Flux publications Open Science

Mis à jour le

Haine Ghislain, Matignon Denis, Serhani Anass, Numerical Analysis of a Structure-Preserving Space-Discretization for an Anisotropic and Heterogeneous Boundary Controlled N-Dimensional Wave Equation As a Port-Hamiltonian System. 2023, International Journal of Numerical Analysis and Modeling. ISSN 1705-5105

Numerical Analysis of a Structure-Preserving Space-Discretization for an Anisotropic and Heterogeneous Boundary Controlled N-Dimensional Wave Equation

Verrier Gabriel, Matignon Denis, Haine Ghislain, Modelling and structure-preserving discretization of the Schrödinger equation as a port-Hamiltonian system, and simulation of a controlled quantum box. 2023. (Unpublished)

Modelling and structure-preserving discretization of the Schrödinger equation as a port-Hamiltonian system, and simulation of a controlled quantum box

Verrier Gabriel, Haine Ghislain, Matignon Denis, Modelling and Structure-Preserving Discretization of the Schrödinger as a Port-Hamiltonian System, and Simulation of a Controlled Quantum Box : Geometric Science of Information. GSI 2023.. 2023« In :» Geometric Science of Information. GSI 2023.. 978-3-03-138298-7

Modelling and Structure-Preserving Discretization of the Schrödinger as a Port-Hamiltonian System, and Simulation of a Controlled Quantum Box : Geomet

Brugnoli Andrea, Haine Ghislain, Matignon Denis, Stokes-Dirac structures for distributed parameter port-Hamiltonian systems : An analytical viewpoint. 2023, Communications in Analysis and Mechanics. 15 (3). 362-387. ISSN 2836-3310

Stokes-Dirac structures for distributed parameter port-Hamiltonian systems: An analytical viewpoint

Bendimerad-Hohl Antoine, Haine Ghislain, Lefèvre Laurent, Matignon Denis, Implicit port-Hamiltonian systems : structure-preserving discretization for the nonlocal vibrations in a viscoelastic nanorod, and for a seepage model : Proceedings of the 22nd IFAC world congress 2023. 2023, IFAC World Congress 2023, 09/07/2023 - 14/07/2023 (14/07/2023, Yokohama)

Implicit port-Hamiltonian systems: structure-preserving discretization for the nonlocal vibrations in a viscoelastic nanorod, and for a seepage model

Bendimerad-Hohl Antoine, Haine Ghislain, Matignon Denis, Structure-preserving Discretization of the Cahn-Hilliard Equations Recast as a Port-Hamiltonian System : Geometric Science of Information. GSI 2023.. 2023« In :» Geometric Science of Information. GSI 2023.

Structure-preserving Discretization of the Cahn-Hilliard Equations Recast as a Port-Hamiltonian System : Geometric Science of Information. GSI 2023.

Haine Ghislain, Matignon Denis, Monteghetti Florian, Long-time behavior of a coupled heat-wave system using a structure-preserving finite element method. 2022, Mathematical Reports. 22 (1-2). 187-215. ISSN 2285-3898

Long-time behavior of a coupled heat-wave system using a structure-preserving finite element method

Brugnoli Andrea, Haine Ghislain, Matignon Denis, Explicit structure-preserving discretization of port-Hamiltonian systems with mixed boundary control. 2022

Explicit structure-preserving discretization of port-Hamiltonian systems with mixed boundary control

Bendimerad-Hohl Antoine, Haine Ghislain, Matignon Denis, Maschke Bernhard, Structure-preserving discretization of a coupled Allen-Cahn and heat equation system. 2022, 4th IFAC Workshop on Thermodynamic Foundations of Mathematical Systems Theory - TFMST 2022, 2022-07-25 - 2022-07-27 (2022-07-27, Montreal)

Structure-preserving discretization of a coupled Allen-Cahn and heat equation system

Haine Ghislain, Matignon Denis, Monteghetti Florian, Structure-preserving discretization of Maxwell’s equations as a port-Hamiltonian system. 2022

Structure-preserving discretization of Maxwell’s equations as a port-Hamiltonian system

Haine Ghislain, Lefèvre Laurent, Matignon Denis, PFEM : a mixed structure-preserving discretization method for port-Hamiltonian systems. 2022

PFEM: a mixed structure-preserving discretization method for port-Hamiltonian systems

Bendimerad-Hohl Antoine, Matignon Denis, Haine Ghislain, Structure-preserving discretization of Allen-Cahn and Cahn-Hilliard equations, as port-Hamiltonian systems. 2022. (Unpublished)

Structure-preserving discretization of Allen-Cahn and Cahn-Hilliard equations, as port-Hamiltonian systems

Brugnoli Andrea, Haine Ghislain, Serhani Anass, Vasseur Xavier, Numerical Approximation of Port-Hamiltonian Systems for Hyperbolic or Parabolic PDEs with Boundary Control. 2021, Journal of Applied Mathematics and Physics. 09 (06). 1278-1321. ISSN 2327-4352

Numerical Approximation of Port-Hamiltonian Systems for Hyperbolic or Parabolic PDEs with Boundary Control

Haine Ghislain, Matignon Denis, Structure-Preserving Discretization of a Coupled Heat-Wave System, as Interconnected Port-Hamiltonian Systems : Geometric Science of Information. 2021« In :» Geometric Science of Information

Structure-Preserving Discretization of a Coupled Heat-Wave System, as Interconnected Port-Hamiltonian Systems : Geometric Science of Information

Delay Guillaume, Ervedoza Sylvain, Fournié Michel, Haine Ghislain, Numerical simulation on a fixed mesh for the feedback stabilization of a fluid–structure interaction system with a structure given by a finite number of parameters : Advances in Critical Flow Dynamics Involving Moving/Deformable Structures with Design Applications, Proc. of the IUTAM Symposium on Critical Flow Dynamics involving Moving/Deformable Structures with Design applications, June 18-22, 2018, Santorini, Greece. 2021« In :» Advances in Critical Flow Dynamics Involving Moving/Deformable Structures with Design Applications, Proc. of the IUTAM Symposium on Critical Flow Dynamics involving Moving/Deformable Structures with Design applications, June 18-22, 2018, Santorini, Greece, Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM). 978-3-03-055593-1

Numerical simulation on a fixed mesh for the feedback stabilization of a fluid–structure interaction system with a structure given by a finite number

Brugnoli Andrea, Matignon Denis, Haine Ghislain, Serhani Anass, Numerics for Physics-Based PDEs with Boundary Control : the Partitioned Finite Element Method for Port-Hamiltonian Systems. 2021

Numerics for Physics-Based PDEs with Boundary Control: the Partitioned Finite Element Method for Port-Hamiltonian Systems

Haine Ghislain, Matignon Denis, Incompressible Navier-Stokes Equation as port-Hamiltonian systems : velocity formulation versus vorticity formulation. 2021

Incompressible Navier-Stokes Equation as port-Hamiltonian systems: velocity formulation versus vorticity formulation

Brugnoli Andrea, Cardoso-Ribeiro Flávio Luiz, Haine Ghislain, Kotyczka Paul, Partitioned finite element method for structured discretization with mixed boundary conditions. 2020

Partitioned finite element method for structured discretization with mixed boundary conditions

Payen Gabriel, Matignon Denis, Haine Ghislain, Modelling and structure-preserving discretization of Maxwell’s equations as port-Hamiltonian system. 2020

Modelling and structure-preserving discretization of Maxwell’s equations as port-Hamiltonian system

Treton Anne-Sophie, Haine Ghislain, Matignon Denis, Modelling the 1D piston problem as interconnected port-Hamiltonian systems. 2020, The 21st World Congress of The International Federation of Automatic Control (IFAC 2020), 2020-07-11 - 2020-07-17 (2020-07-17, Virtual event)

Modelling the 1D piston problem as interconnected port-Hamiltonian systems

Monteghetti Florian, Haine Ghislain, Matignon Denis, Asymptotic stability of the multidimensional wave equation coupled with classes of positive-real impedance boundary conditions. 2019, Mathematical Control & Related Fields. 9 (4). 759-791. ISSN 2156-8499

Asymptotic stability of the multidimensional wave equation coupled with classes of positive-real impedance boundary conditions

Serhani Anass, Matignon Denis, Haine Ghislain, A Partitioned Finite Element Method for the Structure-Preserving Discretization of Damped Infinite-Dimensional Port-Hamiltonian Systems with Boundary Control : Geometric Science of Information. 2019« In :» Geometric Science of Information. 978-3-03-026980-7

A Partitioned Finite Element Method for the Structure-Preserving Discretization of Damped Infinite-Dimensional Port-Hamiltonian Systems with Boundary

Serhani Anass, Haine Ghislain, Matignon Denis, Anisotropic heterogeneous n-D heat equation with boundary control and observation : II. Structure-preserving discretization. 2019, 3rd IFAC Workshop on Thermodynamic Foundations for a Mathematical Systems Theory (TFMST 2019), 2019-07-03 - 2019-07-05 (2019-07-05, Louvain-la-Neuve)

Anisotropic heterogeneous n-D heat equation with boundary control and observation : II. Structure-preserving discretization

Serhani Anass, Matignon Denis, Haine Ghislain, Partitioned Finite Element Method for port-Hamiltonian systems with Boundary Damping : Anisotropic Heterogeneous 2D wave equations. 2019

Partitioned Finite Element Method for port-Hamiltonian systems with Boundary Damping: Anisotropic Heterogeneous 2D wave equations

Serhani Anass, Haine Ghislain, Matignon Denis, Anisotropic heterogeneous n-D heat equation with boundary control and observation : I. Modeling as port-Hamiltonian system. 2019, 3rd IFAC Workshop on Thermodynamic Foundations for a Mathematical Systems Theory (TFMST 2019), 2019-07-03 - 2019-07-05 (2019-07-05, Louvain-la-Neuve)

Anisotropic heterogeneous n-D heat equation with boundary control and observation : I. Modeling as port-Hamiltonian system

Serhani Anass, Matignon Denis, Haine Ghislain, Structure-Preserving Finite Volume Method for 2D Linear and Non-Linear Port-Hamiltonian Systems. 2018, 6th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, 2018-05-01 - 2018-05-04 (2018-05-04, Valparaíso)

Structure-Preserving Finite Volume Method for 2D Linear and Non-Linear Port-Hamiltonian Systems

Payen Gabriel, Matignon Denis, Haine Ghislain, Internship report : Simulation of plasma and Maxwell’s equations using the port-Hamiltonian approach. 2018. (Unpublished)

Internship report : Simulation of plasma and Maxwell's equations using the port-Hamiltonian approach

Haine Ghislain, Closed-loop perturbations of well-posed linear systems. 2017, The 20th World Congress of The International Federation of Automatic Control (IFAC 2017), 2017-07-09 - 2017-07-14 (2017-07-14, Toulouse)

Closed-loop perturbations of well-posed linear systems

Monteghetti Florian, Haine Ghislain, Matignon Denis, Stability of Linear Fractional Differential Equations with Delays : a coupled Parabolic-Hyperbolic PDEs formulation. 2017, The 20th World Congress of The International Federation of Automatic Control (IFAC 2017), 2017-07-09 - 2017-07-14 (2017-07-14, Toulouse)

Stability of Linear Fractional Differential Equations with Delays: a coupled Parabolic-Hyperbolic PDEs formulation

Haine Ghislain, Back and forth observers : application to TAT. 2017

Back and forth observers: application to TAT

Haine Ghislain, Systèmes linéaires invariants en temps de dimension infinie : un aperçu. 2016

Systèmes linéaires invariants en temps de dimension infinie : un aperçu

Haine Ghislain, Raymond Jean-Pierre, Simulations of control for Navier-Stokes equations. 2016

Simulations of control for Navier-Stokes equations

Haine Ghislain, Recovering the observable part of the initial data of an infinite-dimensional linear system with perturbed skew-adjoint generator using observers. 2015

Recovering the observable part of the initial data of an infinite-dimensional linear system with perturbed skew-adjoint generator using observers

Haine Ghislain, An observer-based approach for thermoacoustic tomography. 2014, The 21st International Symposium on Mathematical Theory of Networks and Systems (MTNS 2014), 2014-07-07 - 2014-07-11 (2014-07-11, Groningen)

An observer-based approach for thermoacoustic tomography

Haine Ghislain, Reconstruction de la partie observable de l’état initial d’un système linéaire conservatif. 2014, Workshop Observateurs, 2014-04-10 - 2014-04-11 (2014-04-11, Nancy)

Reconstruction de la partie observable de l'état initial d'un système linéaire conservatif

Haine Ghislain, Recovering the initial state of a Well-Posed Linear System with skew-adjoint generator. 2014, Workshop New trends in modeling, control and inverse problems, 2014-06-16 - 2014-06-19 (2014-06-19, Toulouse)

Recovering the initial state of a Well-Posed Linear System with skew-adjoint generator

Haine Ghislain, Solving Thermoacoustic Tomography with an observer-based algorithm. 2014, Journées Ondes du Sud-Ouest, 2014-02-05 - 2014-02-07 (2014-02-07, Toulouse)

Solving Thermoacoustic Tomography with an observer-based algorithm

Haine Ghislain, Recovering the observable part of the initial data of an infinite-dimensional linear system with skew-adjoint generator. 2014, Mathematics of Control, Signals, and Systems. 26 (3). 435-462. ISSN 0932-4194

Recovering the observable part of the initial data of an infinite-dimensional linear system with skew-adjoint generator

Haine Ghislain, Reconstructing initial data using iterative observers for wave type systems. 2013, 11th International Conference on Mathematical and Numerical Aspects of Waves (WAVES 2013)

Reconstructing initial data using iterative observers for wave type systems

Haine Ghislain, Recovering the initial state of dynamical systems using observers. 2013, 8th workshop on Control of Distributed Parameter Systems - CDPS’13

Recovering the initial state of dynamical systems using observers

Haine Ghislain, Reconstruction de la partie observable de la donnée initiale d’un système linéaire.. 2012

Reconstruction de la partie observable de la donnée initiale d'un système linéaire.

Haine Ghislain, Ramdani Karim, Reconstructing initial data using observers : error analysis of the semi-discrete and fully discrete approximations. 2012, Numerische Mathematik. 120 (2). 307-343. ISSN 0029-599X

Reconstructing initial data using observers: error analysis of the semi-discrete and fully discrete approximations

Haine Ghislain, Ramdani Karim, Reconstructing initial data using iterative observers for wave type systems. A numerical analysis. 2011, The 10th International Conference on the Mathematical and Numerical Aspects of Waves (WAVES 2011)

Reconstructing initial data using iterative observers for wave type systems. A numerical analysis

Haine Ghislain, Phung Kim Dang, Ramdani Karim, Observateurs itératifs pour Maxwell. 2011

Observateurs itératifs pour Maxwell

Haine Ghislain, Phung Kim Dang, Ramdani Karim, Iterative observers for inverse problems. 2011, Conference of the European GDR Control of PDEs

Iterative observers for inverse problems

Haine Ghislain, Ramdani Karim, Observateurs itératifs en horizon fini. Application à la reconstruction de données initiales pour des EDP d’évolution. 2011, Journal Européen des Systèmes Automatisés (JESA). 45 (7-10). 715-724. ISSN 1269-6935

Observateurs itératifs en horizon fini. Application à la reconstruction de données initiales pour des EDP d'évolution

Poussot-Vassal Charles, Matignon Denis, Haine Ghislain, Vuillemin Pierre, Data-driven port-Hamiltonian structured identification for non-strictly passive systems : 2023 European Control Conference (ECC)« In :» 2023 European Control Conference (ECC)

Data-driven port-Hamiltonian structured identification for non-strictly passive systems : 2023 European Control Conference (ECC)

Matignon Denis, Haine Ghislain, The partitioned finite element method for port-Hamiltonian systems : a structure-preserving discretization for boundary controlled wave and heat PDEs

The partitioned finite element method for port-Hamiltonian systems: a structure-preserving discretization for boundary controlled wave and heat PDEs