choose ε > 0 so that this last term is uni-
formly bounded in n by an integrable random variable. Again Lebesgue’s Theorem
shows that the second term in the right hand side of (14) converges to 0. The
lemma is proved. ¥

Combined with the last result, the following lemma completes the proof of
Proposition 5.1.

Lemma A.4. If F is an exponential random variable with mean ρ independent of W ρ
i

then

lim
n→+∞

E

(
kn∑

i=1

e−ni−ρ−1W ρ
i F

) /
E

(
kn∑

i=1

e−ni−ρ−1W ρ
∞F

)
= 1,

holds under the assumption of Proposition 5.1 that

kn∑

i=1

E

(
e−nP̃i

)

converges to infinity as n gets large.
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Proof. For any n ≥ 1:
∣∣∣∣∣E

(
kn∑

i=1

e−ni−ρ−1W ρ
i F

)
− E

(
kn∑

i=1

e−ni−ρ−1W ρ
∞F

)∣∣∣∣∣

=

∣∣∣∣∣E
(

kn∑

i=1

1

1 + ρni−ρ−1W ρ
i

−
kn∑

i=1

1

1 + ρni−ρ−1W ρ
∞

)∣∣∣∣∣

≤
kn∑

i=1

E

(
ρni−ρ−1|W ρ

∞ − W ρ
i |

(1 + ρni−ρ−1W ρ
i )(1 + ρni−ρ−1W ρ

∞)

)

≤
kn∑

i=1

E

( |W ρ
i /W ρ

∞ − 1|
1 + ρni−ρ−1W ρ

i

)
.

hence,
∣∣∣∣∣E

(
kn∑

i=1

e−ni−ρ−1W ρ
i F

)
− E

(
kn∑

i=1

e−ni−ρ−1W ρ
∞F

)∣∣∣∣∣

≤
kn∑

i=1

E

(
1

1 + ρni−ρ−1W ρ
i

)
E

∣∣∣∣
W ρ

i

W ρ
∞

− 1

∣∣∣∣ ,

by independence of W ρ
i /W ρ

∞ and W ρ
i . The sequence (W ρ

i /W ρ
∞) being uniformly

integrable, it converges to 1 only almost surely and in L1, consequently
kn∑

i=1

E

(
1

1 + ρni−ρ−1W ρ
i

)
E

∣∣∣∣
W ρ

i

W ρ
∞

− 1

∣∣∣∣ = o

(
kn∑

i=1

E

(
1

1 + ρni−ρ−1W ρ
i

))

since the sequence
(

kn∑

i=1

E

(
e−nP̃i

))
=

(
kn∑

i=1

E

(
1

1 + ρni−ρ−1W ρ
i

))

converges to infinity. The proof is completed. ¥
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